1
|
Horkay F, Basser PJ, Geissler E. Cartilage extracellular matrix polymers: hierarchical structure, osmotic properties, and function. SOFT MATTER 2024. [PMID: 39028032 DOI: 10.1039/d4sm00617h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Proteoglycans are hierarchically organized structures that play an important role in the hydration and the compression resistance of cartilage matrix. In this study, the static and dynamic properties relevant to the biomechanical function of cartilage are determined at different levels of the hierarchical structure, using complementary osmotic pressure, neutron scattering (SANS) and light scattering (DLS) measurements. In cartilage proteoglycans (PGs), two levels of bottlebrush structures can be distinguished: the aggrecan monomer, which consists of a core protein to which are tethered charged glycosaminoglycan (GAG) chains, and complexes formed of the aggrecan monomers attached around a linear hyaluronic acid backbone. The principal component of GAG, chondroitin sulfate (CS), is used as a baseline in this comparison. The osmotic modulus, measured as a function of the proteoglycan concentration, follows the order CS < aggrecan < aggrecan-HA complex. This order underlines the benefit of the increasing complexity at each level of the molecular architecture. The hierarchical bottlebrush configuration, which prevents interpenetration among the bristles of the aggrecan monomers, enhances both the mechanical properties and the osmotic resistance. The osmotic pressure of the collagen solution is notably smaller than in the proteoglycan systems. This is consistent with its known primary role to provide tensile strength to the cartilage and to confine the aggrecan-HA complexes, as opposed to load bearing. The collective diffusion coefficient D governs the rate of recovery of biological tissue after compressive load. In CS solutions the diffusion process is fast, D ≈ 3 × 10-6 cm2 s-1 at concentrations comparable with that of the GAG chains inside the aggrecan molecule. In CS solutions D is a weakly decreasing function of calcium ion concentration, while in aggrecan and its complexes with HA, the relaxation rate is insensitive to the presence of calcium.
Collapse
Affiliation(s)
- Ferenc Horkay
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 13 South Drive, Bethesda, MD 20892, USA.
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 13 South Drive, Bethesda, MD 20892, USA.
| | - Erik Geissler
- Laboratoire Interdisciplinaire de Physique (LIPhy), Université Grenoble Alpes and CNRS, F-38000 Grenoble, France
| |
Collapse
|
2
|
Chremos A, Horkay F. Coexistence of Crumpling and Flat Sheet Conformations in Two-Dimensional Polymer Networks: An Understanding of Aggrecan Self-Assembly. PHYSICAL REVIEW LETTERS 2023; 131:138101. [PMID: 37832020 DOI: 10.1103/physrevlett.131.138101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/12/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023]
Abstract
We investigate the conformational properties of self-avoiding two-dimensional (2D) ideal polymer networks with tunable mesh sizes as a model of self-assembled structures formed by aggrecan. Polymer networks having few branching points and large enough mesh tend to crumple, resulting in a fractal dimension of d_{f}≈2.7. The flat sheet behavior (d_{f}=2) emerges in 2D polymer networks having more branching points at large length scales; however, it coexists with crumpling conformations at intermediate length scales, a feature found in scattering profiles of aggrecan solutions. Our findings bridge the long-standing gap between theories and simulations of polymer sheets.
Collapse
Affiliation(s)
- Alexandros Chremos
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Ferenc Horkay
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
3
|
Horkay F, Douglas JF. Cartilage polymers: From viscoelastic solutions to weak gels*. POLYM ENG SCI 2022. [DOI: 10.1002/pen.25791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ferenc Horkay
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development National Institutes of Health Bethesda Maryland USA
| | - Jack F. Douglas
- Materials Science and Engineering Division National Institute of Standard and Technology Gaithersburg Maryland USA
| |
Collapse
|
4
|
Horkay F, Chremos A, Douglas JF, Jones R, Lou J, Xia Y. Comparative experimental and computational study of synthetic and natural bottlebrush polyelectrolyte solutions. J Chem Phys 2021; 155:074901. [PMID: 34418934 PMCID: PMC8491617 DOI: 10.1063/5.0061649] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/30/2021] [Indexed: 11/14/2022] Open
Abstract
We systematically investigate model synthetic and natural bottlebrush polyelectrolyte solutions through an array of experimental techniques (osmometry and neutron and dynamic light scattering) along with molecular dynamics simulations to characterize and contrast their structures over a wide range of spatial and time scales. In particular, we perform measurements on solutions of aggrecan and the synthetic bottlebrush polymer, poly(sodium acrylate), and simulations of solutions of highly coarse-grained charged bottlebrush molecules having different degrees of side-branch density and inclusion of an explicit solvent and ion hydration effects. While both systems exhibit a general tendency toward supramolecular organization in solution, bottlebrush poly(sodium acrylate) solutions exhibit a distinctive "polyelectrolyte peak" in their structure factor, but no such peak is observed in aggrecan solutions. This qualitative difference in scattering properties, and thus polyelectrolyte solution organization, is attributed to a concerted effect of the bottlebrush polymer topology and the solvation of the polymer backbone and counterions. The coupling of the polyelectrolyte topological structure with the counterion distribution about the charged polymer molecules along with direct polymer segmental hydration makes their solution organization and properties "tunable," a phenomenon that has significant ramifications for biological function and disease as well as for numerous materials applications.
Collapse
Affiliation(s)
- Ferenc Horkay
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Alexandros Chremos
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jack F. Douglas
- Material Measurement Laboratory, Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Ronald Jones
- Material Measurement Laboratory, Material Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Junzhe Lou
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Yan Xia
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
5
|
Horkay F, Douglas JF, Raghavan SR. Rheological Properties of Cartilage Glycosaminoglycans and Proteoglycans. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Ferenc Horkay
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jack F. Douglas
- Materials Science and Engineering Division, National Institute of Standard and Technology, Gaithersburg, Maryland 20899, United States
| | - Srinivasa R. Raghavan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
6
|
Affiliation(s)
- Ferenc Horkay
- Section on Tissue Biophysics and Biomimetics; NICHD; National Institutes of Health; 13 South Drive Bethesda MD 20892 USA
| |
Collapse
|
7
|
Schenk AS, Zope H, Kim YY, Kros A, Sommerdijk NAJM, Meldrum FC. Polymer-induced liquid precursor (PILP) phases of calcium carbonate formed in the presence of synthetic acidic polypeptides—relevance to biomineralization. Faraday Discuss 2012. [DOI: 10.1039/c2fd20063e] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Chandran PL, Horkay F. Aggrecan, an unusual polyelectrolyte: review of solution behavior and physiological implications. Acta Biomater 2012; 8:3-12. [PMID: 21884828 DOI: 10.1016/j.actbio.2011.08.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/03/2011] [Accepted: 08/11/2011] [Indexed: 10/17/2022]
Abstract
Aggrecan is a high-molecular-weight, bottlebrush-shaped, negatively charged biopolymer that forms supermolecular complexes with hyaluronic acid. In the extracellular matrix of cartilage, aggrecan-hyaluronic acid complexes are interspersed in a collagen meshwork and provide the osmotic properties required to resist deswelling under compressive load. In this review we compile aggrecan solution behavior from different experimental techniques, and discuss them in the context of concentration regimes that were identified in osmotic pressure experiments. At low concentrations, aggrecan exhibits microgel-like behavior. With increasing concentration, the bottlebrushes self-assemble into large complexes. In the physiological concentration range (2<c(aggrecan)<8% w/w), the physical properties of the solution are dominated by repulsive electrostatic interactions between aggrecan complexes. We discuss the consequences of the bottlebrush architecture on the polyelectrolyte characteristics of the aggrecan molecule, and its implications for cartilage properties and function.
Collapse
|
9
|
Horkay F, Basser PJ, Hecht AM, Geissler E. Hierarchical organization of cartilage proteoglycans. MACROMOLECULAR SYMPOSIA 2011; 306-307:11-17. [PMID: 23565043 PMCID: PMC3615634 DOI: 10.1002/masy.201000115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The hierarchical organization of cartilage proteoglycans is investigated on different length and time scales using osmotic pressure measurements, small angle neutron scattering (SANS), small angle X-ray scattering (SAXS), static and dynamic light scattering and neutron spin echo techniques. Osmotic pressure measurements reveal association of aggrecan bottlebrushes into microgel-like assemblies. SAXS, SANS and light scattering results indicate weak interpenetration between neighboring aggrecan molecules. As opposed to DNA and many synthetic polyelectrolytes, which display great sensitivity to ion valence, aggrecan exhibits exceptional insensitivity to calcium ions in the physiological ion concentration range and beyond. This property allows aggrecan to play a role of ion reservoir that can mediate calcium metabolism in cartilage and bone.
Collapse
Affiliation(s)
- Ferenc Horkay
- Section on Tissue Biophysics and Biomimetics, Program in Pediatric Imaging and Tissue Science, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 13 South Drive, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
10
|
Chandran PL, Dimitriadis EK, Basser PJ, Horkay F. Probing Interactions between Aggrecan and Mica Surface by the Atomic Force Microscopy. JOURNAL OF POLYMER SCIENCE. PART B, POLYMER PHYSICS 2010; 48:2575-2581. [PMID: 22473175 PMCID: PMC3004364 DOI: 10.1002/polb.22132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Aggrecan is a bottlebrush shaped macromolecule found in the extracellular matrix of cartilage. The negatively charged glycosaminoglycan (GAG) chains attached to its protein backbone give aggrecan molecules a high charge density, which is essential for exerting high osmotic swelling pressure and resisting compression under external load. In solution aggrecan assemblies are insensitive to the presence of calcium ions, and show distinct osmotic pressure versus concentration regimes. The aim of this study is to investigate the effect of ionic environment on the structure of aggrecan molecules adsorbed onto well-controlled mica surfaces. The conformation of the aggrecan were visualized using Atomic Force Microscopy. On positively charged APS mica the GAG chains of the aggrecan molecules are distinguishable, and their average dimensions are practically unaffected by the presence of salt ions. With increasing aggrecan concentration they form clusters, and at higher concentrations they form a continuous monolayer of conforming molecules. On negatively charged mica, the extent of aggrecan adsorption varies with salt composition. Understanding aggrecan adsorption onto a charged surface provides insight into its interactions with bone and implant surfaces in the biological milieu.
Collapse
Affiliation(s)
- Preethi L. Chandran
- Section on Tissue Biophysics and Biomimetics, Program in Pediatric Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
- Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Emilios K. Dimitriadis
- Laboratory of Bioengineering and Physical Science, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892
| | - Peter J. Basser
- Section on Tissue Biophysics and Biomimetics, Program in Pediatric Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Ferenc Horkay
- Section on Tissue Biophysics and Biomimetics, Program in Pediatric Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|