1
|
Shoemaker BA, Khalifa O, Haji-Akbari A. Correlations in Charged Multipore Systems: Implications for Enhancing Selectivity and Permeability in Nanoporous Membranes. ACS NANO 2024; 18:1420-1431. [PMID: 38176076 DOI: 10.1021/acsnano.3c07489] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Nanoporous membranes have emerged as powerful tools for diverse applications, including gas separation and water desalination. Achieving high permeability for desired molecules alongside exceptional rejection of other species presents a significant design challenge. One potential strategy involves optimizing the chemistry and geometry of isolated nanopores to enhance permeability and selectivity while maximizing their density within a membrane. However, the impact of the pore proximity on membrane performance remains an open question. Through path sampling simulations of model graphitic membranes with multiple subnanometer pores, we reveal that nanoscale proximity between pores detrimentally affects water permeability and salt rejection. Specifically, counterion transport is decelerated, while co-ion transport is accelerated, due to direct interactions among water molecules, salt ions, and the dipoles within neighboring pores. Notably, the observed ionic transport time scales significantly deviate from established theories such as the access resistance model but are well explained using the simple phenomenological model that we develop in this work. We use this model to prescreen and optimize pore arrangements that elicit minimal correlations at a target pore density. These findings deepen our understanding of multipore systems, informing the rational design of nanoporous membranes for enhanced separation processes such as water desalination. They also shed light on the physiology of biological cells that employ ion channel proteins to modulate ion transport and reversal potentials.
Collapse
Affiliation(s)
- Brian A Shoemaker
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Omar Khalifa
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Amir Haji-Akbari
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
2
|
Jiang X, Zhao C, Noh Y, Xu Y, Chen Y, Chen F, Ma L, Ren W, Aluru NR, Feng J. Nonlinear electrohydrodynamic ion transport in graphene nanopores. SCIENCE ADVANCES 2022; 8:eabj2510. [PMID: 35030026 PMCID: PMC8759738 DOI: 10.1126/sciadv.abj2510] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/22/2021] [Indexed: 05/25/2023]
Abstract
Mechanosensitivity is one of the essential functionalities of biological ion channels. Synthesizing an artificial nanofluidic system to mimic such sensations will not only improve our understanding of these fluidic systems but also inspire applications. In contrast to the electrohydrodynamic ion transport in long nanoslits and nanotubes, coupling hydrodynamical and ion transport at the single-atom thickness remains challenging. Here, we report the pressure-modulated ion conduction in graphene nanopores featuring nonlinear electrohydrodynamic coupling. Increase of ionic conductance, ranging from a few percent to 204.5% induced by the pressure—an effect that was not predicted by the classical linear coupling of molecular streaming to voltage-driven ion transport—was observed experimentally. Computational and theoretical studies reveal that the pressure sensitivity of graphene nanopores arises from the transport of capacitively accumulated ions near the graphene surface. Our findings may help understand the electrohydrodynamic ion transport in nanopores and offer a new ion transport controlling methodology.
Collapse
Affiliation(s)
- Xiaowei Jiang
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Chunxiao Zhao
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yechan Noh
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yang Xu
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yuang Chen
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Fanfan Chen
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Laipeng Ma
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Wencai Ren
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Narayana R. Aluru
- Walker Department of Mechanical Engineering, Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas, TX 78712, USA
| | - Jiandong Feng
- Laboratory of Experimental Physical Biology, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Sahu S, Zwolak M. Diffusion Limitations and Translocation Barriers in Atomically Thin Biomimetic Pores. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E1326. [PMID: 33287091 PMCID: PMC7712548 DOI: 10.3390/e22111326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 11/30/2022]
Abstract
Ionic transport in nano- to sub-nano-scale pores is highly dependent on translocation barriers and potential wells. These features in the free-energy landscape are primarily the result of ion dehydration and electrostatic interactions. For pores in atomically thin membranes, such as graphene, other factors come into play. Ion dynamics both inside and outside the geometric volume of the pore can be critical in determining the transport properties of the channel due to several commensurate length scales, such as the effective membrane thickness, radii of the first and the second hydration layers, pore radius, and Debye length. In particular, for biomimetic pores, such as the graphene crown ether we examine here, there are regimes where transport is highly sensitive to the pore size due to the interplay of dehydration and interaction with pore charge. Picometer changes in the size, e.g., due to a minute strain, can lead to a large change in conductance. Outside of these regimes, the small pore size itself gives a large resistance, even when electrostatic factors and dehydration compensate each other to give a relatively flat-e.g., near barrierless-free energy landscape. The permeability, though, can still be large and ions will translocate rapidly after they arrive within the capture radius of the pore. This, in turn, leads to diffusion and drift effects dominating the conductance. The current thus plateaus and becomes effectively independent of pore-free energy characteristics. Measurement of this effect will give an estimate of the magnitude of kinetically limiting features, and experimentally constrain the local electromechanical conditions.
Collapse
Affiliation(s)
- Subin Sahu
- Biophysical and Biomedical Measurement Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA;
- Institute for Research in Electronics and Applied Physics and Maryland NanoCenter, University of Maryland, College Park, MD 20742, USA
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Michael Zwolak
- Biophysical and Biomedical Measurement Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA;
| |
Collapse
|
4
|
Das N, Ropmay GD, Joseph AM, RoyChaudhuri C. Modeling the Effective Conductance Drop Due to a Particle in a Solid State Nanopore Towards Optimized Design. IEEE Trans Nanobioscience 2020; 19:598-608. [PMID: 32780701 DOI: 10.1109/tnb.2020.3015592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
An understanding of the current change in a solid state nanopore due to particle movement or capture is crucial for improvement of nanopore based sensing technologies. For lower aspect ratio pores, which are gaining importance due to their high sensitivity, there is interplay between access and pore resistance and the existing theories for computation of access resistance cannot explain most of the experimental observations. Hence, there is a need to develop a comprehensive model for calculating the effective conductance drop in presence of particles in a solid state nanopore. In this paper, we develop analytical models to calculate both the access and pore resistance in presence of particle at different positions during translocation and also when captured by receptors in functionalized nanopores. A wide range of pore geometry and molar strength has been investigated. Taking into consideration the positional uncertainty during particle translocation, the effective resistance sensitivity has been found to agree very well with the experimental observations in low aspect ratio pore. Additionally, we observe that in functionalized nanopores, a pore of higher diameter results in around 50% increase in sensitivity compared to a pore with half its diameter, which indicates the scope of design optimization in such systems.
Collapse
|
5
|
Langlois V, Trinh VH, Perrot C. Electrical conductivity and tortuosity of solid foam: Effect of pore connections. Phys Rev E 2019; 100:013115. [PMID: 31499836 DOI: 10.1103/physreve.100.013115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Indexed: 11/07/2022]
Abstract
Numerical and analytical methods at both micro- and mesoscales are used to study how the electrical resistivity and the high-frequency tortuosity of solid foam are modified by the presence of membranes that partially or totally close the cell windows connecting neighbor pores. Finite-element-method simulations are performed on two pores connected by a single-holed membrane and on well-ordered Kelvin foam. For two pores connected by a single-holed membrane, we show that the equation for pore access resistance obtained by Sahu and Zwolak [Phys. Rev. E 98, 012404 (2018)2470-004510.1103/PhysRevE.98.012404] can predict, after a few modifications, the electrical resistivity at the membrane scale for a large range of membrane apertures. Considering these analytical results, we build a pore-network model by using two kinds of conductances at the pore scale: interpore conductance and intrapore conductance. Local interpore resistances govern foam electrical conductivity at small membrane aperture size, but when the membrane aperture has the same order of magnitude as the pore size, the intrapore resistances are no longer negligible. An important success of this pore-network model is that it can be used to study the effects of percolation on the foam electrical conductivity by using pore-network simulations on larger samples containing a few thousand pores and having different proportions of closed membrane randomly distributed over the sample. The tortuosity is found to be drastically larger than one in foam containing membranes with small apertures or a significant fraction of closed membranes.
Collapse
Affiliation(s)
- V Langlois
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, F-77454, Marne-la-Vallée, France
| | - V H Trinh
- Le Quy Don Technical University, Hanoi, Vietnam
| | - C Perrot
- Université Paris-Est, Laboratoire Modélisation et Simulation MultiÉchelle, MSME UMR 8208 CNRS, Marne-la-Vallée 77454, France
| |
Collapse
|
6
|
Sahu S, Elenewski J, Rohmann C, Zwolak M. Optimal transport and colossal ionic mechano-conductance in graphene crown ethers. SCIENCE ADVANCES 2019; 5:eaaw5478. [PMID: 31309155 PMCID: PMC6625819 DOI: 10.1126/sciadv.aaw5478] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/10/2019] [Indexed: 05/26/2023]
Abstract
Biological ion channels balance electrostatic and dehydration effects to yield large ion selectivity alongside high transport rates. These macromolecular systems are often interrogated through point mutations of their pore domain, limiting the scope of mechanistic studies. In contrast, we demonstrate that graphene crown ether pores afford a simple platform to directly investigate optimal ion transport conditions, i.e., maximum current densities and selectivity. Crown ethers are known for selective ion adsorption. When embedded in graphene, however, transport rates lie below the drift-diffusion limit. We show that small pore strains (1%) give rise to a colossal (100%) change in conductance. This process is electromechanically tunable, with optimal transport in a primarily diffusive regime, tending toward barrierless transport, as opposed to a knock-on mechanism. These observations suggest a novel setup for nanofluidic devices while giving insight into the physical foundation of evolutionarily optimized ion transport in biological pores.
Collapse
Affiliation(s)
- Subin Sahu
- Biophysics Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Maryland Nanocenter, University of Maryland, College Park, MD 20742, USA
| | - Justin Elenewski
- Biophysics Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Maryland Nanocenter, University of Maryland, College Park, MD 20742, USA
| | - Christoph Rohmann
- Biophysics Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Maryland Nanocenter, University of Maryland, College Park, MD 20742, USA
| | - Michael Zwolak
- Biophysics Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
7
|
Sahu S, Zwolak M. Colloquium: Ionic phenomena in nanoscale pores through 2D materials. REVIEWS OF MODERN PHYSICS 2019; 91:10.1103/RevModPhys.91.021004. [PMID: 31579274 PMCID: PMC6774369 DOI: 10.1103/revmodphys.91.021004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Ion transport through nanopores permeates through many areas of science and technology, from cell behavior to sensing and separation to catalysis and batteries. Two-dimensional materials, such as graphene, molybdenum disulfide (MoS2), and hexagonal boron nitride (hBN), are recent additions to these fields. Low-dimensional materials present new opportunities to develop filtration, sensing, and power technologies, encompassing ion exclusion membranes, DNA sequencing, single molecule detection, osmotic power generation, and beyond. Moreover, the physics of ionic transport through pores and constrictions within these materials is a distinct realm of competing many-particle interactions (e.g., solvation/dehydration, electrostatic blockade, hydrogen bond dynamics) and confinement. This opens up alternative routes to creating biomimetic pores and may even give analogues of quantum phenomena, such as quantized conductance, in the classical domain. These prospects make membranes of 2D materials - i.e., 2D membranes - fascinating. We will discuss the physics and applications of ionic transport through nanopores in 2D membranes.
Collapse
Affiliation(s)
- Subin Sahu
- Biophysics Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
- Maryland NanoCenter, University of Maryland, College Park, Maryland 20742, USA
| | - Michael Zwolak
- Biophysics Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|