1
|
Gomes AS, Fiadeiro PT, Vieira AC, Vieira JC. Viability Study of Serra da Estrela Dog Wool to Produce Green Composites. Polymers (Basel) 2024; 16:718. [PMID: 38475401 DOI: 10.3390/polym16050718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
The environmental emergency has alerted consumers and industries to choose products derived from renewable sources over petroleum derivatives. Natural fibers of plant origin for reinforcing composite materials dominate the field of research aiming to replace synthetic fibers. The field of application of green dog wool composite materials needs to be reinforced and proven, as the industry is looking for more sustainable solutions and on the other hand this type of raw material (pet grooming waste) tends to grow. Hence, in the present work, the feasibility of applying natural fibers of dog origin (mainly composed by keratin) in green composites was studied. The green composites were developed using chemically treated dog wool of the breed Serra da Estrela (with NaOH and PVA) as reinforcement and a green epoxy resin as a matrix. The chemical treatments aimed to improve adhesion between fibers and matrix. The fibers' composition was determined using X-ray Diffraction (X-RD). Their morphology was determined using a scanning electron microscope (SEM). The wettability of the fiber was also evaluated qualitatively by analyzing drops of resin placed on the fibers treated with the different treatments. The mechanical properties of the composites were also studied through mechanical tensile, flexural, and relaxation tests. Overall, the best results were obtained for the dog wool fibers without treatment. The tensile and flexural strength of this biocomposite were 11 MPa and 26.8 MPa, respectively, while the tensile and flexural elastic modulus were 555 MPa and 1100 MPa, respectively. It was also possible to verify that the PVA treatment caused degradation of the fiber, resulting in a decrease in mechanical tensile strength of approximately 42.7%, 59.7% in flexural strength and approximately 59% of the stress after 120 min of relaxation when compared to fiber made from untreated dog wool. On the other hand, the NaOH treatment worked as a fiber wash process, removing waxes and fats naturally present on the fiber surface.
Collapse
Affiliation(s)
- Alexandra Soledade Gomes
- Fiber Materials and Environmental Technologies Research Unit (FibEnTech-UBI), Universidade da Beira Interior, Rua Marquês D'Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Paulo Torrão Fiadeiro
- Fiber Materials and Environmental Technologies Research Unit (FibEnTech-UBI), Universidade da Beira Interior, Rua Marquês D'Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - André Costa Vieira
- Center for Mechanical and Aerospace Science and Technologies (C-MAST-UBI), Universidade da Beira Interior, Rua Marquês D'Ávila e Bolama, 6201-001 Covilhã, Portugal
| | - Joana Costa Vieira
- Fiber Materials and Environmental Technologies Research Unit (FibEnTech-UBI), Universidade da Beira Interior, Rua Marquês D'Ávila e Bolama, 6201-001 Covilhã, Portugal
| |
Collapse
|
2
|
Wijesinghe S, Kosgallana C, Senanayake M, Mohottalalage SS, Zolnierczuk P, Stingaciu L, Grest GS, Perahia D. From ionic clusters dynamics to network constraints in ionic polymer solutions. Phys Rev E 2024; 109:034501. [PMID: 38632780 DOI: 10.1103/physreve.109.034501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/29/2024] [Indexed: 04/19/2024]
Abstract
Physical networks formed by ionizable polymers with ionic clusters as crosslinks are controlled by coupled dynamics that transcend from ionic clusters through chain motion to macroscopic response. Here, the coupled dynamics, across length scales, from the ionic clusters to the networks in toluene swollen polystyrene sulfonate networks, were directly correlated, as the electrostatic environment of the physical crosslinks was altered. The multiscale insight is attained by coupling neutron spin echo measurements with molecular dynamics simulations, carried out to times typical of relaxation of polymers in solutions. The experimental dynamic structure factor is in outstanding agreement with the one calculated from computer simulations, as the networks are perturbed by elevating the temperature and changing the electrostatic environment. In toluene, the long-lived clusters remain stable over hundreds of ns across a broad temperature range, while the polymer network remains dynamic. Though the size of the clusters changes as the dielectric constant of the solvent is modified through the addition of ethanol, they remain stable but morph, enhancing the polymer chain dynamics.
Collapse
Affiliation(s)
- Sidath Wijesinghe
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, USA
- Department of Chemistry, Appalachian State University, Boone, North Carolina 26808, USA
| | | | - Manjula Senanayake
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, USA
| | | | - Piotr Zolnierczuk
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Laura Stingaciu
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Gary S Grest
- Sandia National Laboratories, Albuquerque, New Mexico 87175, USA
| | - Dvora Perahia
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, USA
- Department of Physics, Clemson University, Clemson, South Carolina 29631, USA
| |
Collapse
|
3
|
Wu T, Zhang P. Structure and dynamics of dynamic covalent cross-linked PEOs and PEO/LiPF 6 electrolytes: a coarse-grained simulation study. Phys Chem Chem Phys 2023; 25:14530-14537. [PMID: 37191005 DOI: 10.1039/d3cp00905j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The incorporation of dynamic covalent bonds has been an attractive strategy to synthesize adaptive solid polymer electrolytes (SPEs). Here, we present molecular dynamics results concerning the relationship between ion transport and segmental dynamics for dynamic covalent cross-linked PEO-Li+ SPEs. To dissolve LiPF6 into PEO, a 1/r4-form approximation of ion-dipole interactions is employed as the solvation potential. Its parameters are estimated with the assistance of the Bayesian optimization algorithm and validated by comparing the resulting behaviors of PEO/LiPF6 with experimental observations. The dynamic associations of EO with Li+ and PF6- significantly reduce the segmental mobility of PEO, verifying the coupling of PEO segmental dynamics with ion transport. In order to reproduce the unique behaviors of associative covalent adaptive networks (CANs), the bond-exchange reaction is controlled by the collision probability and the user-defined activation energy (Ea ≥ 0) based on a hybrid of molecular dynamics and Monte Carlo methods. The dynamics of network topology, facilitated by the reshuffling of dynamic covalent bonds, is analyzed using graph theory. The network mesh size varies with time, which can be considered as one of the characteristics for associative CANs. The reshuffling of dynamic bonds releases the constraint from cross-linked structures, and enhances the long-range segmental mobility as well as the mobilities of Li+ and PF6-. By drawing comparisons with its conventionally cross-linked counterpart, the effect of dynamic-bond reshuffling on ion transport is studied for the dynamic covalent cross-linked PEO16-LiPF6 electrolyte in terms of self-diffusivities, cation transference number, and ionic conductivity.
Collapse
Affiliation(s)
- Tongfei Wu
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Ping Zhang
- Guangzhou Key Laboratory of Flexible Electronic Materials and Wearable Devices, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
4
|
Rabiei N, Kish MH. Aminolysis of polyesters for cracking and structure clarifying: A review. POLYM ADVAN TECHNOL 2022. [DOI: 10.1002/pat.5837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Navid Rabiei
- Department of Textile Engineering Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| | - Mohammad Haghighat Kish
- Department of Textile Engineering Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| |
Collapse
|
5
|
Arabeche K, Delbreilh L, Baer E. Physical aging of multilayer polymer films—influence of layer thickness on enthalpy relaxation process, effect of confinement. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02809-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Tanaka Y, Uchino Y. Enthalpy Relaxation Study of Poly(Vinyl Chloride) Films Based on the Time-Temperature Superposition Principle. J MACROMOL SCI B 2020. [DOI: 10.1080/00222348.2020.1755090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Yutaka Tanaka
- Department of Materials Science and Biotechnologies, School of Engineering, University of Fukui, Bunkyo, Japan
| | - Yuki Uchino
- Department of Materials Science and Biotechnologies, School of Engineering, University of Fukui, Bunkyo, Japan
| |
Collapse
|