1
|
Wen Y, Zhang Y. Fabric-based jamming phase diagram for frictional granular materials. SOFT MATTER 2024; 20:3175-3190. [PMID: 38526425 DOI: 10.1039/d3sm01277h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
A jamming phase diagram maps the phase states of granular materials to their intensive properties such as shear stress and density (or packing fraction). We investigate how different phases in a jamming phase diagram of granular materials are related to their fabric structure via three-dimensional discrete element method simulations. Constant-volume quasi-static simple shear tests ensuring uniform shear strain field are conducted on bi-disperse spherical frictional particles. Specimens with different initial solid fractions are sheared until reaching steady state at a large shear strain (200%). The jamming threshold in terms of stress, non-rattler fraction, and coordination numbers (Z's) of different contact networks is discussed. The evolution of fabric anisotropy (F) of each contact network during shearing is also examined. By plotting the fabric data in the F-Z space, a unique critical fabric surface (CFS) becomes apparent across all specimens, irrespective of their initial phase states. Through the correlation of this CFS with fabric signals corresponding to jamming transitions, we introduce a novel jamming phase diagram in the fabric F-Z space, offering a convenient approach to distinguish the various phases of granular materials solely through the direct observation of geometrical arrangements of particles. This jamming phase diagram underscores the importance of the microstructure underlying the conventional jamming phenomenon and introduces a novel standpoint for interpreting the phase transitions of granular materials that have been exposed to processes such as compaction, shearing, and other complex loading histories.
Collapse
Affiliation(s)
- Yuxuan Wen
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, CO, USA.
| | - Yida Zhang
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
2
|
Herranz M, Benito J, Foteinopoulou K, Karayiannis NC, Laso M. Polymorph Stability and Free Energy of Crystallization of Freely-Jointed Polymers of Hard Spheres. Polymers (Basel) 2023; 15:polym15061335. [PMID: 36987117 PMCID: PMC10058036 DOI: 10.3390/polym15061335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/30/2023] Open
Abstract
The free energy of crystallization of monomeric hard spheres as well as their thermodynamically stable polymorph have been known for several decades. In this work, we present semianalytical calculations of the free energy of crystallization of freely-jointed polymers of hard spheres as well as of the free energy difference between the hexagonal closed packed (HCP) and face-centered cubic (FCC) polymorphs. The phase transition (crystallization) is driven by an increase in translational entropy that is larger than the loss of conformational entropy of chains in the crystal with respect to chains in the initial amorphous phase. The conformational entropic advantage of the HCP polymer crystal over the FCC one is found to be ΔschHCP-FCC≈0.331×10-5k per monomer (expressed in terms of Boltzmann's constant k). This slight conformational entropic advantage of the HCP crystal of chains is by far insufficient to compensate for the larger translational entropic advantage of the FCC crystal, which is predicted to be the stable one. The calculated overall thermodynamic advantage of the FCC over the HCP polymorph is supported by a recent Monte Carlo (MC) simulation on a very large system of 54 chains of 1000 hard sphere monomers. Semianalytical calculations using results from this MC simulation yield in addition a value of the total crystallization entropy for linear, fully flexible, athermal polymers of Δs≈0.93k per monomer.
Collapse
Affiliation(s)
- Miguel Herranz
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain
| | - Javier Benito
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain
| | - Katerina Foteinopoulou
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain
| | - Nikos Ch Karayiannis
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain
| | - Manuel Laso
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain
| |
Collapse
|
3
|
Ramos PM, Herranz M, Foteinopoulou K, Karayiannis NC, Laso M. Entropy-Driven Heterogeneous Crystallization of Hard-Sphere Chains under Unidimensional Confinement. Polymers (Basel) 2021; 13:1352. [PMID: 33919100 PMCID: PMC8122411 DOI: 10.3390/polym13091352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 11/16/2022] Open
Abstract
We investigate, through Monte Carlo simulations, the heterogeneous crystallization of linear chains of tangent hard spheres under confinement in one dimension. Confinement is realized through flat, impenetrable, and parallel walls. A wide range of systems is studied with respect to their average chain lengths (N = 12 to 100) and packing densities (ϕ = 0.50 to 0.61). The local structure is quantified through the Characteristic Crystallographic Element (CCE) norm descriptor. Here, we split the phenomenon into the bulk crystallization, far from the walls, and the projected surface crystallization in layers adjacent to the confining surfaces. Once a critical volume fraction is met, the chains show a phase transition, starting from regions near the hard walls. The established crystal morphologies consist of alternating hexagonal close-packed or face-centered cubic layers with a stacking direction perpendicular to the confining walls. Crystal layer perfection is observed with an increasing concentration. As in the case of the unconstrained phase transition of athermal polymers at high densities, crystal nucleation and growth compete with the formation of sites of a fivefold local symmetry. While surface crystallites show perfection with a predominantly triangular character, the morphologies of square crystals or of a mixed type are also formed. The simulation results show that the rate of perfection of the surface crystallization is not significantly faster than that of the bulk crystallization.
Collapse
Affiliation(s)
| | | | | | - Nikos Ch. Karayiannis
- Institute for Optoelectronic Systems and Microtechnology (ISOM) and Escuela Técnica Superior de Ingenieros Industriales (ETSII), Universidad Politécnica de Madrid (UPM), José Gutierrez Abascal 2, 28006 Madrid, Spain; (P.M.R.); (M.H.); (K.F.); (M.L.)
| | | |
Collapse
|
4
|
Pillitteri S, Opsomer E, Lumay G, Vandewalle N. How size ratio and segregation affect the packing of binary granular mixtures. SOFT MATTER 2020; 16:9094-9100. [PMID: 32914151 DOI: 10.1039/d0sm00939c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
For reaching high packing fractions, grains of various sizes are often mixed together allowing the small grains to fill the voids created by the large ones. However, in most cases, granular segregation occurs leading to lower packing fractions. We performed a wide set of experiments with different binary granular systems, proving that two main parameters are respectively the volume fraction f of small beads and the grain size ratio α. In addition, we show how granular segregation affects the global packing fraction. We propose a model with a strong dependency on α that takes into account possible granular segregation. Our model is in good agreement with both earlier experimental and simulation data.
Collapse
Affiliation(s)
| | - Eric Opsomer
- Quartier Agora, allée du six Août 19, Liège, Belgium.
| | | | | |
Collapse
|
5
|
Yamaoka S, Hyeon-Deuk K. Decelerated Liquid Dynamics Induced by Component-Dependent Supercooling in Hydrogen and Deuterium Quantum Mixtures. J Phys Chem Lett 2020; 11:4186-4192. [PMID: 32375000 DOI: 10.1021/acs.jpclett.0c00801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Isotopic mixtures of p-H2 and o-D2 molecules have been an attractive binary system because they include two kinds of purely isotopic molecules which possess the same electronic potential but the twice different mass inducing differently pronounced nuclear quantum effects (NQEs). Accessing details of structures and dynamics in such quantum mixtures combining complex molecular dynamics with NQEs of different strengths remains a challenging problem. Taking advantage of the nonempirical molecular dynamics method which describes p-H2 and o-D2 molecules, we found that the liquid dynamics slows down at a specific mixing ratio, which can be connected to the observed anomalous slowdown of crystallization in the quantum mixtures. We attributed the decelerated dynamics to the component-dependent supercooling of p-H2 taking place in the mixtures, demonstrating that there is an optimal mixing ratio to hinder crystallization. The obtained physical insights will help in experimentally controlling and achieving unknown quantum mixtures including superfluid.
Collapse
Affiliation(s)
- Shutaro Yamaoka
- Department of Chemistry, Kyoto University, Kyoto 606-8502, Japan
| | - Kim Hyeon-Deuk
- Department of Chemistry, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
6
|
Schottelius A, Mambretti F, Kalinin A, Beyersdorff B, Rothkirch A, Goy C, Müller J, Petridis N, Ritzer M, Trinter F, Fernández JM, Ezquerra TA, Galli DE, Grisenti RE. Crystal growth rates in supercooled atomic liquid mixtures. NATURE MATERIALS 2020; 19:512-516. [PMID: 32066929 DOI: 10.1038/s41563-020-0613-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Crystallization is a fundamental process in materials science, providing the primary route for the realization of a wide range of new materials. Crystallization rates are also considered to be useful probes of glass-forming ability1-3. At the microscopic level, crystallization is described by the classical crystal nucleation and growth theories4,5, yet in general solid formation is a far more complex process. In particular, the observation of apparently different crystal growth regimes in many binary liquid mixtures greatly challenges our understanding of crystallization1,6-12. Here, we study by experiments, theory and computer simulations the crystallization of supercooled mixtures of argon and krypton, showing that crystal growth rates in these systems can be reconciled with existing crystal growth models only by explicitly accounting for the non-ideality of the mixtures. Our results highlight the importance of thermodynamic aspects in describing the crystal growth kinetics, providing a substantial step towards a more sophisticated theory of crystal growth.
Collapse
Affiliation(s)
| | | | - Anton Kalinin
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Björn Beyersdorff
- Photon Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Andre Rothkirch
- Photon Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Claudia Goy
- Institut für Kernphysik, J. W. Goethe-Universität, Frankfurt am Main, Germany
| | - Jan Müller
- Institut für Kernphysik, J. W. Goethe-Universität, Frankfurt am Main, Germany
| | - Nikolaos Petridis
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Maurizio Ritzer
- Institut für Kernphysik, J. W. Goethe-Universität, Frankfurt am Main, Germany
| | - Florian Trinter
- Institut für Kernphysik, J. W. Goethe-Universität, Frankfurt am Main, Germany
- Photon Science, Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- Molecular Physics, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
| | - José M Fernández
- Laboratory of Molecular Fluid Dynamics, Instituto de Estructura de la Materia, IEM-CSIC, Madrid, Spain
| | - Tiberio A Ezquerra
- Macromolecular Physics Department, Instituto de Estructura de la Materia, IEM-CSIC, Madrid, Spain
| | - Davide E Galli
- Dipartimento di Fisica, Università degli Studi di Milano, Milano, Italy
| | - Robert E Grisenti
- Institut für Kernphysik, J. W. Goethe-Universität, Frankfurt am Main, Germany.
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany.
| |
Collapse
|
7
|
Hannam SDW, Daivis PJ, Bryant G. Dramatic slowing of compositional relaxations in the approach to the glass transition for a bimodal colloidal suspension. Phys Rev E 2017; 96:022609. [PMID: 28950635 DOI: 10.1103/physreve.96.022609] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Indexed: 11/07/2022]
Abstract
Molecular dynamics simulation was used to study a model colloidal suspension with two species of slightly different sized colloidal particles in an explicit solvent. In this work we calculated the four interdiffusion coefficients for the ternary system, which were then used to calculate the decay coefficients D_{±} of the two independent diffusive modes. We found that the slower D_{-} decay mode, which is associated with the system's ability to undergo compositional changes, was responsible for the long-time decay in the intermediate scattering function. We also found that a decrease in D_{-} to negligible values at a packing fraction of Φ_{g}=0.592 resulted in an extreme slow-down in the long-time decay of the intermediate scattering function often associated with the glass transition. Above Φ_{g}, the system formed a long-lived metastable state that did not relax to its equilibrium crystal state within the simulation time window. We concluded that the inhibition of crystallization was caused by the inability of the quenched fluid to undergo the compositional changes needed for the formation of the equilibrium crystal.
Collapse
Affiliation(s)
- S D W Hannam
- School of Science and Centre for Molecular and Nanoscale Physics, RMIT University, G. P. O. Box 2476, Melbourne, Victoria 3001, Australia
| | - P J Daivis
- School of Science and Centre for Molecular and Nanoscale Physics, RMIT University, G. P. O. Box 2476, Melbourne, Victoria 3001, Australia
| | - G Bryant
- School of Science and Centre for Molecular and Nanoscale Physics, RMIT University, G. P. O. Box 2476, Melbourne, Victoria 3001, Australia
| |
Collapse
|
8
|
Sosso G, Chen J, Cox SJ, Fitzner M, Pedevilla P, Zen A, Michaelides A. Crystal Nucleation in Liquids: Open Questions and Future Challenges in Molecular Dynamics Simulations. Chem Rev 2016; 116:7078-116. [PMID: 27228560 PMCID: PMC4919765 DOI: 10.1021/acs.chemrev.5b00744] [Citation(s) in RCA: 392] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 11/28/2022]
Abstract
The nucleation of crystals in liquids is one of nature's most ubiquitous phenomena, playing an important role in areas such as climate change and the production of drugs. As the early stages of nucleation involve exceedingly small time and length scales, atomistic computer simulations can provide unique insights into the microscopic aspects of crystallization. In this review, we take stock of the numerous molecular dynamics simulations that, in the past few decades, have unraveled crucial aspects of crystal nucleation in liquids. We put into context the theoretical framework of classical nucleation theory and the state-of-the-art computational methods by reviewing simulations of such processes as ice nucleation and the crystallization of molecules in solutions. We shall see that molecular dynamics simulations have provided key insights into diverse nucleation scenarios, ranging from colloidal particles to natural gas hydrates, and that, as a result, the general applicability of classical nucleation theory has been repeatedly called into question. We have attempted to identify the most pressing open questions in the field. We believe that, by improving (i) existing interatomic potentials and (ii) currently available enhanced sampling methods, the community can move toward accurate investigations of realistic systems of practical interest, thus bringing simulations a step closer to experiments.
Collapse
Affiliation(s)
- Gabriele
C. Sosso
- Thomas Young Centre, London
Centre for Nanotechnology and Department of Physics and Astronomy, University College London, Gower Street WC1E
6BT London, U.K.
| | - Ji Chen
- Thomas Young Centre, London
Centre for Nanotechnology and Department of Physics and Astronomy, University College London, Gower Street WC1E
6BT London, U.K.
| | | | - Martin Fitzner
- Thomas Young Centre, London
Centre for Nanotechnology and Department of Physics and Astronomy, University College London, Gower Street WC1E
6BT London, U.K.
| | - Philipp Pedevilla
- Thomas Young Centre, London
Centre for Nanotechnology and Department of Physics and Astronomy, University College London, Gower Street WC1E
6BT London, U.K.
| | - Andrea Zen
- Thomas Young Centre, London
Centre for Nanotechnology and Department of Physics and Astronomy, University College London, Gower Street WC1E
6BT London, U.K.
| | - Angelos Michaelides
- Thomas Young Centre, London
Centre for Nanotechnology and Department of Physics and Astronomy, University College London, Gower Street WC1E
6BT London, U.K.
| |
Collapse
|
9
|
Hua Y, Zhang D, Zhang L. Compression-driven migration of nanoparticles in semiflexible polymer brushes. POLYMER 2016. [DOI: 10.1016/j.polymer.2015.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Kühnel M, Fernández JM, Tramonto F, Tejeda G, Moreno E, Kalinin A, Nava M, Galli DE, Montero S, Grisenti RE. Mixing effects in the crystallization of supercooled quantum binary liquids. J Chem Phys 2015; 143:064504. [PMID: 26277142 DOI: 10.1063/1.4928280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
By means of Raman spectroscopy of liquid microjets, we have investigated the crystallization process of supercooled quantum liquid mixtures composed of parahydrogen (pH2) or orthodeuterium (oD2) diluted with small amounts of neon. We show that the introduction of the Ne impurities affects the crystallization kinetics in terms of a significant reduction of the measured pH2 and oD2 crystal growth rates, similarly to what found in our previous work on supercooled pH2-oD2 liquid mixtures [Kühnel et al., Phys. Rev. B 89, 180201(R) (2014)]. Our experimental results, in combination with path-integral simulations of the supercooled liquid mixtures, suggest in particular a correlation between the measured growth rates and the ratio of the effective particle sizes originating from quantum delocalization effects. We further show that the crystalline structure of the mixtures is also affected to a large extent by the presence of the Ne impurities, which likely initiate the freezing process through the formation of Ne-rich crystallites.
Collapse
Affiliation(s)
- M Kühnel
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - J M Fernández
- Laboratory of Molecular Fluid Dynamics, Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid, Spain
| | - F Tramonto
- Laboratorio di Calcolo Parallelo e di Simulazioni di Materia Condensata, Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy
| | - G Tejeda
- Laboratory of Molecular Fluid Dynamics, Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid, Spain
| | - E Moreno
- Laboratory of Molecular Fluid Dynamics, Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid, Spain
| | - A Kalinin
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| | - M Nava
- Laboratorio di Calcolo Parallelo e di Simulazioni di Materia Condensata, Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy
| | - D E Galli
- Laboratorio di Calcolo Parallelo e di Simulazioni di Materia Condensata, Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy
| | - S Montero
- Laboratory of Molecular Fluid Dynamics, Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid, Spain
| | - R E Grisenti
- Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main, Germany
| |
Collapse
|
11
|
Lam J, Amans D, Dujardin C, Ledoux G, Allouche AR. Atomistic Mechanisms for the Nucleation of Aluminum Oxide Nanoparticles. J Phys Chem A 2015. [DOI: 10.1021/acs.jpca.5b05829] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Julien Lam
- Université Lyon 1, F-69622 Villeurbanne, France, UMR5306 CNRS,
Institut Lumiere Matiere, PRES-Université de Lyon, F-69361 Lyon, France
| | - David Amans
- Université Lyon 1, F-69622 Villeurbanne, France, UMR5306 CNRS,
Institut Lumiere Matiere, PRES-Université de Lyon, F-69361 Lyon, France
| | - Christophe Dujardin
- Université Lyon 1, F-69622 Villeurbanne, France, UMR5306 CNRS,
Institut Lumiere Matiere, PRES-Université de Lyon, F-69361 Lyon, France
| | - Gilles Ledoux
- Université Lyon 1, F-69622 Villeurbanne, France, UMR5306 CNRS,
Institut Lumiere Matiere, PRES-Université de Lyon, F-69361 Lyon, France
| | - Abdul-Rahman Allouche
- Université Lyon 1, F-69622 Villeurbanne, France, UMR5306 CNRS,
Institut Lumiere Matiere, PRES-Université de Lyon, F-69361 Lyon, France
| |
Collapse
|
12
|
Williamson JJ, Evans RML. Measuring local volume fraction, long-wavelength correlations, and fractionation in a phase-separating polydisperse fluid. J Chem Phys 2014; 141:164901. [PMID: 25362335 DOI: 10.1063/1.4897560] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Affiliation(s)
- J. J. Williamson
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets, N.W., Washington, D.C. 20057, USA
| | - R. M. L. Evans
- School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
13
|
Li Y, Li HP, He XH. Self-assembly of Binary Particles with Electrostatic and van der Waals Interactions. CHINESE J CHEM PHYS 2014. [DOI: 10.1063/1674-0068/27/04/419-427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
14
|
Karayiannis NC, Foteinopoulou K, Laso M. Spontaneous crystallization in athermal polymer packings. Int J Mol Sci 2012; 14:332-58. [PMID: 23263666 PMCID: PMC3565267 DOI: 10.3390/ijms14010332] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 12/14/2012] [Indexed: 11/17/2022] Open
Abstract
We review recent results from extensive simulations of the crystallization of athermal polymer packings. It is shown that above a certain packing density, and for sufficiently long simulations, all random assemblies of freely-jointed chains of tangent hard spheres of uniform size show a spontaneous transition into a crystalline phase. These polymer crystals adopt predominantly random hexagonal close packed morphologies. An analysis of the local environment around monomers based on the shape and size of the Voronoi polyhedra clearly shows that Voronoi cells become more spherical and more symmetric as the system transits to the ordered state. The change in the local environment leads to an increase in the monomer translational contribution to the entropy of the system, which acts as the driving force for the phase transition. A comparison of the crystallization of hard-sphere polymers and monomers highlights similarities and differences resulting from the constraints imposed by chain connectivity.
Collapse
Affiliation(s)
- Nikos Ch. Karayiannis
- Institute of Optoelectronics and Microsystems (ISOM) and ETSII, Polytechnic University of Madrid (UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain; E-Mails: (N.Ch.K.); (K.F.)
| | - Katerina Foteinopoulou
- Institute of Optoelectronics and Microsystems (ISOM) and ETSII, Polytechnic University of Madrid (UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain; E-Mails: (N.Ch.K.); (K.F.)
| | - Manuel Laso
- Institute of Optoelectronics and Microsystems (ISOM) and ETSII, Polytechnic University of Madrid (UPM), José Gutiérrez Abascal 2, 28006 Madrid, Spain; E-Mails: (N.Ch.K.); (K.F.)
| |
Collapse
|
15
|
Williamson JJ, Evans RML. Spinodal fractionation in a polydisperse square-well fluid. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:011405. [PMID: 23005415 DOI: 10.1103/physreve.86.011405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Indexed: 06/01/2023]
Abstract
Using kinetic Monte Carlo simulation, we model gas-liquid spinodal decomposition in a size-polydisperse square well fluid, representing a "near-monodisperse" colloidal dispersion. We find that fractionation (demixing) of particle sizes between the phases begins asserting itself shortly after the onset of phase ordering. Strikingly, the direction of size fractionation can be reversed by a seemingly trivial choice between two interparticle potentials which, in the monodisperse case, are identical--we rationalize this in terms of a perturbative, equilibrium theory of polydispersity. Furthermore, our quantitative results show that kinetic Monte Carlo simulation can provide detailed insight into the role of fractionation in real colloidal systems.
Collapse
Affiliation(s)
- J J Williamson
- Soft Matter Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, England, United Kingdom
| | | |
Collapse
|
16
|
Ogarko V, Luding S. Equation of state and jamming density for equivalent bi- and polydisperse, smooth, hard sphere systems. J Chem Phys 2012; 136:124508. [DOI: 10.1063/1.3694030] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Karayiannis NC, Malshe R, de Pablo JJ, Laso M. Fivefold symmetry as an inhibitor to hard-sphere crystallization. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2011; 83:061505. [PMID: 21797370 DOI: 10.1103/physreve.83.061505] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/26/2011] [Indexed: 05/31/2023]
Abstract
Through molecular simulations we investigate the dynamics of crystallization of hard spheres of uniform size from dense amorphous states and the role that hidden structures in an otherwise disordered medium might have on it. It is shown that short-range order in the form of sites with fivefold symmetry acts as a powerful inhibitor to crystal growth. Fivefold sites not only retard crystallization, but can self-assemble into organized structures that arrest crystallization at high densities or lead to the formation of defects in a crystal. The latter effect can be understood in terms of a random polyhedral model.
Collapse
Affiliation(s)
- Nikos Ch Karayiannis
- Institute of Optoelectronics and Microsystems (ISOM) and ETSII, Universidad Politecnica de Madrid (UPM), Madrid, Spain
| | | | | | | |
Collapse
|
18
|
Anwar J, Zahn D. Atomistisches Verständnis der Keimbildung und des Kristallwachstums durch molekulare Simulationen. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201000463] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Anwar J, Zahn D. Uncovering molecular processes in crystal nucleation and growth by using molecular simulation. Angew Chem Int Ed Engl 2011; 50:1996-2013. [PMID: 21271625 DOI: 10.1002/anie.201000463] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Indexed: 11/11/2022]
Abstract
Exploring nucleation processes by molecular simulation provides a mechanistic understanding at the atomic level and also enables kinetic and thermodynamic quantities to be estimated. However, whilst the potential for modeling crystal nucleation and growth processes is immense, there are specific technical challenges to modeling. In general, rare events, such as nucleation cannot be simulated using a direct "brute force" molecular dynamics approach. The limited time and length scales that are accessible by conventional molecular dynamics simulations have inspired a number of advances to tackle problems that were considered outside the scope of molecular simulation. While general insights and features could be explored from efficient generic models, new methods paved the way to realistic crystal nucleation scenarios. The association of single ions in solvent environments, the mechanisms of motif formation, ripening reactions, and the self-organization of nanocrystals can now be investigated at the molecular level. The analysis of interactions with growth-controlling additives gives a new understanding of functionalized nanocrystals and the precipitation of composite materials.
Collapse
Affiliation(s)
- Jamshed Anwar
- Computational Biophysics Laboratory, Institute of Pharmaceutical Innovation, University of Bradford, Bradford, BD7 1DP, UK.
| | | |
Collapse
|
20
|
Weysser F, Puertas AM, Fuchs M, Voigtmann T. Structural relaxation of polydisperse hard spheres: comparison of the mode-coupling theory to a Langevin dynamics simulation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:011504. [PMID: 20866622 DOI: 10.1103/physreve.82.011504] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 06/26/2010] [Indexed: 05/29/2023]
Abstract
We analyze the slow glassy structural relaxation as measured through collective and tagged-particle density correlation functions obtained from Brownian dynamics simulations for a polydisperse system of quasi-hard spheres in the framework of the mode-coupling theory (MCT) of the glass transition. Asymptotic analyses show good agreement for the collective dynamics when polydispersity effects are taken into account in a multicomponent calculation, but qualitative disagreement at small q when the system is treated as effectively monodisperse. The origin of the different small-q behavior is attributed to the interplay between interdiffusion processes and structural relaxation. Numerical solutions of the MCT equations are obtained taking properly binned partial static structure factors from the simulations as input. Accounting for a shift in the critical density, the collective density correlation functions are well described by the theory at all densities investigated in the simulations, with quantitative agreement best around the maxima of the static structure factor and worst around its minima. A parameter-free comparison of the tagged-particle dynamics however reveals large quantitative errors for small wave numbers that are connected to the well-known decoupling of self-diffusion from structural relaxation and to dynamical heterogeneities. While deviations from MCT behavior are clearly seen in the tagged-particle quantities for densities close to and on the liquid side of the MCT glass transition, no such deviations are seen in the collective dynamics.
Collapse
Affiliation(s)
- F Weysser
- Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| | | | | | | |
Collapse
|
21
|
Pusey PN, Zaccarelli E, Valeriani C, Sanz E, Poon WCK, Cates ME. Hard spheres: crystallization and glass formation. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2009; 367:4993-5011. [PMID: 19933124 DOI: 10.1098/rsta.2009.0181] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Motivated by old experiments on colloidal suspensions, we report molecular dynamics simulations of assemblies of hard spheres, addressing crystallization and glass formation. The simulations cover wide ranges of polydispersity s (standard deviation of the particle size distribution divided by its mean) and particle concentration. No crystallization is observed for s>0.07. For 0.02<s<0.07, we find that increasing the polydispersity at a given concentration slows down crystal nucleation. The main effect here is that polydispersity reduces the supersaturation since it tends to stabilize the fluid but to destabilize the crystal. At a given polydispersity (<0.07), we find three regimes of nucleation: standard nucleation and growth at concentrations in and slightly above the coexistence region; 'spinodal nucleation', where the free-energy barrier to nucleation appears to be negligible, at intermediate concentrations; and, at the highest concentrations, a new mechanism, still to be fully understood, which only requires small rearrangement of the particle positions. The cross-over between the second and third regimes occurs at a concentration, approximately 58 per cent by volume, where the colloid experiments show a marked change in the nature of the crystals formed and the particle dynamics indicate an 'ideal' glass transition.
Collapse
Affiliation(s)
- P N Pusey
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | | | |
Collapse
|
22
|
van Megen W, Martinez VA, Bryant G. Arrest of flow and emergence of activated processes at the glass transition of a suspension of particles with hard spherelike interactions. PHYSICAL REVIEW LETTERS 2009; 102:168301. [PMID: 19518760 DOI: 10.1103/physrevlett.102.168301] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Indexed: 05/27/2023]
Abstract
By combining aspects of the coherent and self-intermediate scattering functions, we show that the arrest of particle number density fluctuations spreads from the position of the main structure factor peak. We propose that this arrest impairs the system's ability to respond to diffusing momentum currents, leading to an enhanced resistance to flow. From the stretching of the coherent intermediate scattering functions in the glass, we read a manifestation of the undissipated thermal energy-the source of the ergodicity restoring processes that short-circuit the sharp transition to a perfect glass.
Collapse
Affiliation(s)
- W van Megen
- Department of Applied Physics, Royal Melbourne Institute of Technology, Melbourne, Victoria 3000, Australia
| | | | | |
Collapse
|