1
|
Hussaini S, Mamyraiym Kyzy A, Schröder-Schetelig J, Lädke SL, Venkatesan V, Diaz-Maue L, Quiñonez Uribe RA, Richter C, Biktashev VN, Majumder R, Krinski V, Luther S. Efficient termination of cardiac arrhythmias using optogenetic resonant feedback pacing. CHAOS (WOODBURY, N.Y.) 2024; 34:031103. [PMID: 38526981 DOI: 10.1063/5.0191519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/03/2024] [Indexed: 03/27/2024]
Abstract
Malignant cardiac tachyarrhythmias are associated with complex spatiotemporal excitation of the heart. The termination of these life-threatening arrhythmias requires high-energy electrical shocks that have significant side effects, including tissue damage, excruciating pain, and worsening prognosis. This significant medical need has motivated the search for alternative approaches that mitigate the side effects, based on a comprehensive understanding of the nonlinear dynamics of the heart. Cardiac optogenetics enables the manipulation of cellular function using light, enhancing our understanding of nonlinear cardiac function and control. Here, we investigate the efficacy of optically resonant feedback pacing (ORFP) to terminate ventricular tachyarrhythmias using numerical simulations and experiments in transgenic Langendorff-perfused mouse hearts. We show that ORFP outperforms the termination efficacy of the optical single-pulse (OSP) approach. When using ORFP, the total energy required for arrhythmia termination, i.e., the energy summed over all pulses in the sequence, is 1 mJ. With a success rate of 50%, the energy per pulse is 40 times lower than with OSP with a pulse duration of 10 ms. We demonstrate that even at light intensities below the excitation threshold, ORFP enables the termination of arrhythmias by spatiotemporal modulation of excitability inducing spiral wave drift.
Collapse
Affiliation(s)
- S Hussaini
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organisation, Göttingen 37077, Germany
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen 37075, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Lower Saxony, Göttingen 37075, Germany
| | - A Mamyraiym Kyzy
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organisation, Göttingen 37077, Germany
| | - J Schröder-Schetelig
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organisation, Göttingen 37077, Germany
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen 37075, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Lower Saxony, Göttingen 37075, Germany
| | - S L Lädke
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organisation, Göttingen 37077, Germany
| | - V Venkatesan
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organisation, Göttingen 37077, Germany
| | - L Diaz-Maue
- DZHK (German Center for Cardiovascular Research), Partner Site Lower Saxony, Göttingen 37075, Germany
- Research Electronics, Max Planck Institute for Dynamics and Self-Organisation, Göttingen 37077, Germany
| | - R A Quiñonez Uribe
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organisation, Göttingen 37077, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Lower Saxony, Göttingen 37075, Germany
| | - C Richter
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organisation, Göttingen 37077, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Lower Saxony, Göttingen 37075, Germany
- WG Cardiovascular Optogenetics, Lab Animal Science Unit, Leibniz Institute for Primate Research, Göttingen 37077, Germany
| | - V N Biktashev
- Department of Mathematics and Statistics, University of Exeter, Exeter EX4 4QF, United Kingdom
| | - R Majumder
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organisation, Göttingen 37077, Germany
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen 37075, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Lower Saxony, Göttingen 37075, Germany
| | - V Krinski
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organisation, Göttingen 37077, Germany
| | - S Luther
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organisation, Göttingen 37077, Germany
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen 37075, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Lower Saxony, Göttingen 37075, Germany
| |
Collapse
|
2
|
Aron M, Lilienkamp T, Luther S, Parlitz U. Optimising low-energy defibrillation in 2D cardiac tissue with a genetic algorithm. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1172454. [PMID: 37555132 PMCID: PMC10406519 DOI: 10.3389/fnetp.2023.1172454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/28/2023] [Indexed: 08/10/2023]
Abstract
Sequences of low-energy electrical pulses can effectively terminate ventricular fibrillation (VF) and avoid the side effects of conventional high-energy electrical defibrillation shocks, including tissue damage, traumatic pain, and worsening of prognosis. However, the systematic optimisation of sequences of low-energy pulses remains a major challenge. Using 2D simulations of homogeneous cardiac tissue and a genetic algorithm, we demonstrate the optimisation of sequences with non-uniform pulse energies and time intervals between consecutive pulses for efficient VF termination. We further identify model-dependent reductions of total pacing energy ranging from ∼4% to ∼80% compared to reference adaptive-deceleration pacing (ADP) protocols of equal success rate (100%).
Collapse
Affiliation(s)
- Marcel Aron
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for the Dynamics of Complex Systems, Georg-August-Universität Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Thomas Lilienkamp
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Computational Physics for Life Science, Nuremberg Institute of Technology Georg Simon Ohm, Nuremberg, Germany
| | - Stefan Luther
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for the Dynamics of Complex Systems, Georg-August-Universität Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Ulrich Parlitz
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
- Institute for the Dynamics of Complex Systems, Georg-August-Universität Göttingen, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Lilienkamp T, Parlitz U, Luther S. Taming cardiac arrhythmias: Terminating spiral wave chaos by adaptive deceleration pacing. CHAOS (WOODBURY, N.Y.) 2022; 32:121105. [PMID: 36587312 DOI: 10.1063/5.0126682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Sequences of weak electrical pulses are considered a promising alternative for terminating ventricular and atrial fibrillations while avoiding strong defibrillation shocks with adverse side effects. In this study, using numerical simulations of four different 2D excitable media, we show that pulse trains with increasing temporal intervals between successive pulses (deceleration pacing) provide high success rates at low energies. Furthermore, we propose a simple and robust approach to calculate inter-pulse spacing directly from the frequency spectrum of the dynamics (for instance, computed based on the electrocardiogram), which can be practically used in experiments and clinical applications.
Collapse
Affiliation(s)
- Thomas Lilienkamp
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
| | - Ulrich Parlitz
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
| | - Stefan Luther
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077 Göttingen, Germany
| |
Collapse
|
4
|
Lilienkamp T, Parlitz U, Luther S. Non-monotonous dose response function of the termination of spiral wave chaos. Sci Rep 2022; 12:12043. [PMID: 35835979 PMCID: PMC9283470 DOI: 10.1038/s41598-022-16068-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2022] Open
Abstract
The conventional termination technique of life threatening cardiac arrhythmia like ventricular fibrillation is the application of a high-energy electrical defibrillation shock, coming along with severe side-effects. In order to improve the current treatment reducing these side-effects, the application of pulse sequences of lower energy instead of a single high-energy pulse are promising candidates. In this study, we show that in numerical simulations the dose-response function of pulse sequences applied to two-dimensional spiral wave chaos is not necessarily monotonously increasing, but exhibits a non-trivial frequency dependence. This insight into crucial phenomena appearing during termination attempts provides a deeper understanding of the governing termination mechanisms in general, and therefore may open up the path towards an efficient termination of cardiac arrhythmia in the future.
Collapse
Affiliation(s)
- Thomas Lilienkamp
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, 37077, Germany. .,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, 37075, Germany.
| | - Ulrich Parlitz
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, 37077, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, 37075, Germany.,Institute for the Dynamics of Complex Systems, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Stefan Luther
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, 37077, Germany. .,German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, 37075, Germany. .,Institute for the Dynamics of Complex Systems, Georg-August-Universität Göttingen, 37077, Göttingen, Germany. .,University Medical Center Goettingen, Institute of Pharmacology and Toxicology, 37075, Göttingen, Germany.
| |
Collapse
|
5
|
Punacha S, Berg S, Sebastian A, Krinski VI, Luther S, Shajahan TK. Spiral wave unpinning facilitated by wave emitting sites in cardiac monolayers. Proc Math Phys Eng Sci 2019; 475:20190420. [PMID: 31736652 DOI: 10.1098/rspa.2019.0420] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/23/2019] [Indexed: 11/12/2022] Open
Abstract
Rotating spiral waves of electrical activity in the heart can anchor to unexcitable tissue (an obstacle) and become stable pinned waves. A pinned rotating wave can be unpinned either by a local electrical stimulus applied close to the spiral core, or by an electric field pulse that excites the core of a pinned wave independently of its localization. The wave will be unpinned only when the pulse is delivered inside a narrow time interval called the unpinning window (UW) of the spiral. In experiments with cardiac monolayers, we found that other obstacles situated near the pinning centre of the spiral can facilitate unpinning. In numerical simulations, we found increasing or decreasing of the UW depending on the location, orientation and distance between the pinning centre and an obstacle. Our study indicates that multiple obstacles could contribute to unpinning in experiments with intact hearts.
Collapse
Affiliation(s)
- Shreyas Punacha
- National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
| | - Sebastian Berg
- Max Planck Institute of Dynamics and Self Organization, Göttingen 37017, Germany
| | - Anupama Sebastian
- National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
| | - Valentin I Krinski
- Max Planck Institute of Dynamics and Self Organization, Göttingen 37017, Germany
| | - Stefan Luther
- Max Planck Institute of Dynamics and Self Organization, Göttingen 37017, Germany
| | - T K Shajahan
- National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India.,Max Planck Institute of Dynamics and Self Organization, Göttingen 37017, Germany
| |
Collapse
|