1
|
Fan B, Zuriguel I, Dijksman JA, van der Gucht J, Börzsönyi T. Elongated particles discharged with a conveyor belt in a two-dimensional silo. Phys Rev E 2023; 108:044902. [PMID: 37978696 DOI: 10.1103/physreve.108.044902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/04/2023] [Indexed: 11/19/2023]
Abstract
The flow of elliptical particles out of a two-dimensional silo when extracted with a conveyor belt is analyzed experimentally. The conveyor belt-placed directly below the silo outlet-reduces the flow rate, increases the size of the stagnant zone, and it has a very strong influence on the relative velocity fluctuations as they strongly increase everywhere in the silo with decreasing belt speed. In other words, instead of slower but smooth flow, flow reduction by belt leads to intermittent flow. Interestingly, we show that this intermittency correlates with a strong reduction of the orientational order of the particles at the orifice region. Moreover, we observe that the average orientation of the grains passing through the outlet is modified when they are extracted with the belt, a feature that becomes more evident for large orifices.
Collapse
Affiliation(s)
- Bo Fan
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Iker Zuriguel
- Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, 31080 Pamplona, Spain
| | - Joshua A Dijksman
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- Van der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Tamás Börzsönyi
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
| |
Collapse
|
2
|
Caitano R, Garcimartín A, Zuriguel I. Anchoring Effect of an Obstacle in the Silo Unclogging Process. PHYSICAL REVIEW LETTERS 2023; 131:098201. [PMID: 37721817 DOI: 10.1103/physrevlett.131.098201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/20/2023] [Indexed: 09/20/2023]
Abstract
Contrary to the proven beneficial role that placing an obstacle above a silo exit has in clogging prevention, we demonstrate that, when the system is gently shaken, this passive element has a twofold effect in the clogging destruction process. On one side, the obstacle eases the destruction of weak arches, a phenomenon that can be explained by the pressure screening that it causes in the outlet proximities. But on the other side, we discover that the obstacle presence leads to the development of a few very strong arches. These arches, which dominate in the heavy tailed distributions of unclogging times, correlate with configurations where the number of particles contacting the obstacle from below are higher than the average; hence suggesting that the obstacle acts as an anchoring point for the granular packing. This finding may help one to understand the ambiguous effect of obstacles in the bottleneck flow of other systems, such as pedestrians evacuating a room or active matter in general.
Collapse
Affiliation(s)
- Rodrigo Caitano
- Departamento de Física, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| | - Angel Garcimartín
- Departamento de Física, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| | - Iker Zuriguel
- Departamento de Física, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| |
Collapse
|
3
|
Tripura BK, Kumar S, Anyam VKR, Reddy KA. Drag on a circular intruder traversing a shape-heterogeneous granular mixture. Phys Rev E 2022; 106:014901. [PMID: 35974565 DOI: 10.1103/physreve.106.014901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
The main aim of our work is to explore the effect of particle shape heterogeneity on the dynamics of an intruder moving through a two-dimensional mixture of dumbbells and disks. In spite of similar physical conditions (the mass of the dumbbell is the same as that of the disk) and the same area fraction, we noticed a significant difference in the drag experienced by the intruder as the mixture concentration varies. The propagation of stress from the intruder to the granular grains manifests in the form of force chains, and interestingly these force chains can vary significantly depending on the shape of the grains. These differences, however, appear to be suppressed in the frictionless case where the force chains cannot extend very far from the initial point of contact. Apart from particle shape, the effect of the area fraction of the system and the size of the intruder have also been explored. As the area fraction increases, the drag force on the intruder increases owing to the increase in the contact forces. Finally, we present the velocity and stress fields at different dumbbell fractions and for various intruder diameters to show the effect of the moving intruder on its surrounding particles.
Collapse
Affiliation(s)
- Bitang Kwrung Tripura
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Sonu Kumar
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, Assam, India
| | | | - K Anki Reddy
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, Assam, India
| |
Collapse
|
4
|
To K, Mo YK, Pongó T, Börzsönyi T. Discharge of elongated grains from silo with rotating bottom. Phys Rev E 2021; 103:062905. [PMID: 34271770 DOI: 10.1103/physreve.103.062905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 06/01/2021] [Indexed: 11/07/2022]
Abstract
We study the flow of elongated grains (wooden pegs of length L=20 mm with circular cross section of diameter d_{c}=6 and 8 mm) from a silo with a rotating bottom and a circular orifice of diameter D. In the small orifice range (D/d<5) clogs are mostly broken by the rotating base, and the flow is intermittent with avalanches and temporary clogs. Here d≡(3/2d_{c}^{2}L)^{1/3} is the effective grain diameter. Unlike for spherical grains, for rods the flow rate W clearly deviates from the power law dependence W∝(D-kd)^{2.5} at lower orifice sizes in the intermittent regime, where W is measured in between temporary clogs only. Instead, below about D/d<3 an exponential dependence W∝e^{κD} is detected. Here k and κ are constants of order unity. Even more importantly, rotating the silo base leads to a strong-more than 50%-decrease of the flow rate, which otherwise does not depend significantly on the value of ω in the continuous flow regime. In the intermittent regime, W(ω) appears to follow a nonmonotonic trend, although with considerable noise. A simple picture, in terms of the switching from funnel flow to mass flow and the alignment of the pegs due to rotation, is proposed to explain the observed difference between spherical and elongated grains. We also observe shear-induced orientational ordering of the pegs at the bottom such that their long axes in average are oriented at a small angle 〈θ〉≈15^{∘} to the motion of the bottom.
Collapse
Affiliation(s)
- Kiwing To
- Institute of Physics, Academia Sinica, Taipei, Taiwan 119, Republic of China
| | - Yi-Kai Mo
- Institute of Physics, Academia Sinica, Taipei, Taiwan 119, Republic of China
| | - Tivadar Pongó
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary.,Departamento de Física y Matemática Aplicada, Facultad de Ciencias, Universidad de Navarra, E-31080 Pamplona, Spain
| | - Tamás Börzsönyi
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
| |
Collapse
|
5
|
Strategic placement of an obstacle suppresses droplet break up in the hopper flow of a microfluidic soft crystal. Proc Natl Acad Sci U S A 2021; 118:2017822118. [PMID: 33941691 DOI: 10.1073/pnas.2017822118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
When granular materials, colloidal suspensions, and even animals and crowds exit through a narrow outlet, clogs can form spontaneously when multiple particles or entities attempt to exit simultaneously, thereby obstructing the outlet and ultimately halting the flow. Counterintuitively, the presence of an obstacle upstream of the outlet has been found to suppress clog formation. For soft particles such as emulsion drops, clogging has not been observed in the fast flow limit due to their deformability and vanishing interparticle friction. Instead, they pinch off each other and undergo break up when multiple drops attempt to exit simultaneously. Similar to how an obstacle reduces clogging in a rigid particle system, we hypothesize and demonstrate that an obstacle could suppress break up in the two-dimensional hopper flow of a microfluidic crystal consisting of dense emulsion drops by preventing the simultaneous exit of multiple drops. A regime map plotting the fraction of drops that undergo break up in a channel with different obstacle sizes and locations delineates the geometrical constraints necessary for effective break up suppression. When optimally placed, the obstacle induced an unexpected ordering of the drops, causing them to alternate and exit the outlet one at a time. Droplet break up is suppressed drastically by almost three orders of magnitude compared to when the obstacle is absent. This result can provide a simple, passive strategy to prevent droplet break up and can find use in improving the robustness and integrity of droplet microfluidic biochemical assays as well as in extrusion-based three-dimensional printing of emulsion or foam-based materials.
Collapse
|
6
|
Hernández-Delfin D, Pongó T, To K, Börzsönyi T, Hidalgo RC. Particle flow rate in silos under rotational shear. Phys Rev E 2020; 102:042902. [PMID: 33212719 DOI: 10.1103/physreve.102.042902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Very recently, To et al. have experimentally explored granular flow in a cylindrical silo, with a bottom wall that rotates horizontally with respect to the lateral wall [Phys. Rev. E 100, 012906 (2019)10.1103/PhysRevE.100.012906]. Here we numerically reproduce their experimental findings, in particular, the peculiar behavior of the mass flow rate Q as a function of the frequency of rotation f. Namely, we find that for small outlet diameters D the flow rate increased with f, while for larger D a nonmonotonic behavior is confirmed. Furthermore, using a coarse-graining technique, we compute the macroscopic density, momentum, and the stress tensor fields. These results show conclusively that changes in the discharge process are directly related to changes in the flow pattern from funnel flow to mass flow. Moreover, by decomposing the mass flux (linear momentum field) at the orifice into two main factors, macroscopic velocity and density fields, we obtain that the nonmonotonic behavior of the linear momentum is caused by density changes rather than by changes in the macroscopic velocity. In addition, by analyzing the spatial distribution of the kinetic stress, we find that for small orifices increasing rotational shear enhances the mean kinetic pressure 〈p^{k}〉 and the system dilatancy. This reduces the stability of the arches, and, consequently, the volumetric flow rate increases monotonically. For large orifices, however, we detected that 〈p^{k}〉 changes nonmonotonically, which might explain the nonmonotonic behavior of Q when varying the rotational shear.
Collapse
Affiliation(s)
- D Hernández-Delfin
- Departamento de Física y Matemática Aplicada, Universidad de Navarra, P.O. Box 31080, Navarra, Spain
| | - T Pongó
- Departamento de Física y Matemática Aplicada, Universidad de Navarra, P.O. Box 31080, Navarra, Spain
| | - K To
- Institute of Physics, Academia Sinica, P.O. Box 11529, Taipei, Taiwan R.O.C
| | - T Börzsönyi
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
| | - R C Hidalgo
- Departamento de Física y Matemática Aplicada, Universidad de Navarra, P.O. Box 31080, Navarra, Spain
| |
Collapse
|
7
|
Zhu L, Lu H, Poletto M, Liu H, Deng Z. Hopper discharge of cohesive powders using pulsated airflow. AIChE J 2020. [DOI: 10.1002/aic.16240] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lizhuo Zhu
- Shanghai Engineering Research Center of Coal GasificationEast China University of Science and Technology Shanghai China
| | - Haifeng Lu
- Shanghai Engineering Research Center of Coal GasificationEast China University of Science and Technology Shanghai China
| | - Massimo Poletto
- Dipartimento di Ingegneria IndustrialeUniversità degli Studi di Salerno Fisciano Salerno Italy
| | - Haifeng Liu
- Shanghai Engineering Research Center of Coal GasificationEast China University of Science and Technology Shanghai China
| | - Zhiwen Deng
- Shanghai Engineering Research Center of Coal GasificationEast China University of Science and Technology Shanghai China
| |
Collapse
|
8
|
Guerrero BV, Chakraborty B, Zuriguel I, Garcimartín A. Nonergodicity in silo unclogging: Broken and unbroken arches. Phys Rev E 2019; 100:032901. [PMID: 31639941 DOI: 10.1103/physreve.100.032901] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Indexed: 11/07/2022]
Abstract
We report an experiment on the unclogging dynamics in a two-dimensional silo submitted to a sustained gentle vibration. We find that arches present a jerking motion where rearrangements in the positions of their beads are interspersed with quiescent periods. This behavior occurs for both arches that break down and those that withstand the external perturbation: Arches evolve until they either collapse or get trapped in a stable configuration. This evolution is described in terms of a scalar variable characterizing the arch shape that can be modeled as a continuous-time random walk. By studying the diffusivity of this variable, we show that the unclogging is a weakly nonergodic process. Remarkably, arches that do not collapse explore different configurations before settling in one of them and break ergodicity much in the same way than arches that break down.
Collapse
Affiliation(s)
- B V Guerrero
- Dep. Física y Mat. Apl., Fac. Ciencias, Universidad de Navarra, 31080 Pamplona, Spain
| | - B Chakraborty
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02454, USA
| | - I Zuriguel
- Dep. Física y Mat. Apl., Fac. Ciencias, Universidad de Navarra, 31080 Pamplona, Spain
| | - A Garcimartín
- Dep. Física y Mat. Apl., Fac. Ciencias, Universidad de Navarra, 31080 Pamplona, Spain
| |
Collapse
|
9
|
Abstract
A spinning ball moving through air experiences a net lift due to the "Magnus effect" resulting from the pressure difference across its two sides. In this work, with the help of numerical simulations, we present a similar phenomenon on a circular intruder undergoing both translational and rotational motion in a two-dimensional granular medium. The direction of this "Magnus" lift in a granular medium, irrespective of its area fraction, is opposite to the general direction in viscous fluids in the range of velocities studied. We relate this effect to the switching in the direction of tangential forces, uneven shearing of the force chains, and uneven distribution in the number of contacts across the rotating intruder. Moreover, this is observed for area fractions Φ as low as 0.35 to as high as 0.82, which lies just below the jamming point. Distribution of the contact force around the intruder surface is also studied with respect to the nondimensionalized rotation speed of the intruder. A saturation in the lift to drag ratio is achieved at very high rotation speed, and the ratio is seen to be weakly dependent on the area fraction of the granular medium. The change in local flow fields of velocity, area fraction, and granular temperature around the intruder for several spin ratios is also discussed. The downstream wake of the intruder also deflects in the opposite direction when compared to the case in viscous fluids.
Collapse
Affiliation(s)
- Sonu Kumar
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - Manish Dhiman
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, Assam, India
| | - K Anki Reddy
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039, Assam, India
| |
Collapse
|