1
|
Yu H, Jack RL. Competition between lanes and transient jammed clusters in driven binary mixtures. Phys Rev E 2024; 109:024123. [PMID: 38491710 DOI: 10.1103/physreve.109.024123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/23/2024] [Indexed: 03/18/2024]
Abstract
We consider mixtures of oppositely driven particles, showing that their nonequilibrium steady states form lanes parallel to the drive, which coexist with transient jammed clusters where particles are temporarily immobilized. We analyze the interplay between these two types of nonequilibrium pattern formation, including their implications for macroscopic demixing perpendicular to the drive. Finite-size scaling analysis indicates that there is no critical driving force associated with demixing, which appears as a crossover in finite systems. We attribute this effect to the disruption of long-ranged order by the transient jammed clusters.
Collapse
Affiliation(s)
- Honghao Yu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Robert L Jack
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
2
|
Tschopp SM, Sammüller F, Hermann S, Schmidt M, Brader JM. Force density functional theory in- and out-of-equilibrium. Phys Rev E 2022; 106:014115. [PMID: 35974621 DOI: 10.1103/physreve.106.014115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
When a fluid is subject to an external field, as is the case near an interface or under spatial confinement, then the density becomes spatially inhomogeneous. Although the one-body density provides much useful information, a higher level of resolution is provided by the two-body correlations. These give a statistical description of the internal microstructure of the fluid and enable calculation of the average interparticle force, which plays an essential role in determining both the equilibrium and dynamic properties of interacting fluids. We present a theoretical framework for the description of inhomogeneous (classical) many-body systems, based explicitly on the two-body correlation functions. By consideration of local Noether-invariance against spatial distortion of the system we demonstrate the fundamental status of the Yvon-Born-Green (YBG) equation as a local force-balance within the fluid. Using the inhomogeneous Ornstein-Zernike equation we show that the two-body correlations are density functionals and, thus, that the average interparticle force entering the YBG equation is also a functional of the one-body density. The force-based theory we develop provides an alternative to standard density functional theory for the study of inhomogeneous systems both in- and out-of-equilibrium. We compare force-based density profiles to the results of the standard potential-based (dynamical) density functional theory. In-equilibrium, we confirm both analytically and numerically that the standard approach yields profiles that are consistent with the compressibility pressure, whereas the force-density functional gives profiles consistent with the virial pressure. For both approaches we explicitly prove the hard-wall contact theorem that connects the value of the density profile at the hard-wall with the bulk pressure. The structure of the theory offers deep insights into the nature of correlation in dense and inhomogeneous systems.
Collapse
Affiliation(s)
- Salomée M Tschopp
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Florian Sammüller
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Sophie Hermann
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Matthias Schmidt
- Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
| | - Joseph M Brader
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
3
|
Stochastic Density Functional Theory on Lane Formation in Electric-Field-Driven Ionic Mixtures: Flow-Kernel-Based Formulation. ENTROPY 2022; 24:e24040500. [PMID: 35455163 PMCID: PMC9028018 DOI: 10.3390/e24040500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/28/2022] [Accepted: 03/28/2022] [Indexed: 12/04/2022]
Abstract
Simulation and experimental studies have demonstrated non-equilibrium ordering in driven colloidal suspensions: with increasing driving force, a uniform colloidal mixture transforms into a locally demixed state characterized by the lane formation or the emergence of strongly anisotropic stripe-like domains. Theoretically, we have found that a linear stability analysis of density dynamics can explain the non-equilibrium ordering by adding a non-trivial advection term. This advection arises from fluctuating flows due to non-Coulombic interactions associated with oppositely driven migrations. Recent studies based on the dynamical density functional theory (DFT) without multiplicative noise have introduced the flow kernel for providing a general description of the fluctuating velocity. Here, we assess and extend the above deterministic DFT by treating electric-field-driven binary ionic mixtures as the primitive model. First, we develop the stochastic DFT with multiplicative noise for the laning phenomena. The stochastic DFT considering the fluctuating flows allows us to determine correlation functions in a steady state. In particular, asymptotic analysis on the stationary charge-charge correlation function reveals that the above dispersion relation for linear stability analysis is equivalent to the pole equation for determining the oscillatory wavelength of charge–charge correlations. Next, the appearance of stripe-like domains is demonstrated not only by using the pole equation but also by performing the 2D inverse Fourier transform of the charge–charge correlation function without the premise of anisotropic homogeneity in the electric field direction.
Collapse
|
4
|
Stierle R, Gross J. Hydrodynamic density functional theory for mixtures from a variational principle and its application to droplet coalescence. J Chem Phys 2021; 155:134101. [PMID: 34624998 DOI: 10.1063/5.0060088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Dynamic density functional theory (DDFT) allows the description of microscopic dynamical processes on the molecular scale extending classical DFT to non-equilibrium situations. Since DDFT and DFT use the same Helmholtz energy functionals, both predict the same density profiles in thermodynamic equilibrium. We propose a molecular DDFT model, in this work also referred to as hydrodynamic DFT, for mixtures based on a variational principle that accounts for viscous forces as well as diffusive molecular transport via the generalized Maxwell-Stefan diffusion. Our work identifies a suitable expression for driving forces for molecular diffusion of inhomogeneous systems. These driving forces contain a contribution due to the interfacial tension. The hydrodynamic DFT model simplifies to the isothermal multicomponent Navier-Stokes equation in continuum situations when Helmholtz energies can be used instead of Helmholtz energy functionals, closing the gap between micro- and macroscopic scales. We show that the hydrodynamic DFT model, although not formulated in conservative form, globally satisfies the first and second law of thermodynamics. Shear viscosities and Maxwell-Stefan diffusion coefficients are predicted using an entropy scaling approach. As an example, we apply the hydrodynamic DFT model with a Helmholtz energy density functional based on the perturbed-chain statistical associating fluid theory equation of state to droplet and bubble coalescence in one dimension and analyze the influence of additional components on coalescence phenomena.
Collapse
Affiliation(s)
- Rolf Stierle
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| | - Joachim Gross
- Institute of Thermodynamics and Thermal Process Engineering, University of Stuttgart, Pfaffenwaldring 9, 70569 Stuttgart, Germany
| |
Collapse
|
5
|
Serna H, Noya EG, Góźdź WT. Confinement of Colloids with Competing Interactions in Ordered Porous Materials. J Phys Chem B 2020; 124:10567-10577. [PMID: 33140966 PMCID: PMC7681789 DOI: 10.1021/acs.jpcb.0c08148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this work, we explore the possibility of promoting the formation of ordered microphases by confinement of colloids with competing interactions in ordered porous materials. For that aim, we consider three families of porous materials modeled as cubic primitive, diamond, and gyroid bicontinuous phases. The structure of the confined colloids is investigated by means of grand canonical Monte Carlo simulations in thermodynamic conditions at which either a cluster crystal or a cylindrical phase is stable in bulk. We find that by tuning the size of the unit cell of these porous materials, numerous novel ordered microphases can be produced, including cluster crystals arranged into close packed and open lattices as well as nonparallel cylindrical phases.
Collapse
Affiliation(s)
- Horacio Serna
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Eva G Noya
- Instituto de Química Física Rocasolano, CSIC, C/Serrano 119, 28006 Madrid, Spain
| | - Wojciech T Góźdź
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
6
|
Marolt K, Roth R. Statics and dynamics of a finite two-dimensional colloidal system with competing attractive critical Casimir and repulsive magnetic dipole interactions. Phys Rev E 2020; 102:042608. [PMID: 33212601 DOI: 10.1103/physreve.102.042608] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/22/2020] [Indexed: 11/07/2022]
Abstract
We continue our theoretical study of a recently proposed two-dimensional colloidal system with attractive critical Casimir and repulsive magnetic dipole forces that can be tuned easily and independently from each other via the temperature and the strength of an external magnetic field, respectively [K. Marolt, M. Zimmermann, and R. Roth, Phys. Rev. E 100, 052602 (2019)2470-004510.1103/PhysRevE.100.052602]. Using this freedom, it is possible to construct a competing interaction potential that causes microphase separation featuring spatially inhomogeneous cluster, stripe, and bubble phases in the bulk, i.e., in an infinite system without an external potential. In the present work, we demonstrate by means of density functional theory that microphase separation can also occur in finite geometries. In a square cell with a side length of 20 or 30 colloid diameters, we observe the emergence of highly structured cluster and ring phases at intermediate bulk densities in addition to almost uniform fluid phases for lower and higher bulk densities. We then employ dynamic density functional theory to determine how the system reacts when the temperature and the magnetic field are altered over time, and we show how to induce a transition from the liquid to the cluster/ring phase and also from the cluster directly to the ring phase. We find that often a slowly varying and nontrivial path in parameter space is required to reach a stable state, whereas abrupt changes are prone to lead to metastable configurations.
Collapse
Affiliation(s)
- Kevin Marolt
- Institute for Theoretical Physics, University of Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| | - Roland Roth
- Institute for Theoretical Physics, University of Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany
| |
Collapse
|
7
|
Pȩkalski J, Rządkowski W, Panagiotopoulos AZ. Shear-induced ordering in systems with competing interactions: A machine learning study. J Chem Phys 2020; 152:204905. [DOI: 10.1063/5.0005194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- J. Pȩkalski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - W. Rządkowski
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400 Klosterneuburg, Austria
| | - A. Z. Panagiotopoulos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
8
|
Hoell C, Löwen H, Menzel AM. Multi-species dynamical density functional theory for microswimmers: Derivation, orientational ordering, trapping potentials, and shear cells. J Chem Phys 2019. [DOI: 10.1063/1.5099554] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Christian Hoell
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Andreas M. Menzel
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| |
Collapse
|
9
|
Serna H, Noya EG, Góźdź WT. Assembly of Helical Structures in Systems with Competing Interactions under Cylindrical Confinement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:702-708. [PMID: 30590916 PMCID: PMC6344915 DOI: 10.1021/acs.langmuir.8b03382] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/03/2018] [Indexed: 06/09/2023]
Abstract
The behavior under confinement of nanoparticles interacting with the short-range attraction and long-range repulsion potential is studied by means of Monte Carlo simulations in the grand canonical ensemble. The study is performed at thermodynamic conditions at which a hexagonal cylindrical phase is the most stable phase in bulk. In these conditions, cylindrical confinement promotes the formation of helical structures whose morphology depends upon both the pore radius and boundary conditions. As the pore radius increases, the fluid undergoes a series of structural transitions going from single to multiple intertwined helices to concentric helical structures. When the pore ends are closed by planar walls, ring and toroidal clusters are formed next to these walls. Dependent upon the cylinder length, molecules away from the pore edges can either keep growing into ring and toroidal aggregates or arrange into helical structures. It is demonstrated that the system behaves in cylindrical confinement in the same way as the block copolymer systems. Such behavior has not been observed for the colloidal systems in cylindrical confinement with only repulsive interactions.
Collapse
Affiliation(s)
- Horacio Serna
- Institute
of Physical Chemistry of the Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Eva G. Noya
- Instituto
de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas (CSIC), Calle Serrano 119, 28006 Madrid, Spain
| | - W. T. Góźdź
- Institute
of Physical Chemistry of the Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
10
|
Schindler T, Wittmann R, Brader JM. Particle-conserving dynamics on the single-particle level. Phys Rev E 2019; 99:012605. [PMID: 30780382 DOI: 10.1103/physreve.99.012605] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Indexed: 06/09/2023]
Abstract
We generalize the particle-conserving dynamics method of de las Heras et al. [J. Phys.: Condens. Matter 28, 244024 (2016)JCOMEL0953-898410.1088/0953-8984/28/24/244024] to binary mixtures and apply this to hard rods in one dimension. Considering the case of one species consisting of only one particle enables us to address the tagged-particle dynamics. The time-evolution of the species-labeled density profiles is compared to exact Brownian dynamics and (grand-canonical) dynamical density functional theory. The particle-conserving dynamics yields improved results over the dynamical density functional theory and well reproduces the simulation data at short and intermediate times. However, the neglect of a strict particle order (due to the fundamental statistical assumption of ergodicity) leads to errors at long times for our one-dimensional setup. The isolated study of that error makes clear the fundamental limitations of (adiabatic) density-based theoretical approaches when applied to systems of any dimension for which particle caging is a dominant physical mechanism.
Collapse
Affiliation(s)
- T Schindler
- Institute for Theoretical Physics I, Friedrich-Alexander University Erlangen-Nürnberg Theoretical Physics II, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - R Wittmann
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - J M Brader
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|