1
|
Colloidal and fumed particles in nematic liquid crystals: Self-assembly, confinement and implications on rheology. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
2
|
Lavrentovich OD. Design of nematic liquid crystals to control microscale dynamics. LIQUID CRYSTALS REVIEWS 2021; 8:59-129. [PMID: 34956738 PMCID: PMC8698256 DOI: 10.1080/21680396.2021.1919576] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/11/2021] [Indexed: 05/25/2023]
Abstract
The dynamics of small particles, both living such as swimming bacteria and inanimate, such as colloidal spheres, has fascinated scientists for centuries. If one could learn how to control and streamline their chaotic motion, that would open technological opportunities in the transformation of stored or environmental energy into systematic motion, with applications in micro-robotics, transport of matter, guided morphogenesis. This review presents an approach to command microscale dynamics by replacing an isotropic medium with a liquid crystal. Orientational order and associated properties, such as elasticity, surface anchoring, and bulk anisotropy, enable new dynamic effects, ranging from the appearance and propagation of particle-like solitary waves to self-locomotion of an active droplet. By using photoalignment, the liquid crystal can be patterned into predesigned structures. In the presence of the electric field, these patterns enable the transport of solid and fluid particles through nonlinear electrokinetics rooted in anisotropy of conductivity and permittivity. Director patterns command the dynamics of swimming bacteria, guiding their trajectories, polarity of swimming, and distribution in space. This guidance is of a higher level of complexity than a simple following of the director by rod-like microorganisms. Namely, the director gradients mediate hydrodynamic interactions of bacteria to produce an active force and collective polar modes of swimming. The patterned director could also be engraved in a liquid crystal elastomer. When an elastomer coating is activated by heat or light, these patterns produce a deterministic surface topography. The director gradients define an activation force that shapes the elastomer in a manner similar to the active stresses triggering flows in active nematics. The patterned elastomer substrates could be used to define the orientation of cells in living tissues. The liquid-crystal guidance holds a major promise in achieving the goal of commanding microscale active flows.
Collapse
Affiliation(s)
- Oleg D Lavrentovich
- Advanced Materials and Liquid Crystal Institute, Department of Physics, Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
3
|
Akdeniz B, Batir O, Bukusoglu E. Identification and sorting of particle chirality using liquid crystallinity. J Colloid Interface Sci 2020; 574:11-19. [PMID: 32298977 DOI: 10.1016/j.jcis.2020.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 10/24/2022]
Abstract
Particles dispersed in liquid crystals (LCs) have been shown to assemble due to the elastic interactions arising from the molecular anisotropy. Studies have shown that the alignment of the particles within LCs were strongly dependent on the surface director of LCs on particles. Different from the past studies involving particles with degenerate planar anchoring of LCs, this study shows that the azimuthal surface director can be used to control and finely tune the positioning of the particles in LCs. Specifically, polymeric particles with two flat surfaces that mediate parallel or non-parallel (chiral) anchoring were synthesized and dispersed in nematic 5CB with spatial variations in the director profile. Besides demonstration of their positioning, it was observed that the particles with same chiral handedness with the LC twist were distributed within the LC film, whereas particles with opposite handedness were repelled from the LC medium due to the elastic energy contributions. In addition, a pronounced effect of the surface anchoring of the particles were present on their orientation during non-equilibrium events such as sedimentation. Overall, the studies presented here will find potential use in sensors, separations, optics or soft robotic applications that will take advantages of chirality or chiral interactions.
Collapse
Affiliation(s)
- Burak Akdeniz
- Department of Chemical Engineering, Middle East Technical University, Dumlupinar Bulvari No. 1, Çankaya, Ankara 06800, Turkey
| | - Ozge Batir
- Department of Chemical Engineering, Middle East Technical University, Dumlupinar Bulvari No. 1, Çankaya, Ankara 06800, Turkey
| | - Emre Bukusoglu
- Department of Chemical Engineering, Middle East Technical University, Dumlupinar Bulvari No. 1, Çankaya, Ankara 06800, Turkey.
| |
Collapse
|
4
|
Luo Y, Yao T, Beller DA, Serra F, Stebe KJ. Deck the Walls with Anisotropic Colloids in Nematic Liquid Crystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9274-9285. [PMID: 31259559 DOI: 10.1021/acs.langmuir.9b01811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nematic liquid crystals (NLCs) offer remarkable opportunities to direct colloids to form complex structures. The elastic energy field that dictates colloid interactions is determined by the NLC director field, which is sensitive to and can be controlled by boundaries including vessel walls and colloid surfaces. By molding the director field via liquid-crystal alignment on these surfaces, elastic energy landscapes can be defined to drive structure formation. We focus on colloids in otherwise defect-free director fields formed near undulating walls. Colloids can be driven along prescribed paths and directed to well-defined docking sites on such wavy boundaries. Colloids that impose strong alignment generate topologically required companion defects. Configurations for homeotropic colloids include a dipolar structure formed by the colloid and its companion hedgehog defect or a quadrupolar structure formed by the colloid and its companion Saturn ring. Adjacent to wavy walls with wavelengths larger than the colloid diameter, spherical particles are attracted to locations along the wall with distortions in the nematic director field that complement those from the colloid. This is the basis of lock-and-key interactions. Here, we study ellipsoidal colloids with homeotropic anchoring near complex undulating walls. The walls impose distortions that decay with distance from the wall to a uniform director in the far field. Ellipsoids form dipolar defect configurations with the colloid's major axis aligned with the far field director. Two distinct quadrupolar defect structures also form, stabilized by confinement; these include the Saturn I configuration with the ellipsoid's major axis aligned with the far field director and the Saturn II configuration with the major axis perpendicular to the far field director. The ellipsoid orientation varies only weakly in bulk and near undulating walls. All configurations are attracted to walls with long, shallow waves. However, for walls with wavelengths that are small compared to the colloid length, Saturn II is repelled, allowing selective docking of aligned objects. Deep, narrow wells prompt the insertion of a vertical ellipsoid. By introducing an opening at the bottom of such a deep well, we study colloids within pores that connect two domains. Ellipsoids with different aspect ratios find different equilibrium positions. An ellipsoid of the right dimension and aspect ratio can plug the pore, creating a class of 2D selective membranes.
Collapse
Affiliation(s)
- Yimin Luo
- Department of Chemical and Biomolecular Engineering , University of Delaware , Newark , Delaware 19716 , United States
| | - Tianyi Yao
- Department of Chemical and Biomolecular Engineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| | - Daniel A Beller
- Department of Physics , University of California , Merced , California 95343 , United States
| | - Francesca Serra
- Department of Physics and Astronomy , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Kathleen J Stebe
- Department of Chemical and Biomolecular Engineering , University of Pennsylvania , Philadelphia , Pennsylvania 19104 , United States
| |
Collapse
|
5
|
DeBenedictis A, Atherton TJ, Rodarte AL, Hirst LS. Modeling deformation and chaining of flexible shells in a nematic solvent with finite elements on an adaptive moving mesh. Phys Rev E 2018; 97:032701. [PMID: 29776105 DOI: 10.1103/physreve.97.032701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Indexed: 06/08/2023]
Abstract
A micrometer-scale elastic shell immersed in a nematic liquid crystal may be deformed by the host if the cost of deformation is comparable to the cost of elastic deformation of the nematic. Moreover, such inclusions interact and form chains due to quadrupolar distortions induced in the host. A continuum theory model using finite elements is developed for this system, using mesh regularization and dynamic refinement to ensure quality of the numerical representation even for large deformations. From this model, we determine the influence of the shell elasticity, nematic elasticity, and anchoring condition on the shape of the shell and hence extract parameter values from an experimental realization. Extending the model to multibody interactions, we predict the alignment angle of the chain with respect to the host nematic as a function of aspect ratio, which is found to be in excellent agreement with experiments.
Collapse
Affiliation(s)
- Andrew DeBenedictis
- Department of Physics and Astronomy, Tufts University, 574 Boston Avenue, Medford, Massachusetts 02155, USA
| | - Timothy J Atherton
- Department of Physics and Astronomy, Tufts University, 574 Boston Avenue, Medford, Massachusetts 02155, USA
| | - Andrea L Rodarte
- Department of Physics, University of California, Merced, 5200 Lake Road, Merced, California 95343, USA
| | - Linda S Hirst
- Department of Physics, University of California, Merced, 5200 Lake Road, Merced, California 95343, USA
| |
Collapse
|
6
|
Antipova A, Denniston C. Dynamics of disk pairs in a nematic liquid crystal. Phys Rev E 2016; 94:052704. [PMID: 27967038 DOI: 10.1103/physreve.94.052704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Indexed: 11/07/2022]
Abstract
We use a hybrid lattice Boltzmann method to study the behavior of sets of ferromagnetic colloidal disks in a nematic liquid crystal. When a weak rotating magnetic field acts on the system, the disks rotate following the magnetic field. This leads to a distortion in the liquid crystal that drives translational motion of the disks. If the concentration of disks is high, disks get locked together: a stable chain configuration is created, where each disk lays on the nearest neighbor. For intermediate concentrations of disks, a different behavior is observed. When disks are rotated by the magnetic field by more than 90^{∘} from their initial orientation, the distortion in the liquid crystal leads to a simultaneous flip of both disks. The final disk positions depends only weakly on the initial configuration. Consecutive rotations of magnetic field push disks towards an equidistant configuration. Periodicity of the systems studied and analysis of the flipping motion of a single disk imply that one can use weak rotating magnetic fields to create stable crystal structures of disks.
Collapse
Affiliation(s)
- Alena Antipova
- Department of Applied Mathematics, The University of Western Ontario, London, Ontario N6A 5B8, Canada
| | - Colin Denniston
- Department of Applied Mathematics, The University of Western Ontario, London, Ontario N6A 5B8, Canada and Department of Physics & Astronomy, The University of Western Ontario, London, Ontario N6A 5B8, Canada
| |
Collapse
|
7
|
Zhang R, Zhou Y, Martínez-González JA, Hernández-Ortiz JP, Abbott NL, de Pablo JJ. Controlled deformation of vesicles by flexible structured media. SCIENCE ADVANCES 2016; 2:e1600978. [PMID: 27532056 PMCID: PMC4980106 DOI: 10.1126/sciadv.1600978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/14/2016] [Indexed: 05/29/2023]
Abstract
Liquid crystalline (LC) materials, such as actin or tubulin networks, are known to be capable of deforming the shape of cells. Here, elements of that behavior are reproduced in a synthetic system, namely, a giant vesicle suspended in a LC, which we view as a first step toward the preparation of active, anisotropic hybrid systems that mimic some of the functionality encountered in biological systems. To that end, we rely on a coupled particle-continuum representation of deformable networks in a nematic LC represented at the level of a Landau-de Gennes free energy functional. Our results indicate that, depending on its elastic properties, the LC is indeed able to deform the vesicle until it reaches an equilibrium, anisotropic shape. The magnitude of the deformation is determined by a balance of elastic and surface forces. For perpendicular anchoring at the vesicle, a Saturn ring defect forms along the equatorial plane, and the vesicle adopts a pancake-like, oblate shape. For degenerate planar anchoring at the vesicle, two boojum defects are formed at the poles of the vesicle, which adopts an elongated, spheroidal shape. During the deformation, the volume of the topological defects in the LC shrinks considerably as the curvature of the vesicle increases. These predictions are confirmed by our experimental observations of spindle-like shapes in experiments with giant unilamellar vesicles with planar anchoring. We find that the tension of the vesicle suppresses vesicle deformation, whereas anchoring strength and large elastic constants promote shape anisotropy.
Collapse
Affiliation(s)
- Rui Zhang
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Ye Zhou
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | | | - Nicholas L. Abbott
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Juan J. de Pablo
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
8
|
|
9
|
Antipova A, Denniston C. Dynamics of a disc in a nematic liquid crystal. SOFT MATTER 2016; 12:1279-1294. [PMID: 26575160 DOI: 10.1039/c5sm02333e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We use lattice Boltzmann simulations to study the dynamics of a disc immersed in a nematic liquid crystal. In the absence of external torques, discs with homeotropic anchoring align with their surface normal parallel to the director of the nematic liquid crystal. In the presence of a weak magnetic field a ferromagnetic disc will rotate to equilibrate the elastic torque due to the distortion of the nematic director and the magnetic torque. When the magnetic field rotates the disc so that the angle θ between normal to the surface of the disc â and director of the liquid crystal n[combining circumflex] becomes greater than π/2, the disc flips around the axis perpendicular to the rotation axis so that â sweeps through π radians. An analysis of this behaviour was performed. In particular, we look at the impact of the disc thickness and edges on defect creation and the flipping transition. We also analyse the importance of backflow.
Collapse
Affiliation(s)
- Alena Antipova
- Department of Applied Mathematics, The University of Western Ontario, London, Ontario N6A 5B8, Canada.
| | - Colin Denniston
- Department of Applied Mathematics, The University of Western Ontario, London, Ontario N6A 5B8, Canada. and Department of Physics and Astronomy, The University of Western Ontario, London, Ontario N6A 5B8, Canada.
| |
Collapse
|
10
|
Mushenheim PC, Trivedi RR, Roy SS, Arnold MS, Weibel DB, Abbott NL. Effects of confinement, surface-induced orientations and strain on dynamical behaviors of bacteria in thin liquid crystalline films. SOFT MATTER 2015; 11:6821-6831. [PMID: 26224035 PMCID: PMC6365283 DOI: 10.1039/c5sm01489a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We report on the organization and dynamics of bacteria (Proteus mirabilis) dispersed within lyotropic liquid crystal (LC) films confined by pairs of surfaces that induce homeotropic (perpendicular) or hybrid (homeotropic and parallel orientations at each surface) anchoring of the LC. By using motile vegetative bacteria (3 µm in length) and homeotropically aligned LC films with thicknesses that exceed the length of the rod-shaped cells, a key finding reported in this paper is that elastic torques generated by the LC are sufficiently large to overcome wall-induced hydrodynamic torques acting on the cells, thus leading to LC-guided bacterial motion near surfaces that orient LCs. This result extends to bacteria within LC films with hybrid anchoring, and leads to the observation that asymmetric strain within a hybrid aligned LC rectifies motions of motile cells. In contrast, when the LC film thickness is sufficiently small that confinement prevents alignment of the bacteria cells along a homeotropically aligned LC director (achieved using swarm cells of length 10-60 µm), the bacterial cells propel in directions orthogonal to the director, generating transient distortions in the LC that have striking "comet-like" optical signatures. In this limit, for hybrid LC films, we find LC elastic stresses deform the bodies of swarm cells into bent configurations that follow the LC director, thus unmasking a coupling between bacterial shape and LC strain. Overall, these results provide new insight into the influence of surface-oriented LCs on dynamical bacterial behaviors and hint at novel ways to manipulate bacteria using confined LC phases that are not possible in isotropic solutions.
Collapse
Affiliation(s)
- Peter C. Mushenheim
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA. ; Fax: +1-608-262-5434; Tel: +1-608-265-5278
| | - Rishi R. Trivedi
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive,Madison, WI, 53706, USA. Fax: +1-608-265-0764; Tel: +1-608-890-1342
| | - Susmit Singha Roy
- Department of Materials Science and Engineering, University of Wisconsin-Madison, 1509 University Avenue, Madison, WI, 53706, USA. Fax: +1-608-262-8353;Tel: +1-608-262-3863
| | - Michael S. Arnold
- Department of Materials Science and Engineering, University of Wisconsin-Madison, 1509 University Avenue, Madison, WI, 53706, USA. Fax: +1-608-262-8353;Tel: +1-608-262-3863
| | - Douglas B. Weibel
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive,Madison, WI, 53706, USA. Fax: +1-608-265-0764; Tel: +1-608-890-1342
| | - Nicholas L. Abbott
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA. ; Fax: +1-608-262-5434; Tel: +1-608-265-5278
| |
Collapse
|
11
|
Microfluidic fabrication of shape-tunable alginate microgels: Effect of size and impact velocity. Carbohydr Polym 2015; 120:38-45. [DOI: 10.1016/j.carbpol.2014.11.053] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 11/20/2014] [Accepted: 11/21/2014] [Indexed: 01/20/2023]
|
12
|
Pandey MB, Ackerman PJ, Burkart A, Porenta T, Žumer S, Smalyukh II. Topology and self-assembly of defect-colloidal superstructure in confined chiral nematic liquid crystals. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:012501. [PMID: 25679632 DOI: 10.1103/physreve.91.012501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Indexed: 06/04/2023]
Abstract
We describe formation of defect-colloidal superstructures induced by microspheres with normal surface anchoring dispersed in chiral nematic liquid crystals in confinement-unwound homeotropic cells. Using three-dimensional nonlinear optical imaging of the director field, we demonstrate that some of the induced defects have nonsingular solitonic nature while others are singular point and line topological defects. The common director structures induced by individual microspheres have dipolar symmetry. These topological dipoles are formed by the particle and a hyperbolic point defect (or small disclination loop) of elementary hedgehog charge opposite to that of a sphere with perpendicular boundary conditions, which in cells with thickness over equilibrium cholesteric pitch ratio approaching unity are additionally interspaced by a looped double-twist cylinder of continuous director deformations. The long-range elastic interactions are probed by holographic optical tweezers and videomicroscopy, providing insights to the physical underpinnings behind self-assembled colloidal structures entangled by twisted solitons. Computer-simulated field and defect configurations induced by the colloidal particles and their assemblies, which are obtained by numerically minimizing the Landau-de Gennes free energy, are in agreement with the experimental findings.
Collapse
Affiliation(s)
- M B Pandey
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - P J Ackerman
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA and Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309, USA
| | - A Burkart
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - T Porenta
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| | - S Žumer
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia and J. Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Ivan I Smalyukh
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA and Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, Colorado 80309, USA and Liquid Crystal Materials Research Center and Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, USA and Renewable and Sustainable Energy Institute, National Renewable Energy Laboratory and University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
13
|
Tasinkevych M, Mondiot F, Mondain-Monval O, Loudet JC. Dispersions of ellipsoidal particles in a nematic liquid crystal. SOFT MATTER 2014; 10:2047-58. [PMID: 24651907 DOI: 10.1039/c3sm52708e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Colloidal particles dispersed in a partially ordered medium, such as a liquid crystal (LC) phase, disturb its alignment and are subject to elastic forces. These forces are long-ranged, anisotropic and tunable through temperature or external fields, making them a valuable asset to control colloidal assembly. The latter is very sensitive to the particle geometry since it alters the interactions between the colloids. We here present a detailed numerical analysis of the energetics of elongated objects, namely prolate ellipsoids, immersed in a nematic host. The results, complemented with qualitative experiments, reveal novel LC configurations with peculiar topological properties around the ellipsoids, depending on their aspect ratio and the boundary conditions imposed on the nematic order parameter. The latter also determine the preferred orientation of ellipsoids in the nematic field, because of elastic torques, as well as the morphology of particle aggregates.
Collapse
Affiliation(s)
- Mykola Tasinkevych
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, D-70569 Stuttgart, Germany.
| | | | | | | |
Collapse
|
14
|
Miller DS, Wang X, Abbott NL. Design of Functional Materials based on Liquid Crystalline Droplets. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2014; 26:496-506. [PMID: 24882944 PMCID: PMC4036738 DOI: 10.1021/cm4025028] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This brief perspective focuses on recent advances in the design of functional soft materials that are based on confinement of low molecular weight liquid crystals (LCs) within micrometer-sized droplets. While the ordering of LCs within micrometer-sized domains has been explored extensively in polymer-dispersed LC materials, recent studies performed with LC domains with precisely defined size and interfacial chemistry have unmasked observations of confinement-induced ordering of LCs that do not follow previously reported theoretical predictions. These new findings, which are enabled in part by advances in the preparation of LCs encapsulated in polymeric shells, are opening up new opportunities for the design of soft responsive materials based on surface-induced ordering transitions. These materials are also providing new insights into the self-assembly of biomolecular and colloidal species at defects formed by LCs confined to micrometer-sized domains. The studies presented in this perspective serve additionally to highlight gaps in knowledge regarding the ordering of LCs in confined systems.
Collapse
Affiliation(s)
- Daniel S Miller
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706
| | - Xiaoguang Wang
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706
| | - Nicholas L Abbott
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, Wisconsin 53706
| |
Collapse
|
15
|
Mushenheim PC, Trivedi RR, Tuson HH, Weibel DB, Abbott NL. Dynamic self-assembly of motile bacteria in liquid crystals. SOFT MATTER 2014; 10:88-95. [PMID: 24652584 PMCID: PMC3966026 DOI: 10.1039/c3sm52423j] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
This paper reports an investigation of dynamical behaviors of motile rod-shaped bacteria within anisotropic viscoelastic environments defined by lyotropic liquid crystals (LCs). In contrast to passive microparticles (including non-motile bacteria) that associate irreversibly in LCs via elasticity-mediated forces, we report that motile Proteus mirabilis bacteria form dynamic and reversible multi-cellular assemblies when dispersed in a lyotropic LC. By measuring the velocity of the bacteria through the LC (8.8 ± 0.2 μm s(-1)) and by characterizing the ordering of the LC about the rod-shaped bacteria (tangential anchoring), we conclude that the reversibility of the inter-bacterial interaction emerges from the interplay of forces generated by the flagella of the bacteria and the elasticity of the LC, both of which are comparable in magnitude (tens of pN) for motile Proteus mirabilis cells. We also measured the dissociation process, which occurs in a direction determined by the LC, to bias the size distribution of multi-cellular bacterial complexes in a population of motile Proteus mirabilis relative to a population of non-motile cells. Overall, these observations and others reported in this paper provide insight into the fundamental dynamic behaviors of bacteria in complex anisotropic environments and suggest that motile bacteria in LCs are an exciting model system for exploration of principles for the design of active materials.
Collapse
Affiliation(s)
- Peter C. Mushenheim
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA. Fax: +1 608-262-5434; Tel: +1 608-265-5278
| | - Rishi R. Trivedi
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA. Fax: +1 608-265-0764; Tel: +1 608-890-1342
| | - Hannah H. Tuson
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA. Fax: +1 608-265-0764; Tel: +1 608-890-1342
| | - Douglas B. Weibel
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706, USA. Fax: +1 608-265-0764; Tel: +1 608-890-1342
| | - Nicholas L. Abbott
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, 1415 Engineering Drive, Madison, WI, 53706, USA. Fax: +1 608-262-5434; Tel: +1 608-265-5278
| |
Collapse
|
16
|
Senyuk B, Glugla D, Smalyukh II. Rotational and translational diffusion of anisotropic gold nanoparticles in liquid crystals controlled by varying surface anchoring. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 88:062507. [PMID: 24483468 DOI: 10.1103/physreve.88.062507] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Indexed: 06/03/2023]
Abstract
We study translational and rotational diffusion of anisotropic gold nanoparticles (NPs) dispersed in the bulk of a nematic liquid crystal fluid host. Experimental data reveal strong anisotropy of translational diffusion with respect to the uniform far-field director, which is dependent on shape and surface functionalization of colloids as well as on their ground-state alignment. For example, elongated NPs aligned parallel to the far-field director translationally diffuse more rapidly along the director whereas diffusion of NPs oriented normal to the director is faster in the direction perpendicular to it while they are also undergoing elasticity-constrained rotational diffusion. To understand physical origins of these rich diffusion properties of anisotropic nanocolloids in uniaxially anisotropic nematic fluid media, we compare them to diffusion of prolate and oblate ellipsoidal particles in isotropic fluids as well as to diffusion of shape-isotropic particles in nematic fluids. We also show that surface functionalization of NPs with photosensitive azobenzene groups allows for in situ control of their diffusivity through trans-cis isomerization that changes surface anchoring.
Collapse
Affiliation(s)
- Bohdan Senyuk
- Department of Physics, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - David Glugla
- Department of Electrical, Computer, and Energy Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | - Ivan I Smalyukh
- Department of Physics, University of Colorado at Boulder, Boulder, Colorado 80309, USA and Department of Electrical, Computer, and Energy Engineering, University of Colorado at Boulder, Boulder, Colorado 80309, USA and Liquid Crystals Materials Research Center and Materials Science and Engineering Program, University of Colorado at Boulder, Boulder, Colorado 80309, USA and Renewable and Sustainable Energy Institute, National Renewable Energy Laboratory and University of Colorado at Boulder, Boulder, Colorado 80309, USA
| |
Collapse
|
17
|
Mondiot F, Wang X, de Pablo JJ, Abbott NL. Liquid crystal-based emulsions for synthesis of spherical and non-spherical particles with chemical patches. J Am Chem Soc 2013; 135:9972-5. [PMID: 23600692 DOI: 10.1021/ja4022182] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We report the use of liquid crystal (LC)-in-water emulsions for the synthesis of either spherical or non-spherical particles with chemically distinct domains located at the poles of the particles. The approach involves the localization of solid colloids at topological defects that form predictably at surfaces of water-dispersed LC droplets. By polymerizing the LC droplets displaying the colloids at their surface defects, we demonstrate formation of both spherical and, upon extraction of the mesogen, anisotropic composite particles with colloids located at either one or both of the poles. Because the colloids protrude from the surfaces of the particles, they also define organized, chemical patches with functionality controlled by the colloid surface.
Collapse
Affiliation(s)
- Frédéric Mondiot
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
18
|
Puech N, Dennison M, Blanc C, van der Schoot P, Dijkstra M, van Roij R, Poulin P, Grelet E. Orientational order of carbon nanotube guests in a nematic host suspension of colloidal viral rods. PHYSICAL REVIEW LETTERS 2012; 108:247801. [PMID: 23004331 DOI: 10.1103/physrevlett.108.247801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Indexed: 06/01/2023]
Abstract
In order to investigate the coupling between the degrees of alignment of elongated particles in binary nematic dispersions, surfactant stabilized single-wall carbon nanotubes (CNTs) have been added to nematic suspensions of colloidal rodlike viruses in aqueous solution. We have independently measured the orientational order parameter of both components of the guest-host system by means of polarized Raman spectroscopy and by optical birefringence, respectively. Our system allows us therefore to probe the regime where the guest particles (CNTs) are shorter and thinner than the fd virus host particles. We show that the degree of order of the CNTs is systematically smaller than that of the fd virus particles for the whole nematic range. These measurements are in good agreement with predictions of an Onsager-type second-viral theory, which explicitly includes the flexibility of the virus particles, and the polydispersity of the CNTs.
Collapse
Affiliation(s)
- Nicolas Puech
- Université de Bordeaux et CNRS, Centre de Recherche Paul-Pascal, 115 Avenue Schweitzer, 33600 Pessac, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Prathap Chandran S, Mondiot F, Mondain-Monval O, Loudet JC. Photonic control of surface anchoring on solid colloids dispersed in liquid crystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:15185-15198. [PMID: 22047168 DOI: 10.1021/la202997r] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The anchoring of liquid-crystal (LC) mesogens to the surfaces of colloids is an important factor in determining intercolloidal interactions and the symmetry of the ensuing colloidal assembly in nematic colloids. The dynamic control of surface anchoring could therefore provide a handle to tune the colloidal organization and resulting properties in these systems. In this article, we report our results on the study of thermotropic nematic LC (E7) dispersions of silica and glass microcolloids bearing photosensitive surface azobenzene groups. By the photoinduced modulation of the colloidal-LC interfacial properties, due to the trans-cis isomerization of azobenzene units, we tune the anchoring on silica colloids from homeotropic (trans-azobenzene) to homogeneous planar (cis-azobenzene) reversibly. In tune with the change in surface anchoring, the interparticle interactions were also dictated by dipolar and quadrupolar symmetries for homeotropic and homogeneous planar anchoring, respectively. In our experiments, we find that, in addition to the isomerization state of the surface-bound azobenzene units, the nature of the colloid plays a crucial role in determining the anchoring state obtained on applying photostimuli. We also study the LC anchoring on colloids as a function of the azobenzene surface density and find that beyond a threshold value the anchoring properties remain invariant.
Collapse
Affiliation(s)
- S Prathap Chandran
- University of Bordeaux, Centre de Recherche Paul Pascal-CNRS, Avenue A. Schweitzer 33600 Pessac, France.
| | | | | | | |
Collapse
|
20
|
Lapointe CP, Mason TG, Smalyukh II. Towards total photonic control of complex-shaped colloids by vortex beams. OPTICS EXPRESS 2011; 19:18182-18189. [PMID: 21935184 DOI: 10.1364/oe.19.018182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We demonstrate optical trapping and orientational control over colloidal particles having complex shapes in an anisotropic host fluid using a dynamic holographic optical tweezers system. Interactions between a colloidal particle and the toroidal intensity distributions of focused Laguerre-Gaussian beams allow for stable optical tweezing and provide a tunable tilt of the particle out of the focal plane. Use of an aligned nematic liquid crystal as the host fluid suppresses rotations about the optical axis arising from angular momentum transfer from the beam and effectively defines a rotational axis for the colloid within the trap.
Collapse
Affiliation(s)
- Clayton P Lapointe
- Department of Physics and Liquid Crystals Materials Research Center, University of Colorado at Boulder, Boulder, CO 30309, USA
| | | | | |
Collapse
|
21
|
|
22
|
Liu Q, Beier C, Evans J, Lee T, He S, Smalyukh II. Self-alignment of dye molecules in micelles and lamellae for three-dimensional imaging of lyotropic liquid crystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:7446-7452. [PMID: 21598933 DOI: 10.1021/la200842z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We report alignment of anisotropic amphiphilic dye molecules within oblate and prolate anisotropic micelles and lamellae, the basic building blocks of surfactant-based lyotropic liquid crystals. Absorption and fluorescence transition dipole moments of these dye molecules orient either parallel or orthogonal to the liquid crystal director. This alignment enables three-dimensional visualization of director structures and defects in different lyotropic mesophases by means of fluorescence confocal polarizing microscopy and two-photon excitation fluorescence polarizing microscopy. The studied structures include nematic tactoids, Schlieren texture with disclinations in the calamitic nematic phase, oily streaks in the lamellar phase, developable domains in the columnar hexagonal phase, and various types of line defects in the discotic cholesteric phase. Orientational three-dimensional imaging of structures in the lyotropic cholesterics reveals large Burgers vector dislocations in cholesteric layering with singular disclinations in the dislocation cores that are not common for their thermotropic counterparts.
Collapse
Affiliation(s)
- Qingkun Liu
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | | | | | | | | | | |
Collapse
|