1
|
Cason SE, Mogre SS, Holzbaur ELF, Koslover EF. Spatiotemporal analysis of axonal autophagosome-lysosome dynamics reveals limited fusion events and slow maturation. Mol Biol Cell 2022; 33:ar123. [PMID: 36044338 PMCID: PMC9634976 DOI: 10.1091/mbc.e22-03-0111] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Macroautophagy is a homeostatic process required to clear cellular waste. Neuronal autophagosomes form constitutively in the distal tip of the axon and are actively transported toward the soma, with cargo degradation initiated en route. Cargo turnover requires autophagosomes to fuse with lysosomes to acquire degradative enzymes; however, directly imaging these fusion events in the axon is impractical. Here we use a quantitative model, parameterized and validated using data from primary hippocampal neurons, to explore the autophagosome maturation process. We demonstrate that retrograde autophagosome motility is independent of fusion and that most autophagosomes fuse with only a few lysosomes during axonal transport. Our results indicate that breakdown of the inner autophagosomal membrane is much slower in neurons than in nonneuronal cell types, highlighting the importance of this late maturation step. Together, rigorous quantitative measurements and mathematical modeling elucidate the dynamics of autophagosome-lysosome interaction and autophagosomal maturation in the axon.
Collapse
Affiliation(s)
- Sydney E. Cason
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Saurabh S. Mogre
- Department of Physics, University of California, San Diego, La Jolla, CA 92093
| | | | - Elena F. Koslover
- Department of Physics, University of California, San Diego, La Jolla, CA 92093,*Address correspondence to: Elena F. Koslover ()
| |
Collapse
|
2
|
Arceo XG, Koslover EF, Zid BM, Brown AI. Mitochondrial mRNA localization is governed by translation kinetics and spatial transport. PLoS Comput Biol 2022; 18:e1010413. [PMID: 35984860 PMCID: PMC9432724 DOI: 10.1371/journal.pcbi.1010413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/31/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
For many nuclear-encoded mitochondrial genes, mRNA localizes to the mitochondrial surface co-translationally, aided by the association of a mitochondrial targeting sequence (MTS) on the nascent peptide with the mitochondrial import complex. For a subset of these co-translationally localized mRNAs, their localization is dependent on the metabolic state of the cell, while others are constitutively localized. To explore the differences between these two mRNA types we developed a stochastic, quantitative model for MTS-mediated mRNA localization to mitochondria in yeast cells. This model includes translation, applying gene-specific kinetics derived from experimental data; and diffusion in the cytosol. Even though both mRNA types are co-translationally localized we found that the steady state number, or density, of ribosomes along an mRNA was insufficient to differentiate the two mRNA types. Instead, conditionally-localized mRNAs have faster translation kinetics which modulate localization in combination with changes to diffusive search kinetics across metabolic states. Our model also suggests that the MTS requires a maturation time to become competent to bind mitochondria. Our work indicates that yeast cells can regulate mRNA localization to mitochondria by controlling mitochondrial volume fraction (influencing diffusive search times) and gene translation kinetics (adjusting mRNA binding competence) without the need for mRNA-specific binding proteins. These results shed light on both global and gene-specific mechanisms that enable cells to alter mRNA localization in response to changing metabolic conditions.
Collapse
Affiliation(s)
- Ximena G. Arceo
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| | - Elena F. Koslover
- Department of Physics, University of California, San Diego, La Jolla, California, United States of America
| | - Brian M. Zid
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| | - Aidan I. Brown
- Department of Physics, Ryerson University, Toronto, Canada
| |
Collapse
|
3
|
Mogre SS, Christensen JR, Reck-Peterson SL, Koslover EF. Optimizing microtubule arrangements for rapid cargo capture. Biophys J 2021; 120:4918-4931. [PMID: 34687720 DOI: 10.1016/j.bpj.2021.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/05/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022] Open
Abstract
Cellular functions such as autophagy, cell signaling, and vesicular trafficking involve the retrograde transport of motor-driven cargo along microtubules. Typically, newly formed cargo engages in slow undirected movement from its point of origin before attaching to a microtubule. In some cell types, cargo destined for delivery to the perinuclear region relies on capture at dynein-enriched loading zones located near microtubule plus ends. Such systems include extended cell regions of neurites and fungal hyphae, where the efficiency of the initial diffusive loading process depends on the axial distribution of microtubule plus ends relative to the initial cargo position. We use analytic mean first-passage time calculations and numerical simulations to model diffusive capture processes in tubular cells, exploring how the spatial arrangement of microtubule plus ends affects the efficiency of retrograde cargo transport. Our model delineates the key features of optimal microtubule arrangements that minimize mean cargo capture times. Namely, we show that configurations with a single microtubule plus end abutting the distal tip and broadly distributed other plus ends allow for efficient capture in a variety of different scenarios for retrograde transport. Live-cell imaging of microtubule plus ends in Aspergillus nidulans hyphae indicates that their distributions exhibit these optimal qualitative features. Our results highlight important coupling effects between the distribution of microtubule tips and retrograde cargo transport, providing guiding principles for the spatial arrangement of microtubules within tubular cell regions.
Collapse
Affiliation(s)
- Saurabh S Mogre
- Department of Physics, University of California San Diego, La Jolla, California
| | - Jenna R Christensen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California
| | - Samara L Reck-Peterson
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, California; Division of Biological Sciences, Cell and Developmental Biology Section, University of California San Diego, La Jolla, California; Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Elena F Koslover
- Department of Physics, University of California San Diego, La Jolla, California.
| |
Collapse
|
4
|
Scott ZC, Brown AI, Mogre SS, Westrate LM, Koslover EF. Diffusive search and trajectories on tubular networks: a propagator approach. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:80. [PMID: 34143351 PMCID: PMC8213674 DOI: 10.1140/epje/s10189-021-00083-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/25/2021] [Indexed: 05/11/2023]
Abstract
Several organelles in eukaryotic cells, including mitochondria and the endoplasmic reticulum, form interconnected tubule networks extending throughout the cell. These tubular networks host many biochemical pathways that rely on proteins diffusively searching through the network to encounter binding partners or localized target regions. Predicting the behavior of such pathways requires a quantitative understanding of how confinement to a reticulated structure modulates reaction kinetics. In this work, we develop both exact analytical methods to compute mean first passage times and efficient kinetic Monte Carlo algorithms to simulate trajectories of particles diffusing in a tubular network. Our approach leverages exact propagator functions for the distribution of transition times between network nodes and allows large simulation time steps determined by the network structure. The methodology is applied to both synthetic planar networks and organelle network structures, demonstrating key general features such as the heterogeneity of search times in different network regions and the functional advantage of broadly distributing target sites throughout the network. The proposed algorithms pave the way for future exploration of the interrelationship between tubular network structure and biomolecular reaction kinetics.
Collapse
Affiliation(s)
- Zubenelgenubi C Scott
- Department of Physics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Aidan I Brown
- Department of Physics, Ryerson University, Toronto, Canada
| | - Saurabh S Mogre
- Department of Physics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Laura M Westrate
- Department of Chemistry and Biochemistry, Calvin University, Grand Rapids, MI, 49546, USA
| | - Elena F Koslover
- Department of Physics, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
5
|
S Mogre S, Brown AI, Koslover EF. Getting around the cell: physical transport in the intracellular world. Phys Biol 2020; 17:061003. [PMID: 32663814 DOI: 10.1088/1478-3975/aba5e5] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Eukaryotic cells face the challenging task of transporting a variety of particles through the complex intracellular milieu in order to deliver, distribute, and mix the many components that support cell function. In this review, we explore the biological objectives and physical mechanisms of intracellular transport. Our focus is on cytoplasmic and intra-organelle transport at the whole-cell scale. We outline several key biological functions that depend on physically transporting components across the cell, including the delivery of secreted proteins, support of cell growth and repair, propagation of intracellular signals, establishment of organelle contacts, and spatial organization of metabolic gradients. We then review the three primary physical modes of transport in eukaryotic cells: diffusive motion, motor-driven transport, and advection by cytoplasmic flow. For each mechanism, we identify the main factors that determine speed and directionality. We also highlight the efficiency of each transport mode in fulfilling various key objectives of transport, such as particle mixing, directed delivery, and rapid target search. Taken together, the interplay of diffusion, molecular motors, and flows supports the intracellular transport needs that underlie a broad variety of biological phenomena.
Collapse
Affiliation(s)
- Saurabh S Mogre
- Department of Physics, University of California, San Diego, San Diego, California 92093, United States of America
| | | | | |
Collapse
|
6
|
Hitching a Ride: Mechanics of Transport Initiation through Linker-Mediated Hitchhiking. Biophys J 2020; 118:1357-1369. [PMID: 32061275 DOI: 10.1016/j.bpj.2020.01.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/16/2020] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
In contrast to the canonical picture of transport by direct attachment to motor proteins, recent evidence shows that a number of intracellular "cargos" navigate the cytoplasm by hitchhiking on motor-driven "carrier" organelles. We describe a quantitative model of intracellular cargo transport via hitchhiking, examining the efficiency of hitchhiking initiation as a function of geometric and mechanical parameters. We focus specifically on the parameter regime relevant to the hitchhiking motion of peroxisome organelles in fungal hyphae. Our work predicts the dependence of transport initiation rates on the distribution of cytoskeletal tracks and carrier organelles, as well as the number, length, and flexibility of the linker proteins that mediate contact between the carrier and the hitchhiking cargo. Furthermore, we demonstrate that attaching organelles to microtubules can result in a substantial enhancement of the hitchhiking initiation rate in tubular geometries such as those found in fungal hyphae. This enhancement is expected to increase the overall transport rate of hitchhiking organelles and lead to greater efficiency in organelle dispersion. Our results leverage a quantitative physical model to highlight the importance of organelle encounter dynamics in noncanonical intracellular transport.
Collapse
|
7
|
Maelfeyt B, Tabei SMA, Gopinathan A. Anomalous intracellular transport phases depend on cytoskeletal network features. Phys Rev E 2019; 99:062404. [PMID: 31330659 DOI: 10.1103/physreve.99.062404] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Indexed: 01/06/2023]
Abstract
Intracellular transport in eukaryotic cells consists of phases of passive, diffusion-based transport and active, motor-driven transport along filaments that make up the cell's cytoskeleton. The interplay between superdiffusive transport along cytoskeletal filaments and the anomalous nature of subdiffusion in the bulk can lead to novel effects in transport behavior at the cellular scale. Here we develop a computational model of the process with cargo being ballistically transported along explicitly modeled cytoskeletal filament networks and passively transported in the cytoplasm by a subdiffusive continuous-time random walk (CTRW). We show that, over a physiologically relevant range of filament lengths and numbers, the network introduces a filament-length sensitive superdiffusive phase at early times which crosses over to a phase where the CTRW is dominant and produces subdiffusion at late times. We apply our approach to the problem of insulin secretion from cells and show that the superdiffusive phase introduced by the filament network manifests as a peak in the secretion at early times followed by an extended sustained release phase that is dominated by the CTRW process at late times. Our results are consistent with in vivo observations of insulin transport in healthy cells and shed light on the potential for the cell to tune functionally important transport phases by altering its cytoskeletal network.
Collapse
Affiliation(s)
- Bryan Maelfeyt
- Department of Physics, University of California Merced, Merced California, USA
| | - S M Ali Tabei
- Department of Physics, University of Northern Iowa, Cedar Falls Iowa, USA
| | - Ajay Gopinathan
- Department of Physics, University of California Merced, Merced California, USA
| |
Collapse
|