1
|
Chan CW, Yang Z, Gan Z, Zhang R. Interplay of chemotactic force, Péclet number, and dimensionality dictates the dynamics of auto-chemotactic chiral active droplets. J Chem Phys 2024; 161:014904. [PMID: 38953449 DOI: 10.1063/5.0207355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024] Open
Abstract
In living and synthetic active matter systems, the constituents can self-propel and interact with each other and with the environment through various physicochemical mechanisms. Among these mechanisms, chemotactic and auto-chemotactic effects are widely observed. The impact of (auto-)chemotactic effects on achiral active matter has been a recent research focus. However, the influence of these effects on chiral active matter remains elusive. Here, we develop a Brownian dynamics model coupled with a diffusion equation to examine the dynamics of auto-chemotactic chiral active droplets in both quasi-two-dimensional (2D) and three-dimensional (3D) systems. By quantifying the droplet trajectory as a function of the dimensionless Péclet number and chemotactic strength, our simulations well reproduce the curling and helical trajectories of nematic droplets in a surfactant-rich solution reported by Krüger et al. [Phys. Rev. Lett. 117, 048003 (2016)]. The modeled curling trajectory in 2D exhibits an emergent chirality, also consistent with the experiment. We further show that the geometry of the chiral droplet trajectories, characterized by the pitch and diameter, can be used to infer the velocities of the droplet. Interestingly, we find that, unlike the achiral case, the velocities of chiral active droplets show dimensionality dependence: its mean instantaneous velocity is higher in 3D than in 2D, whereas its mean migration velocity is lower in 3D than in 2D. Taken together, our particle-based simulations provide new insights into the dynamics of auto-chemotactic chiral active droplets, reveal the effects of dimensionality, and pave the way toward their applications, such as drug delivery, sensors, and micro-reactors.
Collapse
Affiliation(s)
- Chung Wing Chan
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
- Thrust of Advanced Materials, and Guangzhou Municipal Key Laboratory of Materials Informatics, The Hong Kong University of Science and Technology (Guangzhou), Guangdong, China
| | - Zheng Yang
- Thrust of Advanced Materials, and Guangzhou Municipal Key Laboratory of Materials Informatics, The Hong Kong University of Science and Technology (Guangzhou), Guangdong, China
- Interdisciplinary Programs Office, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| | - Zecheng Gan
- Thrust of Advanced Materials, and Guangzhou Municipal Key Laboratory of Materials Informatics, The Hong Kong University of Science and Technology (Guangzhou), Guangdong, China
- Department of Mathematics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| | - Rui Zhang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| |
Collapse
|
2
|
Nguyen NK, Singha P, Dai Y, Rajan Sreejith K, Tran DT, Phan HP, Nguyen NT, Ooi CH. Controllable high-performance liquid marble micromixer. LAB ON A CHIP 2022; 22:1508-1518. [PMID: 35344578 DOI: 10.1039/d2lc00017b] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A liquid marble is a liquid droplet coated with a shell of microparticles. Liquid marbles have served as a unique microreactor for chemical reactions and cell culture. Mixing is an essential task for liquid marbles as a microreactor. However, the potential of liquid marble-based microreactors is significantly limited due to the lack of effective mixing strategies. Most mixing strategies used manual and contact-based actuation schemes. This paper reports the development of a manipulation scheme that induces fluid motion into a liquid marble, leading to enhanced mixing. By inducing rotation on a horizontal axis, we significantly increased the mixing rate by 27.6 times compared to a non-actuated liquid marble and reduced the reaction time by more than 10 times. The proposed method provides a simple, continuous, precise, and controllable high-performance mixing strategy on a liquid marble platform.
Collapse
Affiliation(s)
- Nhat-Khuong Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan 4111, Queensland, Australia
| | - Pradip Singha
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan 4111, Queensland, Australia
| | - Yuchen Dai
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan 4111, Queensland, Australia
| | - Kamalalayam Rajan Sreejith
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan 4111, Queensland, Australia
| | - Du Tuan Tran
- R&D Department, Bestmix Corporation, Binh Duong 820000, Vietnam
| | - Hoang-Phuong Phan
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan 4111, Queensland, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan 4111, Queensland, Australia
| | - Chin Hong Ooi
- Queensland Micro- and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan 4111, Queensland, Australia
| |
Collapse
|
3
|
Hokmabad BV, Nishide A, Ramesh P, Krüger C, Maass CC. Spontaneously rotating clusters of active droplets. SOFT MATTER 2022; 18:2731-2741. [PMID: 35319552 DOI: 10.1039/d1sm01795k] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report on the emergence of spontaneously rotating clusters in active emulsions. Ensembles of self-propelling droplets sediment and then self-organise into planar, hexagonally ordered clusters which hover over the container bottom while spinning around the plane normal. This effect exists for symmetric and asymmetric arrangements of isotropic droplets and is therefore not caused by torques due to geometric asymmetries. We found, however, that individual droplets exhibit a helical swimming mode in a small window of intermediate activity in a force-free bulk medium. We show that by forming an ordered cluster, the droplets cooperatively suppress their chaotic dynamics and turn the transient instability into a steady rotational state. We analyse the collective rotational dynamics as a function of droplet activity and cluster size and further propose that the stable collective rotation in the cluster is caused by a cooperative coupling between the rotational modes of individual droplets in the cluster.
Collapse
Affiliation(s)
- Babak Vajdi Hokmabad
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany.
- Institute for the Dynamics of Complex Systems, Georg August Universität, Göttingen, Germany
| | - Akinori Nishide
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany.
- Center for Exploratory Research, R&D group, Hitachi Ltd., Higashi-Koigakubo 1-280, Kokubunji-shi, Tokyo 185-8601, Japan
| | - Prashanth Ramesh
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany.
- Physics of Fluids Group, Max Planck Center for Complex Fluid Dynamics, MESA+ Institute and J. M. Burgers Center for Fluid Dynamics, University of Twente, PO Box 217, 7500AE Enschede, The Netherlands
| | - Carsten Krüger
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany.
| | - Corinna C Maass
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany.
- Institute for the Dynamics of Complex Systems, Georg August Universität, Göttingen, Germany
- Physics of Fluids Group, Max Planck Center for Complex Fluid Dynamics, MESA+ Institute and J. M. Burgers Center for Fluid Dynamics, University of Twente, PO Box 217, 7500AE Enschede, The Netherlands
| |
Collapse
|
4
|
Burada PS, Maity R, Jülicher F. Hydrodynamics of chiral squirmers. Phys Rev E 2022; 105:024603. [PMID: 35291102 DOI: 10.1103/physreve.105.024603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Many microorganisms take a chiral path while swimming in an ambient fluid. In this paper we study the combined behavior of two chiral swimmers using the well-known squirmer model taking into account chiral asymmetries. In contrast to the simple squirmer model, which has an axisymmetric distribution of slip velocity, the chiral squirmer has additional asymmetries in the surface slip, which contribute to both translations and rotations of the motion. As a result, swimming trajectories can become helical and chiral asymmetries arise in the flow patterns. We study the swimming trajectories of a pair of chiral squirmers that interact hydrodynamically. This interaction can lead to attraction and repulsion, and in some cases even to bounded states where the swimmers continue to periodically orbit around a common average trajectory. Such bound states are a signature of the chiral nature of the swimmers. Our study could be relevant to the collective movements of ciliated microorganisms.
Collapse
Affiliation(s)
- P S Burada
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - R Maity
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - F Jülicher
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany
| |
Collapse
|
5
|
Toyota T, Sugiyama H, Hiroi S, Ito H, Kitahata H. Chemically artificial rovers based on self-propelled droplets in micrometer-scale environment. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
6
|
Fadda F, Molina JJ, Yamamoto R. Dynamics of a chiral swimmer sedimenting on a flat plate. Phys Rev E 2020; 101:052608. [PMID: 32575256 DOI: 10.1103/physreve.101.052608] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Three-dimensional simulations with fully resolved hydrodynamics are performed to study the dynamics of a single squirmer with and without gravity to clarify its motion in the vicinity of a flat plate. In the absence of gravity and chirality, the usual dynamics of a squirmer near a wall are recovered. The introduction of chirality modifies the swimming motion of squirmers, adding a component of motion in the third direction. When sedimentation is considered, different dynamics emerge for different gravity strength regimes. In a moderate gravity regime, neutral squirmers and pullers eventually stop moving and reorient in a direction perpendicular to the plate; by contrast, pushers exhibit continuous motion in a tilted direction. In the strong gravity regime, all squirmers sediment and reorient perpendicular to the plate. In this study, chirality is introduced to model realistic microswimmers, and its crucial effects on the nature of squirmer trajectories, which change from straight to circular, are discussed.
Collapse
Affiliation(s)
- Federico Fadda
- Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - John Jairo Molina
- Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Ryoichi Yamamoto
- Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
7
|
Reorientation behavior in the helical motility of light-responsive spiral droplets. Nat Commun 2019; 10:5238. [PMID: 31748502 PMCID: PMC6868138 DOI: 10.1038/s41467-019-13201-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/25/2019] [Indexed: 01/07/2023] Open
Abstract
The physico-chemical processes supporting life's purposeful movement remain essentially unknown. Self-propelling chiral droplets offer a minimalistic model of swimming cells and, in surfactant-rich water, droplets of chiral nematic liquid crystals follow the threads of a screw. We demonstrate that the geometry of their trajectory is determined by both the number of turns in, and the handedness of, their spiral organization. Using molecular motors as photo-invertible chiral dopants allows converting between right-handed and left-handed trajectories dynamically, and droplets subjected to such an inversion reorient in a direction that is also encoded by the number of spiral turns. This motile behavior stems from dynamic transmission of chirality, from the artificial molecular motors to the liquid crystal in confinement and eventually to the helical trajectory, in analogy with the chirality-operated motion and reorientation of swimming cells and unicellular organisms.
Collapse
|