1
|
Guo J, Semenok D, Shutov G, Zhou D, Chen S, Wang Y, Zhang K, Wu X, Luther S, Helm T, Huang X, Cui T. Unusual metallic state in superconducting A15-type La 4H 23. Natl Sci Rev 2024; 11:nwae149. [PMID: 39554234 PMCID: PMC11562835 DOI: 10.1093/nsr/nwae149] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 11/19/2024] Open
Abstract
Hydride superconductors continue to fascinate the communities of condensed matter physics and material scientists because they host the promising near room-temperature superconductivity. Current research has concentrated on the new hydride superconductors with the enhancement of the superconducting transition temperature (T c). The multiple extreme conditions (high pressure/temperature and magnetic field) will introduce new insights into hydride superconductors. The study of transport properties under very high magnetic fields facilitates the understanding of superconductivity in conventional hydride superconductors. In the present work, we report experimental evidence of an unusual metal state in a newly synthesized cubic A15-type La4H23 that exhibits superconductivity with a T c reaching 105 K at 118 GPa. A large negative magnetoresistance is observed in strong pulsed magnetic fields in the non-superconducting state of this compound below 40 K. Moreover, we construct the full magnetic phase diagram of La4H23 up to 68 T at high pressure. The present work reveals anomalous electronic structural properties of A15-La4H23 under high magnetic fields, and therefore has great importance with regard to advancing the understanding of quantum transport behaviors in hydride superconductors.
Collapse
Affiliation(s)
- Jianning Guo
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Dmitrii Semenok
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Department of High-Temperature Superconductivity, Beijing 100193, China
| | - Grigoriy Shutov
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Computational and Data Science and Engineering, Moscow 121205, Russia
| | - Di Zhou
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Department of High-Temperature Superconductivity, Beijing 100193, China
| | - Su Chen
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Yulong Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Kexin Zhang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Xinyue Wu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Sven Luther
- Hochfeld-Magnetlabor Dresden (HLD-EMFL) and Würzburg-Dresden Cluster of Excellence, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden 01328, Germany
| | - Toni Helm
- Hochfeld-Magnetlabor Dresden (HLD-EMFL) and Würzburg-Dresden Cluster of Excellence, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden 01328, Germany
| | - Xiaoli Huang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Tian Cui
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
2
|
Differentiated roles of Lifshitz transition on thermodynamics and superconductivity in La 2-xSr xCuO 4. Proc Natl Acad Sci U S A 2022; 119:e2204630119. [PMID: 35914123 PMCID: PMC9371668 DOI: 10.1073/pnas.2204630119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The effect of Lifshitz transition on thermodynamics and superconductivity in hole-doped cuprates has been heavily debated but remains an open question. In particular, an observed peak of electronic specific heat is proposed to originate from fluctuations of a putative quantum critical point p* (e.g., the termination of pseudogap at zero temperature), which is close to but distinguishable from the Lifshitz transition in overdoped La-based cuprates where the Fermi surface transforms from hole-like to electron-like. Here we report an in situ angle-resolved photoemission spectroscopy study of three-dimensional Fermi surfaces in La2-xSrxCuO4 thin films (x = 0.06 to 0.35). With accurate kz dispersion quantification, the said Lifshitz transition is determined to happen within a finite range around x = 0.21. Normal state electronic specific heat, calculated from spectroscopy-derived band parameters, reveals a doping-dependent profile with a maximum at x = 0.21 that agrees with previous thermodynamic microcalorimetry measurements. The account of the specific heat maximum by underlying band structures excludes the need for additionally dominant contribution from the quantum fluctuations at p*. A d-wave superconducting gap smoothly across the Lifshitz transition demonstrates the insensitivity of superconductivity to the dramatic density of states enhancement.
Collapse
|
3
|
Zhang L, Helm T, Lin H, Fan F, Le C, Sun Y, Markou A, Felser C. Quantum Oscillations in Ferromagnetic (Sb, V) 2 Te 3 Topological Insulator Thin Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102107. [PMID: 34463975 PMCID: PMC11469026 DOI: 10.1002/adma.202102107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/14/2021] [Indexed: 06/13/2023]
Abstract
An effective way of manipulating 2D surface states in magnetic topological insulators may open a new route for quantum technologies based on the quantum anomalous Hall effect. The doping-dependent evolution of the electronic band structure in the topological insulator Sb2- x Vx Te3 (0 ≤ x ≤ 0.102) thin films is studied by means of electrical transport. Sb2- x Vx Te3 thin films were prepared by molecular beam epitaxy, and Shubnikov-de Hass (SdH) oscillations are observed in both the longitudinal and transverse transport channels. Doping with the 3d element, vanadium, induces long-range ferromagnetic order with enhanced SdH oscillation amplitudes. The doping effect is systematically studied in various films depending on thickness and bottom gate voltage. The angle-dependence of the SdH oscillations reveals their 2D nature, linking them to topological surface states as their origin. Furthermore, it is shown that vanadium doping can efficiently modify the band structure. The tunability by doping and the coexistence of the surface states with ferromagnetism render Sb2- x Vx Te3 thin films a promising platform for energy band engineering. In this way, topological quantum states may be manipulated to crossover from quantum Hall effect to quantum anomalous Hall effect, which opens an alternative route for the design of quantum electronics and spintronics.
Collapse
Affiliation(s)
- Liguo Zhang
- Max‐Planck Institute for Chemical Physics of SolidsNöthnitzer Str. 4001187DresdenGermany
| | - Toni Helm
- Dresden High Magnetic Field Laboratory (HLD)Helmholtz‐Zentrum Dresden–Rossendorf (HZDR)Bautzner Landstr. 40001328DresdenGermany
| | - Haicheng Lin
- Max‐Planck Institute for Chemical Physics of SolidsNöthnitzer Str. 4001187DresdenGermany
| | - Fengren Fan
- Max‐Planck Institute for Chemical Physics of SolidsNöthnitzer Str. 4001187DresdenGermany
| | - Congcong Le
- Max‐Planck Institute for Chemical Physics of SolidsNöthnitzer Str. 4001187DresdenGermany
| | - Yan Sun
- Max‐Planck Institute for Chemical Physics of SolidsNöthnitzer Str. 4001187DresdenGermany
| | - Anastasios Markou
- Max‐Planck Institute for Chemical Physics of SolidsNöthnitzer Str. 4001187DresdenGermany
| | - Claudia Felser
- Max‐Planck Institute for Chemical Physics of SolidsNöthnitzer Str. 4001187DresdenGermany
| |
Collapse
|
4
|
Abstract
A translation-invariant (TI) bipolaron theory of superconductivity based, like Bardeen–Cooper–Schrieffer theory, on Fröhlich Hamiltonian is presented. Here the role of Cooper pairs belongs to TI bipolarons which are pairs of spatially delocalized electrons whose correlation length of a coupled state is small. The presence of Fermi surface leads to the stabilization of such states in its vicinity and a possibility of their Bose–Einstein condensation (BEC). The theory provides a natural explanation of the existence of a pseudogap phase preceding the superconductivity and enables one to estimate the temperature of a transition T * from a normal state to a pseudogap one. It is shown that the temperature of BEC of TI bipolarons determines the temperature of a superconducting transition T c which depends not on the bipolaron effective mass but on the ordinary mass of a band electron. This removes restrictions on the upper limit of T c for a strong electron-phonon interaction. A natural explanation is provided for the angular dependence of the superconducting gap which is determined by the angular dependence of the phonon spectrum. It is demonstrated that a lot of experiments on thermodynamic and transport characteristics, Josephson tunneling and angle-resolved photoemission spectroscopy (ARPES) of high-temperature superconductors does not contradict the concept of a TI bipolaron mechanism of superconductivity in these materials. Possible ways of enhancing T c and producing new room-temperature superconductors are discussed on the basis of the theory suggested.
Collapse
|
5
|
Sarkar T, Mandal PR, Poniatowski NR, Chan MK, Greene RL. Correlation between scale-invariant normal-state resistivity and superconductivity in an electron-doped cuprate. SCIENCE ADVANCES 2019; 5:eaav6753. [PMID: 31114800 PMCID: PMC6524976 DOI: 10.1126/sciadv.aav6753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
An understanding of the normal state in the high-temperature superconducting cuprates is crucial to the ultimate understanding of the long-standing problem of the origin of the superconductivity itself. This so-called "strange metal" state is thought to be associated with a quantum critical point (QCP) hidden beneath the superconductivity. In electron-doped cuprates-in contrast to hole-doped cuprates-it is possible to access the normal state at very low temperatures and low magnetic fields to study this putative QCP and to probe the T ➔ 0 K state of these materials. We report measurements of the low-temperature normal-state magnetoresistance (MR) of the n-type cuprate system La2-x Ce x CuO4 and find that it is characterized by a linear-in-field behavior, which follows a scaling relation with applied field and temperature, for doping (x) above the putative QCP (x = 0.14). The magnitude of the unconventional linear MR decreases as T c decreases and goes to zero at the end of the superconducting dome (x ~ 0.175) above which a conventional quadratic MR is found. These results show that there is a strong correlation between the quantum critical excitations of the strange metal state and the high-T c superconductivity.
Collapse
Affiliation(s)
- Tarapada Sarkar
- Center for Nanophysics and Advanced Materials and Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - P. R. Mandal
- Center for Nanophysics and Advanced Materials and Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - N. R. Poniatowski
- Center for Nanophysics and Advanced Materials and Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - M. K. Chan
- The National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Richard L. Greene
- Center for Nanophysics and Advanced Materials and Department of Physics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
6
|
Abstract
In the physics of condensed matter, quantum critical phenomena and unconventional superconductivity are two major themes. In electron-doped cuprates, the low critical field (HC2) allows one to study the putative quantum critical point (QCP) at low temperature and to understand its connection to the long-standing problem of the origin of the high-TC superconductivity. Here we present measurements of the low-temperature normal-state thermopower (S) of the electron-doped cuprate superconductor La2-x Ce x CuO4 (LCCO) from x = 0.11-0.19. We observe quantum critical [Formula: see text] versus [Formula: see text] behavior over an unexpectedly wide doping range x = 0.15-0.17 above the QCP (x = 0.14), with a slope that scales monotonically with the superconducting transition temperature (TC with H = 0). The presence of quantum criticality over a wide doping range provides a window on the criticality. The thermopower behavior also suggests that the critical fluctuations are linked with TC Above the superconductivity dome, at x = 0.19, a conventional Fermi-liquid [Formula: see text] behavior is found for [Formula: see text] 40 K.
Collapse
|
7
|
Fermi surface reconstruction in electron-doped cuprates without antiferromagnetic long-range order. Proc Natl Acad Sci U S A 2019; 116:3449-3453. [PMID: 30808739 DOI: 10.1073/pnas.1816121116] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fermi surface (FS) topology is a fundamental property of metals and superconductors. In electron-doped cuprate Nd2-x Ce x CuO4 (NCCO), an unexpected FS reconstruction has been observed in optimal- and overdoped regime (x = 0.15-0.17) by quantum oscillation measurements (QOM). This is all the more puzzling because neutron scattering suggests that the antiferromagnetic (AFM) long-range order, which is believed to reconstruct the FS, vanishes before x = 0.14. To reconcile the conflict, a widely discussed external magnetic-field-induced AFM long-range order in QOM explains the FS reconstruction as an extrinsic property. Here, we report angle-resolved photoemission (ARPES) evidence of FS reconstruction in optimal- and overdoped NCCO. The observed FSs are in quantitative agreement with QOM, suggesting an intrinsic FS reconstruction without field. This reconstructed FS, despite its importance as a basis to understand electron-doped cuprates, cannot be explained under the traditional scheme. Furthermore, the energy gap of the reconstruction decreases rapidly near x = 0.17 like an order parameter, echoing the quantum critical doping in transport. The totality of the data points to a mysterious order between x = 0.14 and 0.17, whose appearance favors the FS reconstruction and disappearance defines the quantum critical doping. A recent topological proposal provides an ansatz for its origin.
Collapse
|
8
|
Scanderbeg DJ, Taylor BJ, Baumbach RE, Paglione J, Maple MB. Electrical and thermal transport properties of the electron-doped cuprate Sm 2-x Ce x CuO 4-y system. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:485702. [PMID: 27705951 DOI: 10.1088/0953-8984/28/48/485702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Electrical and thermal transport measurements were performed on thin films of the electron-doped superconductor Sm2-x Ce x CuO4-y (x = 0.13 - 0.19) in order to study the evolving nature of the charge carriers from the under-doped to over-doped regime. A temperature versus cerium content (T - x) phase diagram has been constructed from the electrical transport measurements, yielding a superconducting region similar to that found for other electron-doped superconductors. Thermopower measurements show a dramatic change from the underdoped region (x < 0.15) to the overdoped region (x > 0.15). Application of the Fisher-Fisher-Huse (FFH) vortex glass scaling model to the magnetoresistance data was found to be insufficient to describe the data in the region of the vortex-solid to vortex-liquid transition. It was found instead that the modified vortex glass scaling model of Rydh, Rapp, and Anderson provided a good description of the data, indicating the importance of the applied field on the pinning landscape. A magnetic field versus temperature (H - T) phase diagram has also been constructed for the films with [Formula: see text], displaying the evolution of the vortex glass melting lines H g (T) across the superconducting regime.
Collapse
|
9
|
Li Y, Tabis W, Yu G, Barišić N, Greven M. Hidden Fermi-liquid Charge Transport in the Antiferromagnetic Phase of the Electron-Doped Cuprate Superconductors. PHYSICAL REVIEW LETTERS 2016; 117:197001. [PMID: 27858438 DOI: 10.1103/physrevlett.117.197001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Indexed: 06/06/2023]
Abstract
Systematic analysis of the planar resistivity, Hall effect, and cotangent of the Hall angle for the electron-doped cuprates reveals underlying Fermi-liquid behavior even deep in the antiferromagnetic part of the phase diagram. The transport scattering rate exhibits a quadratic temperature dependence, and is nearly independent of doping and compound and carrier type (electrons versus holes), and hence is universal. Our analysis moreover indicates that the material-specific resistivity upturn at low temperatures and low doping has the same origin in both electron- and hole-doped cuprates.
Collapse
Affiliation(s)
- Yangmu Li
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - W Tabis
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, 30-059 Krakow, Poland
| | - G Yu
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - N Barišić
- Fakultät für Physik, Technische Universität Wien, Wiedner Hauptstraße 8, 1040 Wien, Austria
- Department of Physics, Faculty of Science, University of Zagreb, HR-10000 Zagreb, Croatia
| | - M Greven
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
10
|
Wei HI, Adamo C, Nowadnick EA, Lochocki EB, Chatterjee S, Ruf JP, Beasley MR, Schlom DG, Shen KM. Electron Doping of the Parent Cuprate La_{2}CuO_{4} without Cation Substitution. PHYSICAL REVIEW LETTERS 2016; 117:147002. [PMID: 27740780 DOI: 10.1103/physrevlett.117.147002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Indexed: 06/06/2023]
Abstract
In the cuprates, carrier doping of the Mott insulating parent state is necessary to realize superconductivity as well as a number of other exotic states involving charge or spin density waves. Cation substitution is the primary method for doping carriers into these compounds, and is the only known method for electron doping in these materials. Here, we report electron doping without cation substitution in epitaxially stabilized thin films of La_{2}CuO_{4} grown via molecular-beam epitaxy. We use angle-resolved photoemission spectroscopy to directly measure their electronic structure and conclusively determine that these compounds are electron doped with a carrier concentration of 0.09±0.02 e^{-}/Cu. We propose that intrinsic defects, most likely oxygen vacancies, are the sources of doped electrons in these materials. Our results suggest a new approach to electron doping in the cuprates, one which could lead to a more detailed experimental understanding of their properties.
Collapse
Affiliation(s)
- Haofei I Wei
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York 14853, USA
| | - Carolina Adamo
- Department of Applied Physics, Stanford University, Palo Alto, California 94306, USA
| | - Elizabeth A Nowadnick
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA
| | - Edward B Lochocki
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York 14853, USA
| | - Shouvik Chatterjee
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York 14853, USA
| | - Jacob P Ruf
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York 14853, USA
| | - Malcolm R Beasley
- Department of Applied Physics, Stanford University, Palo Alto, California 94306, USA
| | - Darrell G Schlom
- Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, USA
| | - Kyle M Shen
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, USA
| |
Collapse
|
11
|
Wosnitza J, Zvyagin SA, Zherlitsyn S. Frustrated magnets in high magnetic fields-selected examples. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:074504. [PMID: 27310818 DOI: 10.1088/0034-4885/79/7/074504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
An indispensable parameter to study strongly correlated electron systems is the magnetic field. Application of high magnetic fields allows the investigation, modification and control of different states of matter. Specifically for magnetic materials experimental tools applied in such fields are essential for understanding their fundamental properties. Here, we focus on selected high-field studies of frustrated magnetic materials that have been shown to host a broad range of fascinating new and exotic phases. We will give brief insights into the influence of geometrical frustration on the critical behavior of triangular-lattice antiferromagnets, the accurate determination of exchange constants in the high-field saturated state by use of electron spin resonance measurements, and the coupling of magnetic degrees of freedom to the lattice evidenced by ultrasound experiments. The latter technique as well allowed new, partially metastable phases in strong magnetic fields to be revealed.
Collapse
Affiliation(s)
- J Wosnitza
- Hochfeld-Magnetlabor Dresden (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, D-01314 Dresden, Germany. Institut für Festkörperphysik, TU Dresden, D-01062 Dresden, Germany
| | | | | |
Collapse
|
12
|
Evolution of electronic states in n-type copper oxide superconductor via electric double layer gating. Sci Rep 2016; 6:26642. [PMID: 27221198 PMCID: PMC4879525 DOI: 10.1038/srep26642] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/06/2016] [Indexed: 11/12/2022] Open
Abstract
The occurrence of electrons and holes in n-type copper oxides has been achieved by chemical doping, pressure, and/or deoxygenation. However, the observed electronic properties are blurred by the concomitant effects such as change of lattice structure, disorder, etc. Here, we report on successful tuning the electronic band structure of n-type Pr2−xCexCuO4 (x = 0.15) ultrathin films, via the electric double layer transistor technique. Abnormal transport properties, such as multiple sign reversals of Hall resistivity in normal and mixed states, have been revealed within an electrostatic field in range of −2 V to + 2 V, as well as varying the temperature and magnetic field. In the mixed state, the intrinsic anomalous Hall conductivity invokes the contribution of both electron and hole-bands as well as the energy dependent density of states near the Fermi level. The two-band model can also describe the normal state transport properties well, whereas the carrier concentrations of electrons and holes are always enhanced or depressed simultaneously in electric fields. This is in contrast to the scenario of Fermi surface reconstruction by antiferromagnetism, where an anti-correlation is commonly expected.
Collapse
|
13
|
Saadaoui H, Salman Z, Luetkens H, Prokscha T, Suter A, MacFarlane WA, Jiang Y, Jin K, Greene RL, Morenzoni E, Kiefl RF. The phase diagram of electron-doped La(2-x)Ce(x)CuO(4-δ). Nat Commun 2015; 6:6041. [PMID: 25608106 DOI: 10.1038/ncomms7041] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/05/2014] [Indexed: 11/09/2022] Open
Abstract
Superconductivity is a striking example of a quantum phenomenon in which electrons move coherently over macroscopic distances without scattering. The high-temperature superconducting oxides (cuprates) are the most studied class of superconductors, composed of two-dimensional CuO2 planes separated by other layers that control the electron concentration in the planes. A key unresolved issue in cuprates is the relationship between superconductivity and magnetism. Here we report a sharp phase boundary of static three-dimensional magnetic order in the electron-doped superconductor La(2-x)Ce(x)CuO(4-δ), where small changes in doping or depth from the surface switch the material from superconducting to magnetic. Using low-energy spin-polarized muons, we find that static magnetism disappears close to where superconductivity begins and well below the doping level at which dramatic changes in the transport properties are reported. These results indicate a higher degree of symmetry between the electron and hole-doped cuprates than previously thought.
Collapse
Affiliation(s)
- H Saadaoui
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Z Salman
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - H Luetkens
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - T Prokscha
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - A Suter
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - W A MacFarlane
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| | - Y Jiang
- Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742, USA
| | - K Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - R L Greene
- Center for Nanophysics and Advanced Materials, University of Maryland, College Park, Maryland 20742, USA
| | - E Morenzoni
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - R F Kiefl
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
| |
Collapse
|
14
|
da Silva Neto EH, Comin R, He F, Sutarto R, Jiang Y, Greene RL, Sawatzky GA, Damascelli A. Charge ordering in the electron-doped superconductor Nd
2–
x
Ce
x
CuO
4. Science 2015; 347:282-5. [DOI: 10.1126/science.1256441] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Eduardo H. da Silva Neto
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
- Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
- Max Planck Institute for Solid State Research, D-70569 Stuttgart, Germany
- Quantum Materials Program, Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| | - Riccardo Comin
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
- Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Feizhou He
- Canadian Light Source, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Ronny Sutarto
- Canadian Light Source, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Yeping Jiang
- Center for Nanophysics and Advanced Materials and Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - Richard L. Greene
- Center for Nanophysics and Advanced Materials and Department of Physics, University of Maryland, College Park, MD 20742, USA
| | - George A. Sawatzky
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
- Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Andrea Damascelli
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
- Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
15
|
Sebastian SE, Harrison N, Balakirev FF, Altarawneh MM, Goddard PA, Liang R, Bonn DA, Hardy WN, Lonzarich GG. Normal-state nodal electronic structure in underdoped high-Tc copper oxides. Nature 2014; 511:61-4. [PMID: 24930767 DOI: 10.1038/nature13326] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 04/02/2014] [Indexed: 11/09/2022]
Abstract
An outstanding problem in the field of high-transition-temperature (high-Tc) superconductivity is the identification of the normal state out of which superconductivity emerges in the mysterious underdoped regime. The normal state uncomplicated by thermal fluctuations can be studied using applied magnetic fields that are sufficiently strong to suppress long-range superconductivity at low temperatures. Proposals in which the normal ground state is characterized by small Fermi surface pockets that exist in the absence of symmetry breaking have been superseded by models based on the existence of a superlattice that breaks the translational symmetry of the underlying lattice. Recently, a charge superlattice model that positions a small electron-like Fermi pocket in the vicinity of the nodes (where the superconducting gap is minimum) has been proposed as a replacement for the prevalent superlattice models that position the Fermi pocket in the vicinity of the pseudogap at the antinodes (where the superconducting gap is maximum). Although some ingredients of symmetry breaking have been recently revealed by crystallographic studies, their relevance to the electronic structure remains unresolved. Here we report angle-resolved quantum oscillation measurements in the underdoped copper oxide YBa2Cu3O6 + x. These measurements reveal a normal ground state comprising electron-like Fermi surface pockets located in the vicinity of the nodes, and also point to an underlying superlattice structure of low frequency and long wavelength with features in common with the charge order identified recently by complementary spectroscopic techniques.
Collapse
Affiliation(s)
- Suchitra E Sebastian
- Cavendish Laboratory, Cambridge University, JJ Thomson Avenue, Cambridge CB3 OHE, UK
| | - N Harrison
- National High Magnetic Field Laboratory, Los Alamos National Laboratory (LANL), Los Alamos, New Mexico 87504, USA
| | - F F Balakirev
- National High Magnetic Field Laboratory, Los Alamos National Laboratory (LANL), Los Alamos, New Mexico 87504, USA
| | - M M Altarawneh
- 1] National High Magnetic Field Laboratory, Los Alamos National Laboratory (LANL), Los Alamos, New Mexico 87504, USA [2] Department of Physics, Mu'tah University, Mu'tah, Karak 61710, Jordan
| | - P A Goddard
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, UK
| | - Ruixing Liang
- 1] Department of Physics and Astronomy, University of British Columbia, Vancouver V6T 1Z4, Canada [2] Canadian Institute for Advanced Research, Quantum Materials Program, Toronto M5G 1Z8, Canada
| | - D A Bonn
- 1] Department of Physics and Astronomy, University of British Columbia, Vancouver V6T 1Z4, Canada [2] Canadian Institute for Advanced Research, Quantum Materials Program, Toronto M5G 1Z8, Canada
| | - W N Hardy
- 1] Department of Physics and Astronomy, University of British Columbia, Vancouver V6T 1Z4, Canada [2] Canadian Institute for Advanced Research, Quantum Materials Program, Toronto M5G 1Z8, Canada
| | - G G Lonzarich
- Cavendish Laboratory, Cambridge University, JJ Thomson Avenue, Cambridge CB3 OHE, UK
| |
Collapse
|
16
|
Fermi Surface Reconstruction due to Hidden Rotating Antiferromagnetism in N and P-Type High-TC Cuprates. Symmetry (Basel) 2013. [DOI: 10.3390/sym5020215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
17
|
Quantum oscillations in YBa2Cu3O(6+δ) from period-8 d-density wave order. Proc Natl Acad Sci U S A 2012; 109:13198-203. [PMID: 22847413 DOI: 10.1073/pnas.1208274109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We consider quantum oscillation experiments in YBa(2)Cu(3)O(6+δ) from the perspective of Fermi surface reconstruction using an exact transfer matrix method and the Pichard-Landauer formula for the conductivity. The specific density wave order responsible for reconstruction is a period-8 d-density wave in which the current density is unidirectionally modulated, which is also naturally accompanied by a period-4 charge order, consistent with recent nuclear magnetic resonance experiments. This scenario leads to a natural explanation as to why only oscillations from a single electron pocket of a frequency of about 500 T is observed, and a hole pocket of roughly twice the frequency as dictated by the twofold commensurate order and the Luttinger sum rule is not observed. In contrast period-8 d-density wave leads to a hole pocket of roughly half the frequency of the electron pocket. The observation of this slower frequency will require higher, but not unrealistic, magnetic fields than those commonly employed. There is already some suggestion of the slower frequency in a measurement in fields as high as 85 T.
Collapse
|
18
|
Sachdev S, Metlitski MA, Punk M. Antiferromagnetism in metals: from the cuprate superconductors to the heavy fermion materials. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012; 24:294205. [PMID: 22773369 DOI: 10.1088/0953-8984/24/29/294205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The critical theory of the onset of antiferromagnetism in metals, with concomitant Fermi surface reconstruction, has recently been shown to be strongly coupled in two spatial dimensions. The onset of unconventional superconductivity near this critical point is reviewed: it involves a subtle interplay between the breakdown of fermionic quasiparticle excitations on the Fermi surface and the strong pairing glue provided by the antiferromagnetic fluctuations. The net result is a logarithm-squared enhancement of the pairing vertex for generic Fermi surfaces, with a universal dimensionless coefficient independent of the strength of interactions, which is expected to lead to superconductivity at the scale of the Fermi energy. We also discuss the possibility that the antiferromagnetic critical point can be replaced by an intermediate 'fractionalized Fermi liquid' phase, in which there is Fermi surface reconstruction but no long-range antiferromagnetic order. We discuss the relevance of this phase to the underdoped cuprates and the heavy fermion materials.
Collapse
Affiliation(s)
- Subir Sachdev
- Department of Physics, Harvard University, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
19
|
Custers J, Lorenzer KA, Müller M, Prokofiev A, Sidorenko A, Winkler H, Strydom AM, Shimura Y, Sakakibara T, Yu R, Si Q, Paschen S. Destruction of the Kondo effect in the cubic heavy-fermion compound Ce3Pd20Si6. NATURE MATERIALS 2012; 11:189-194. [PMID: 22231597 DOI: 10.1038/nmat3214] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 11/25/2011] [Indexed: 05/31/2023]
Abstract
How ground states of quantum matter transform between one another reveals deep insights into the mechanisms stabilizing them. Correspondingly, quantum phase transitions are explored in numerous materials classes, with heavy-fermion compounds being among the most prominent ones. Recent studies in an anisotropic heavy-fermion compound have shown that different types of transitions are induced by variations of chemical or external pressure, raising the question of the extent to which heavy-fermion quantum criticality is universal. To make progress, it is essential to broaden both the materials basis and the microscopic parameter variety. Here, we identify a cubic heavy-fermion material as exhibiting a field-induced quantum phase transition, and show how the material can be used to explore one extreme of the dimensionality axis. The transition between two different ordered phases is accompanied by an abrupt change of Fermi surface, reminiscent of what happens across the field-induced antiferromagnetic to paramagnetic transition in the anisotropic YbRh2Si2. This finding leads to a materials-based global phase diagram--a precondition for a unified theoretical description.
Collapse
Affiliation(s)
- J Custers
- Institute of Solid State Physics, Vienna University of Technology, 1040 Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Quantum Phase Transitions of Antiferromagnets and the Cuprate Superconductors. MODERN THEORIES OF MANY-PARTICLE SYSTEMS IN CONDENSED MATTER PHYSICS 2012. [DOI: 10.1007/978-3-642-10449-7_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
21
|
Jin K, Butch NP, Kirshenbaum K, Paglione J, Greene RL. Link between spin fluctuations and electron pairing in copper oxide superconductors. Nature 2011; 476:73-5. [DOI: 10.1038/nature10308] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 06/15/2011] [Indexed: 11/09/2022]
|
22
|
Santander-Syro AF, Ikeda M, Yoshida T, Fujimori A, Ishizaka K, Okawa M, Shin S, Liang B, Zimmers A, Greene RL, Bontemps N. Two-Fermi-surface superconducting state and a nodal d-wave energy gap of the electron-doped Sm1.85Ce0.15CuO(4-δ) cuprate superconductor. PHYSICAL REVIEW LETTERS 2011; 106:197002. [PMID: 21668192 DOI: 10.1103/physrevlett.106.197002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Indexed: 05/30/2023]
Abstract
We report on laser-excited angle-resolved photoemission spectroscopy in the electron-doped cuprate Sm1.85Ce0.15CuO(4-δ). The data show the existence of a nodal hole-pocket Fermi surface both in the normal and superconducting states. We prove that its origin is long-range antiferromagnetism by an analysis of the coherence factors in the main and folded bands. This coexistence of long-range antiferrmagnetism and superconductivity implies that electron-doped cuprates are two-Fermi-surface superconductors. The measured superconducting gap in the nodal hole pocket is compatible with a d-wave symmetry.
Collapse
|
23
|
Meier B, Greiser S, Haase J, Herrmannsdörfer T, Wolff-Fabris F, Wosnitza J. NMR signal averaging in 62T pulsed fields. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2011; 210:1-6. [PMID: 21367630 DOI: 10.1016/j.jmr.2011.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 01/28/2011] [Accepted: 02/06/2011] [Indexed: 05/30/2023]
Abstract
Nuclear Magnetic Resonance (NMR) experiments in pulsed high magnetic fields up to 62T at the Dresden High Magnetic Field Laboratory (Hochfeld-Magnetlabor Dresden) are reported. The time dependence of the magnetic field is investigated by observing various free induction decays (FIDs) in the vicinity of the maximum of the field pulse. By analyzing each FID's phase and its evolution with time the magnetic field's time dependence can be determined with high precision. Assuming a quadratic or cubic dependence on time near the field maximum its confidence is found to be better than ± 0.03ppm at low fields and ± 0.8ppm near 62T. In turn, the thus obtained time dependence of the field can be used to demodulate and phase-correct all FIDs so that they appear phase-locked to each other. As a consequence signal averaging is possible. The increase in signal-to-noise ratio is found to be close to that expected theoretically. This shows that the intrinsic time dependence of the pulsed fields can be removed so that the NMR signals appear to be taken at rather stable static field. This opens up the possibility of performing precise shift measurements and signal averaging also of unknown, weak signals if a reference signal is measured during the same field pulse with a double-resonance probe.
Collapse
Affiliation(s)
- Benno Meier
- University of Leipzig, Faculty of Physics and Earth Science, Linnéstrasse 5, 04103 Leipzig, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Sebastian SE, Harrison N, Lonzarich GG. Quantum oscillations in the high-Tc cuprates. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2011; 369:1687-1711. [PMID: 21422021 DOI: 10.1098/rsta.2010.0243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We review recent progress in the study of quantum oscillations as a tool for uniquely probing low-energy electronic excitations in high-T(c) cuprate superconductors. Quantum oscillations in the underdoped cuprates reveal that a close correspondence with Landau Fermi-liquid behaviour persists in the accessed regions of the phase diagram, where small pockets are observed. Quantum oscillation results are viewed in the context of momentum-resolved probes such as photoemission, and evidence examined from complementary experiments for potential explanations for the transformation from a large Fermi surface into small sections. Indications from quantum oscillation measurements of a low-energy Fermi surface instability at low dopings under the superconducting dome at the metal-insulator transition are reviewed, and potential implications for enhanced superconducting temperatures are discussed.
Collapse
Affiliation(s)
- Suchitra E Sebastian
- Department of Physics, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK.
| | | | | |
Collapse
|
25
|
Helm T, Kartsovnik MV, Sheikin I, Bartkowiak M, Wolff-Fabris F, Bittner N, Biberacher W, Lambacher M, Erb A, Wosnitza J, Gross R. Magnetic breakdown in the electron-doped cuprate superconductor Nd(2-x)Ce(x)CuO4: the reconstructed Fermi surface survives in the strongly overdoped regime. PHYSICAL REVIEW LETTERS 2010; 105:247002. [PMID: 21231554 DOI: 10.1103/physrevlett.105.247002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Indexed: 05/30/2023]
Abstract
We report on semiclassical angle-dependent magnetoresistance oscillations and the Shubnikov-de Haas effect in the electron-overdoped cuprate superconductor Nd(2-x)CexCuO4. Our data provide convincing evidence for magnetic breakdown in the system. This shows that a reconstructed multiply connected Fermi surface persists, at least at strong magnetic fields, up to the highest doping level of the superconducting regime.
Collapse
Affiliation(s)
- T Helm
- Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Straße 8, D-85748 Garching, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Norman M. Fermi-surface reconstruction and the origin of high-temperature superconductivity. PHYSICS 2010. [DOI: 10.1103/physics.3.86] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Korshunov MM, Zakharova EV, Nekrasov IA, Pchelkina ZV, Ovchinnikov SG. The Fermi surface and the role of electronic correlations in Sm(2-x)Ce(x)CuO4. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2010; 22:015701. [PMID: 21386232 DOI: 10.1088/0953-8984/22/1/015701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Using a LDA+GTB (local density approximation+generalized tight-binding) hybrid scheme we investigate the band structure of the electron-doped high- T(c) material Sm(2-x)Ce(x)CuO(4). Parameters of the minimal tight-binding model for this system (the so-called three-band Emery model) were obtained within the NMTO (Nth-order muffin-tin orbital) method. The doping evolution of the dispersion and the Fermi surface in the presence of electronic correlations was investigated in two regimes of magnetic order: short-range (spin-liquid) and long-range (antiferromagnetic metal). Each regime is characterized by the specific topologies of the Fermi surfaces and we discuss their relation to recent experimental data.
Collapse
Affiliation(s)
- M M Korshunov
- Max-Planck-Institut für Physik komplexer Systeme, Dresden, Germany.
| | | | | | | | | |
Collapse
|