1
|
Varma CM. Quantum-critical fluctuations in 2D metals: strange metals and superconductivity in antiferromagnets and in cuprates. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:082501. [PMID: 27411298 DOI: 10.1088/0034-4885/79/8/082501] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The anomalous transport and thermodynamic properties in the quantum-critical region, in the cuprates, and in the quasi-two dimensional Fe-based superconductors and heavy-fermion compounds, have the same temperature dependences. This can occur only if, despite their vast microscopic differences, a common statistical mechanical model describes their phase transitions. The antiferromagnetic (AFM)-ic models for the latter two, just as the loop-current model for the cuprates, map to the dissipative XY model. The solution of this model in (2+1)D reveals that the critical fluctuations are determined by topological excitations, vortices and a variety of instantons, and not by renormalized spin-wave theories of the Landau-Ginzburg-Wilson type, adapted by Moriya, Hertz and others for quantum-criticality. The absorptive part of the fluctuations is a separable function of momentum [Formula: see text], measured from the ordering vector, and of the frequency ω and the temperature T which scale as [Formula: see text] at criticality. Direct measurements of the fluctuations by neutron scattering in the quasi-two-dimensional heavy fermion and Fe-based compounds, near their antiferromagnetic quantum critical point, are consistent with this form. Such fluctuations, together with the vertex coupling them to fermions, lead to a marginal fermi-liquid, with the imaginary part of the self-energy [Formula: see text] for all momenta, a resistivity [Formula: see text], a [Formula: see text] contribution to the specific heat, and other singular fermi-liquid properties common to these diverse compounds, as well as to d-wave superconductivity. This is explicitly verified, in the cuprates, by analysis of the pairing and the normal self-energy directly extracted from the recent high resolution angle resolved photoemission measurements. This reveals, in agreement with the theory, that the frequency dependence of the attractive irreducible particle-particle vertex in the d-wave channel is the same as the irreducible particle-hole vertex in the full symmetry of the lattice.
Collapse
Affiliation(s)
- Chandra M Varma
- Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA
| |
Collapse
|
2
|
Liu Y, Yu L, Jia X, Zhao J, Weng H, Peng Y, Chen C, Xie Z, Mou D, He J, Liu X, Feng Y, Yi H, Zhao L, Liu G, He S, Dong X, Zhang J, Xu Z, Chen C, Cao G, Dai X, Fang Z, Zhou XJ. Anomalous High-Energy Waterfall-Like Electronic Structure in 5 d Transition Metal Oxide Sr2IrO4 with a Strong Spin-Orbit Coupling. Sci Rep 2015; 5:13036. [PMID: 26267653 PMCID: PMC4533319 DOI: 10.1038/srep13036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/16/2015] [Indexed: 11/23/2022] Open
Abstract
The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations.
Collapse
Affiliation(s)
- Yan Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Li Yu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaowen Jia
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianzhou Zhao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongming Weng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Collaborative Innovation Center of Quantum Matter, Beijing, China
| | - Yingying Peng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Chaoyu Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhuojin Xie
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Daixiang Mou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Junfeng He
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xu Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ya Feng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hemian Yi
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lin Zhao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Guodong Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shaolong He
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaoli Dong
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zuyan Xu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chuangtian Chen
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Gang Cao
- Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506
| | - Xi Dai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Collaborative Innovation Center of Quantum Matter, Beijing, China
| | - Zhong Fang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Collaborative Innovation Center of Quantum Matter, Beijing, China
| | - X. J. Zhou
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Collaborative Innovation Center of Quantum Matter, Beijing, China
| |
Collapse
|
3
|
Varma CM. Pseudogap in cuprates in the loop-current ordered state. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:505701. [PMID: 25406917 DOI: 10.1088/0953-8984/26/50/505701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Scanning tunneling microscopy (STM) has revealed that the magnitude of the pseudo-gap in under-doped cuprates varies spatially and is correlated with disorder. The loop-current order, characterized by the anapole vector Ω, discovered in under-doped cuprates occurs in the same region of the temperature and doping as the pseudo gap observed in STM and ARPES experiments. Since translational symmetry remains unchanged in the pure limit, no gap occurs at the chemical potential. On the other hand for disorder coupling linearly to the different possible orientations of Ω, there can only be a finite temperature dependent static correlation length for the loop-current state at any temperature. This leads to formation of domains of the ordered state with different orientation and magnitude of Ω in each. For the characteristic size of the domains much larger than the Fermi-vectors [Formula: see text], the boundary of the domains leads to forward scattering of the Fermions. Such forward scattering is shown to push states near the chemical potential to energies both above and below it leading to a pseudo-gap with an angular dependence which is maximum in the [Formula: see text] directions because the single-particle energies are degenerate in these directions for all domains. The magnitude of the average gap systematically increases with the square of the average loop order parameter measured by polarized neutron scattering. This result is tested. A unique result of the gap due to forward scattering is the lack of a bump in the density of states at the 'edge' of the pseudo-gap so that the depletion of states near the chemical potential is recovered only in integration up to the edge of the band. This is also in agreement with a variety of experiments. Some predictions for further experiments are provided. Due to the finite correlation length, low frequency excitations are expected at long wavelength at all temperatures in the 'ordered' phase. Such fluctuations motionally average over the shifts in frequencies of local probes such as NMR and muon resonance expected for a truly static order.
Collapse
Affiliation(s)
- C M Varma
- Department of Physics, University of California, 900 University Ave, Riverside, CA 92521, USA
| |
Collapse
|
4
|
Rienks EDL, Ärrälä M, Lindroos M, Roth F, Tabis W, Yu G, Greven M, Fink J. High-energy anomaly in the angle-resolved photoemission spectra of Nd(2-x)Ce(x)CuO₄: evidence for a matrix element effect. PHYSICAL REVIEW LETTERS 2014; 113:137001. [PMID: 25302914 DOI: 10.1103/physrevlett.113.137001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Indexed: 06/04/2023]
Abstract
We use polarization-dependent angle-resolved photoemission spectroscopy (ARPES) to study the high-energy anomaly (HEA) in the dispersion of Nd(2-x)Ce(x)CuO₄, x=0.123. We find that at particular photon energies the anomalous, waterfall-like dispersion gives way to a broad, continuous band. This suggests that the HEA is a matrix element effect: it arises due to a suppression of the intensity of the broadened quasiparticle band in a narrow momentum range. We confirm this interpretation experimentally, by showing that the HEA appears when the matrix element is suppressed deliberately by changing the light polarization. Calculations of the matrix element using atomic wave functions and simulation of the ARPES intensity with one-step model calculations provide further evidence for this scenario. The possibility to detect the full quasiparticle dispersion further allows us to extract the high-energy self-energy function near the center and at the edge of the Brillouin zone.
Collapse
Affiliation(s)
- E D L Rienks
- Helmholtz-Zentrum Berlin, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany
| | - M Ärrälä
- Department of Physics, Tampere University of Technology, P.O. Box 692, FIN-33101 Tampere, Finland
| | - M Lindroos
- Department of Physics, Tampere University of Technology, P.O. Box 692, FIN-33101 Tampere, Finland
| | - F Roth
- Center for Free-Electron Laser Science/DESY, Notkestrasse 85, D-22607 Hamburg, Germany
| | - W Tabis
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA and University of Science and Technology, Faculty of Physics and Applied Computer Science, 30-059 Krakow, Poland
| | - G Yu
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - M Greven
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - J Fink
- Helmholtz-Zentrum Berlin, Albert-Einstein-Strasse 15, D-12489 Berlin, Germany and Leibniz-Institute for Solid State and Materials Research Dresden, P.O. Box 270116, D-01171 Dresden, Germany
| |
Collapse
|
5
|
Aizaki S, Yoshida T, Yoshimatsu K, Takizawa M, Minohara M, Ideta S, Fujimori A, Gupta K, Mahadevan P, Horiba K, Kumigashira H, Oshima M. Self-energy on the low- to high-energy electronic structure of correlated metal SrVO3. PHYSICAL REVIEW LETTERS 2012; 109:056401. [PMID: 23006190 DOI: 10.1103/physrevlett.109.056401] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Indexed: 06/01/2023]
Abstract
The correlated electronic structure of SrVO(3) has been investigated by angle-resolved photoemission spectroscopy using in situ prepared thin films. Pronounced features of band renormalization have been observed: a sharp kink ∼60 meV below the Fermi level (E(F)) and a broad so-called "high-energy kink" ∼0.3 eV below E(F) as in the high-T(c) cuprates, although SrVO(3) does not show magnetic fluctuations. We have deduced the self-energy in a wide energy range by applying the Kramers-Kronig relation to the observed spectra. The obtained self-energy clearly shows a large energy scale of ∼0.7 eV, which is attributed to electron-electron interaction and gives rise to the ∼0.3 eV kink in the band dispersion as well as the incoherent peak ∼1.5 eV below E(F). The present analysis enables us to obtain a consistent picture for both the incoherent spectra and the band renormalization.
Collapse
Affiliation(s)
- S Aizaki
- Department of Physics, The University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Varma CM. Considerations on the mechanisms and transition temperatures of superconductivity induced by electronic fluctuations. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2012; 75:052501. [PMID: 22790584 DOI: 10.1088/0034-4885/75/5/052501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
An overview of the momentum and frequency dependence of effective electron-electron interactions which favor electronic instability to a superconducting state in the angular-momentum channel ℓ and the properties of the interactions which determine the magnitude of the temperature T(c) of the instability is provided. Interactions induced through exchange of electronic fluctuations of spin density, charge density or current density are considered. Special attention is paid to the role of quantum-critical fluctuations (QCFs) including pairing due to their virtual exchange as well as de-pairing due to inelastic scattering. Additional insight is gained by reviewing empirical data and theory specific to superfluidity in liquid He(3), superconductivity in some of the heavy-fermion compounds, in cuprates, in pncitides and the valence skipping compound. The physical basis for the following observation is provided: the ratio of the maximum T(c) to the typical phonon frequency in phonon induced s-wave superconductivity is O(10(-1)); the ratio of p-wave T(c) to the renormalized Fermi energy in liquid He(3), a very strongly correlated Fermi liquid near its melting pressure, is only O(10(-3)); in the cuprates and the heavy fermions where d-wave superconductivity occurs in a region governed by QCFs, this ratio rises to O(10(-2)). These discussions also suggest factors important for obtaining higher T(c). Experiments and theoretical investigations are suggested to clarify the many unresolved issues.
Collapse
Affiliation(s)
- C M Varma
- Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA
| |
Collapse
|
7
|
Kokalj J, McKenzie RH. Consistent description of the metallic phase of overdoped cuprate superconductors as an anisotropic marginal Fermi liquid. PHYSICAL REVIEW LETTERS 2011; 107:147001. [PMID: 22107229 DOI: 10.1103/physrevlett.107.147001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Indexed: 05/31/2023]
Abstract
We consider a model self-energy consisting of an isotropic Fermi liquid term and a marginal Fermi liquid term which is anisotropic over the Fermi surface, vanishing in the same directions as the superconducting gap and the pseudogap. This model self-energy gives a consistent description of experimental results from angle-dependent magnetoresistance, specific heat, de Haas-van Alphen, and measurements of the quasiparticle dispersion near the Fermi surface from photoemission. In particular, we reconcile the strongly doping-dependent anomalous scattering rate observed in angle-dependent magnetoresistance with the almost doping-independent specific heat.
Collapse
Affiliation(s)
- J Kokalj
- School of Mathematics and Physics, University of Queensland, Brisbane, 4072 Queensland, Australia.
| | | |
Collapse
|
8
|
Vignolle B, Carrington A, Cooper RA, French MMJ, Mackenzie AP, Jaudet C, Vignolles D, Proust C, Hussey NE. Quantum oscillations in an overdoped high-Tc superconductor. Nature 2008. [DOI: 10.1038/nature07323] [Citation(s) in RCA: 216] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Zhang W, Liu G, Meng J, Zhao L, Liu H, Dong X, Lu W, Wen JS, Xu ZJ, Gu GD, Sasagawa T, Wang G, Zhu Y, Zhang H, Zhou Y, Wang X, Zhao Z, Chen C, Xu Z, Zhou XJ. High energy dispersion relations for the high temperature Bi2Sr2CaCu2O8 superconductor from laser-based angle-resolved photoemission spectroscopy. PHYSICAL REVIEW LETTERS 2008; 101:017002. [PMID: 18764144 DOI: 10.1103/physrevlett.101.017002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Indexed: 05/26/2023]
Abstract
Laser-based angle-resolved photoemission spectroscopy measurements have been carried out on the high energy electron dynamics in Bi2Sr2CaCu2O8 high temperature superconductor. Our superhigh resolution data, momentum-dependent measurements, and complete analysis provide important information to judge the nature of the high energy dispersion and kink. Our results rule out the possibility that the high energy dispersion from the momentum distribution curve (MDC) may represent the true bare band as believed in previous studies. We also rule out the possibility that the high energy kink represents electron coupling with some high energy modes as proposed before. Through detailed MDC and energy distribution curve analyses, we propose that the high energy MDC dispersion may not represent intrinsic band structure.
Collapse
Affiliation(s)
- Wentao Zhang
- National Laboratory for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|