1
|
Young JT, Chaparro E, Piñeiro Orioli A, Thompson JK, Rey AM. Engineering One Axis Twisting via a Dissipative Berry Phase Using Strong Symmetries. PHYSICAL REVIEW LETTERS 2025; 134:040801. [PMID: 39951576 DOI: 10.1103/physrevlett.134.040801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 11/04/2024] [Accepted: 12/10/2024] [Indexed: 02/16/2025]
Abstract
We show how a driven-dissipative cavity coupled to a collective ensemble of atoms can dynamically generate metrologically useful spin-squeezed states. In contrast to other dissipative approaches, we do not rely on complex engineered dissipation or input states, nor do we require tuning the system to a critical point. Instead, we utilize a strong symmetry, a special type of symmetry that can occur in open quantum systems and emerges naturally in systems with collective dissipation, such as superradiance. This symmetry preserves coherence and allows for the accumulation of an atom number-dependent Berry phase which in turn creates spin-squeezed states via emergent one axis twisting dynamics. This work shows that it is possible to generate entanglement in an atom-cavity resonant regime with macroscopic optical excitations of the system, going beyond the typical dispersive regime with negligible optical excitations often utilized in current cavity-QED experiments.
Collapse
Affiliation(s)
- Jeremy T Young
- University of Amsterdam, Institute of Physics, 1098 XH Amsterdam, The Netherlands
- University of Colorado, JILA, University of Colorado and National Institute of Standards and Technology, and Department of Physics, Boulder, Colorado 80309, USA
- University of Colorado, Center for Theory of Quantum Matter, Boulder, Colorado 80309, USA
| | - Edwin Chaparro
- University of Colorado, JILA, University of Colorado and National Institute of Standards and Technology, and Department of Physics, Boulder, Colorado 80309, USA
- University of Colorado, Center for Theory of Quantum Matter, Boulder, Colorado 80309, USA
| | - Asier Piñeiro Orioli
- University of Colorado, JILA, University of Colorado and National Institute of Standards and Technology, and Department of Physics, Boulder, Colorado 80309, USA
- University of Colorado, Center for Theory of Quantum Matter, Boulder, Colorado 80309, USA
| | - James K Thompson
- University of Colorado, JILA, University of Colorado and National Institute of Standards and Technology, and Department of Physics, Boulder, Colorado 80309, USA
| | - Ana Maria Rey
- University of Colorado, JILA, University of Colorado and National Institute of Standards and Technology, and Department of Physics, Boulder, Colorado 80309, USA
- University of Colorado, Center for Theory of Quantum Matter, Boulder, Colorado 80309, USA
| |
Collapse
|
2
|
Vizvary SR, Wall ZJ, Boguslawski MJ, Bareian M, Derevianko A, Campbell WC, Hudson ER. Eliminating Qubit-Type Cross-Talk in the omg Protocol. PHYSICAL REVIEW LETTERS 2024; 132:263201. [PMID: 38996290 DOI: 10.1103/physrevlett.132.263201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/29/2024] [Accepted: 05/17/2024] [Indexed: 07/14/2024]
Abstract
The omg protocol is a promising paradigm that uses multiple, application-specific, qubit subspaces within the Hilbert space of each single atom during quantum information processing. A key assumption for omg operation is that a subspace can be accessed independently without deleterious effects on information stored in other subspaces. We find that intensity noise during laser-based quantum gates in one subspace can cause decoherence in other subspaces, potentially complicating omg operation. We show, however, that a magnetic-field-induced vector light shift can be used to eliminate this source of decoherence. As this technique simply requires choosing a specific, magnetic field-dependent polarization for the gate lasers, it is straightforward to implement and potentially helpful for omg-based quantum technology.
Collapse
Affiliation(s)
| | | | | | | | | | - Wesley C Campbell
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California, USA
- Challenge Institute for Quantum Computation, University of California Los Angeles, Los Angeles, California, USA
- Center for Quantum Science and Engineering, University of California Los Angeles, Los Angeles, California, USA
| | - Eric R Hudson
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California, USA
- Challenge Institute for Quantum Computation, University of California Los Angeles, Los Angeles, California, USA
- Center for Quantum Science and Engineering, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
3
|
Gutman N, Gorlach A, Tziperman O, Ruimy R, Kaminer I. Universal Control of Symmetric States Using Spin Squeezing. PHYSICAL REVIEW LETTERS 2024; 132:153601. [PMID: 38682988 DOI: 10.1103/physrevlett.132.153601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 03/11/2024] [Indexed: 05/01/2024]
Abstract
The manipulation of quantum many-body systems is a crucial goal in quantum science. Entangled quantum states that are symmetric under qubits permutation are of growing interest. Yet, the creation and control of symmetric states has remained a challenge. Here, we introduce a method to universally control symmetric states, proposing a scheme that relies solely on coherent rotations and spin squeezing. We present protocols for the creation of different symmetric states including Schrödinger's cat and Gottesman-Kitaev-Preskill states. The obtained symmetric states can be transferred to traveling photonic states via spontaneous emission, providing a powerful approach for engineering desired quantum photonic states.
Collapse
Affiliation(s)
- Nir Gutman
- Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Alexey Gorlach
- Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Offek Tziperman
- Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Ron Ruimy
- Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Ido Kaminer
- Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
4
|
Hetzel M, Pezzè L, Pür C, Quensen M, Hüper A, Geng J, Kruse J, Santos L, Ertmer W, Smerzi A, Klempt C. Tomography of a Number-Resolving Detector by Reconstruction of an Atomic Many-Body Quantum State. PHYSICAL REVIEW LETTERS 2023; 131:260601. [PMID: 38215377 DOI: 10.1103/physrevlett.131.260601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/10/2023] [Indexed: 01/14/2024]
Abstract
The high-fidelity analysis of many-body quantum states of indistinguishable atoms requires the accurate counting of atoms. Here we report the tomographic reconstruction of an atom-number-resolving detector. The tomography is performed with an ultracold rubidium ensemble that is prepared in a coherent spin state by driving a Rabi coupling between the two hyperfine clock levels. The coupling is followed by counting the occupation number in one level. We characterize the fidelity of our detector and show that a negative-valued Wigner function is associated with it. Our results offer an exciting perspective for the high-fidelity reconstruction of entangled states and can be applied for a future demonstration of Heisenberg-limited atom interferometry.
Collapse
Affiliation(s)
- Mareike Hetzel
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - Luca Pezzè
- QSTAR and INO-CNR and LENS, Largo Enrico Fermi 2, 50125 Firenze, Italy
| | - Cebrail Pür
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - Martin Quensen
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - Andreas Hüper
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - Jiao Geng
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Jens Kruse
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - Luis Santos
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, D-30167 Hannover, Germany
| | - Wolfgang Ertmer
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - Augusto Smerzi
- QSTAR and INO-CNR and LENS, Largo Enrico Fermi 2, 50125 Firenze, Italy
| | - Carsten Klempt
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| |
Collapse
|
5
|
Xin L, Barrios M, Cohen JT, Chapman MS. Long-Lived Squeezed Ground States in a Quantum Spin Ensemble. PHYSICAL REVIEW LETTERS 2023; 131:133402. [PMID: 37832022 DOI: 10.1103/physrevlett.131.133402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/07/2023] [Indexed: 10/15/2023]
Abstract
We generate spin squeezed ground states in an atomic spin-1 Bose-Einstein condensate tuned near the quantum-critical point separating the different spin phases of the interacting ensemble using a novel nonadiabatic technique. In contrast to typical nonequilibrium methods for preparing atomic squeezed states by quenching through a quantum phase transition, squeezed ground states are time stationary with a constant quadrature squeezing angle. A squeezed ground state with 6-8 dB of squeezing and a constant squeezing angle is demonstrated. The long-term evolution of the squeezed ground state is measured and shows gradual decrease in the degree of squeezing over 2 s that is well modeled by a slow tuning of the Hamiltonian due to the loss of atomic density. Interestingly, modeling the gradual decrease does not require additional spin decoherence models despite a loss of 75% of the atoms.
Collapse
Affiliation(s)
- Lin Xin
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Maryrose Barrios
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Julia T Cohen
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Michael S Chapman
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
6
|
Eckner WJ, Darkwah Oppong N, Cao A, Young AW, Milner WR, Robinson JM, Ye J, Kaufman AM. Realizing spin squeezing with Rydberg interactions in an optical clock. Nature 2023; 621:734-739. [PMID: 37648865 DOI: 10.1038/s41586-023-06360-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/22/2023] [Indexed: 09/01/2023]
Abstract
Neutral-atom arrays trapped in optical potentials are a powerful platform for studying quantum physics, combining precise single-particle control and detection with a range of tunable entangling interactions1-3. For example, these capabilities have been leveraged for state-of-the-art frequency metrology4,5 as well as microscopic studies of entangled many-particle states6-11. Here we combine these applications to realize spin squeezing-a widely studied operation for producing metrologically useful entanglement-in an optical atomic clock based on a programmable array of interacting optical qubits. In this demonstration of Rydberg-mediated squeezing with a neutral-atom optical clock, we generate states that have almost four decibels of metrological gain. In addition, we perform a synchronous frequency comparison between independent squeezed states and observe a fractional-frequency stability of 1.087(1) × 10-15 at one-second averaging time, which is 1.94(1) decibels below the standard quantum limit and reaches a fractional precision at the 10-17 level during a half-hour measurement. We further leverage the programmable control afforded by optical tweezer arrays to apply local phase shifts to explore spin squeezing in measurements that operate beyond the relative coherence time with the optical local oscillator. The realization of this spin-squeezing protocol in a programmable atom-array clock will enable a wide range of quantum-information-inspired techniques for optimal phase estimation and Heisenberg-limited optical atomic clocks12-16.
Collapse
Affiliation(s)
- William J Eckner
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, Colorado, USA
| | - Nelson Darkwah Oppong
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, Colorado, USA
| | - Alec Cao
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, Colorado, USA
| | - Aaron W Young
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, Colorado, USA
| | - William R Milner
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, Colorado, USA
| | - John M Robinson
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, Colorado, USA
| | - Jun Ye
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, Colorado, USA
| | - Adam M Kaufman
- JILA, University of Colorado and National Institute of Standards and Technology, and Department of Physics, University of Colorado, Boulder, Colorado, USA.
| |
Collapse
|
7
|
Sundar B, Barberena D, Orioli AP, Chu A, Thompson JK, Rey AM, Lewis-Swan RJ. Bosonic Pair Production and Squeezing for Optical Phase Measurements in Long-Lived Dipoles Coupled to a Cavity. PHYSICAL REVIEW LETTERS 2023; 130:113202. [PMID: 37001062 DOI: 10.1103/physrevlett.130.113202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 02/14/2023] [Indexed: 06/19/2023]
Abstract
We propose to simulate bosonic pair creation using large arrays of long-lived dipoles with multilevel internal structure coupled to an undriven optical cavity. Entanglement between the atoms, generated by the exchange of virtual photons through a common cavity mode, grows exponentially fast and is described by two-mode squeezing of effective bosonic quadratures. The mapping between an effective bosonic model and the natural spin description of the dipoles allows us to realize the analog of optical homodyne measurements via straightforward global rotations and population measurements of the electronic states, and we propose to exploit this for quantum-enhanced sensing of an optical phase (common and differential between two ensembles). We discuss a specific implementation based on Sr atoms and show that our sensing protocol is robust to sources of decoherence intrinsic to cavity platforms. Our proposal can open unique opportunities for next-generation optical atomic clocks.
Collapse
Affiliation(s)
- Bhuvanesh Sundar
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Diego Barberena
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Asier Piñeiro Orioli
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Anjun Chu
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - James K Thompson
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Ana Maria Rey
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Robert J Lewis-Swan
- Homer L. Dodge Department of Physics and Astronomy, The University of Oklahoma, Norman, Oklahoma 73019, USA
- Center for Quantum Research and Technology, The University of Oklahoma, Norman, Oklahoma 73019, USA
| |
Collapse
|
8
|
Entanglement-enhanced matter-wave interferometry in a high-finesse cavity. Nature 2022; 610:472-477. [PMID: 36261551 PMCID: PMC9581775 DOI: 10.1038/s41586-022-05197-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
An ensemble of atoms can operate as a quantum sensor by placing atoms in a superposition of two different states. Upon measurement of the sensor, each atom is individually projected into one of the two states. Creating quantum correlations between the atoms, that is entangling them, could lead to resolutions surpassing the standard quantum limit1–3 set by projections of individual atoms. Large amounts of entanglement4–6 involving the internal degrees of freedom of laser-cooled atomic ensembles4–16 have been generated in collective cavity quantum-electrodynamics systems, in which many atoms simultaneously interact with a single optical cavity mode. Here we report a matter-wave interferometer in a cavity quantum-electrodynamics system of 700 atoms that are entangled in their external degrees of freedom. In our system, each individual atom falls freely under gravity and simultaneously traverses two paths through space while entangled with the other atoms. We demonstrate both quantum non-demolition measurements and cavity-mediated spin interactions for generating squeezed momentum states with directly observed sensitivity \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$3\,.\,{4}_{-0.9}^{+1.1}$$\end{document}3.4−0.9+1.1 dB and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$2\,.\,{5}_{-0.6}^{+0.6}$$\end{document}2.5−0.6+0.6 dB below the standard quantum limit, respectively. We successfully inject an entangled state into a Mach–Zehnder light-pulse interferometer with directly observed sensitivity \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$1\,.\,{7}_{-0.5}^{+0.5}$$\end{document}1.7−0.5+0.5 dB below the standard quantum limit. The combination of particle delocalization and entanglement in our approach may influence developments of enhanced inertial sensors17,18, searches for new physics, particles and fields19–23, future advanced gravitational wave detectors24,25 and accessing beyond mean-field quantum many-body physics26–30. A matter-wave interferometer is demonstrated with an interferometric phase noise below the standard quantum limit, combining two core concepts of quantum mechanics, that a particle can simultaneously be in two places at once and entanglement between distinct particles.
Collapse
|
9
|
Xu K, Zhang YR, Sun ZH, Li H, Song P, Xiang Z, Huang K, Li H, Shi YH, Chen CT, Song X, Zheng D, Nori F, Wang H, Fan H. Metrological Characterization of Non-Gaussian Entangled States of Superconducting Qubits. PHYSICAL REVIEW LETTERS 2022; 128:150501. [PMID: 35499907 DOI: 10.1103/physrevlett.128.150501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Multipartite entangled states are significant resources for both quantum information processing and quantum metrology. In particular, non-Gaussian entangled states are predicted to achieve a higher sensitivity of precision measurements than Gaussian states. On the basis of metrological sensitivity, the conventional linear Ramsey squeezing parameter (RSP) efficiently characterizes the Gaussian entangled atomic states but fails for much wider classes of highly sensitive non-Gaussian states. These complex non-Gaussian entangled states can be classified by the nonlinear squeezing parameter (NLSP), as a generalization of the RSP with respect to nonlinear observables and identified via the Fisher information. However, the NLSP has never been measured experimentally. Using a 19-qubit programmable superconducting processor, we report the characterization of multiparticle entangled states generated during its nonlinear dynamics. First, selecting ten qubits, we measure the RSP and the NLSP by single-shot readouts of collective spin operators in several different directions. Then, by extracting the Fisher information of the time-evolved state of all 19 qubits, we observe a large metrological gain of 9.89_{-0.29}^{+0.28} dB over the standard quantum limit, indicating a high level of multiparticle entanglement for quantum-enhanced phase sensitivity. Benefiting from high-fidelity full controls and addressable single-shot readouts, the superconducting processor with interconnected qubits provides an ideal platform for engineering and benchmarking non-Gaussian entangled states that are useful for quantum-enhanced metrology.
Collapse
Affiliation(s)
- Kai Xu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu-Ran Zhang
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- RIKEN Center for Quantum Computing (RQC), Wako-shi, Saitama 351-0198, Japan
| | - Zheng-Hang Sun
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hekang Li
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Pengtao Song
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhongcheng Xiang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Kaixuan Huang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hao Li
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yun-Hao Shi
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Chi-Tong Chen
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaohui Song
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Dongning Zheng
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- RIKEN Center for Quantum Computing (RQC), Wako-shi, Saitama 351-0198, Japan
- Physics Department, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| | - H Wang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Heng Fan
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Beijing Academy of Quantum Information Sciences and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
10
|
Orenes DB, Sewell RJ, Lodewyck J, Mitchell MW. Improving Short-Term Stability in Optical Lattice Clocks by Quantum Nondemolition Measurement. PHYSICAL REVIEW LETTERS 2022; 128:153201. [PMID: 35499904 DOI: 10.1103/physrevlett.128.153201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
We propose a multimeasurement estimation protocol for quantum nondemolition (QND) measurements in a Rabi clock interferometer. The method is well suited for current state-of-the-art optical lattice clocks with QND measurement capabilities. The protocol exploits the correlations between multiple nondestructive measurements of the initially prepared coherent spin state. A suitable Gaussian estimator for the clock laser detuning is presented, and an analytic expression for the sensitivity of the protocol is derived. We use this analytic expression to optimize the protocol using available experimental parameters, achieving an improvement of 7.9 dB with respect to the standard quantum limit in terms of clock stability. We also discuss the measurement back-action effects of our protocol into the atomic state.
Collapse
Affiliation(s)
- Daniel Benedicto Orenes
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Robert J Sewell
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Jérôme Lodewyck
- LNE-SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, 61 avenue de l'Observatoire, F-75014 Paris, France
| | - Morgan W Mitchell
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
11
|
Chu A, He P, Thompson JK, Rey AM. Quantum Enhanced Cavity QED Interferometer with Partially Delocalized Atoms in Lattices. PHYSICAL REVIEW LETTERS 2021; 127:210401. [PMID: 34860098 DOI: 10.1103/physrevlett.127.210401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
We propose a quantum enhanced interferometric protocol for gravimetry and force sensing using cold atoms in an optical lattice supported by a standing-wave cavity. By loading the atoms in partially delocalized Wannier-Stark states, it is possible to cancel the undesirable inhomogeneities arising from the mismatch between the lattice and cavity fields and to generate spin squeezed states via a uniform one-axis twisting model. The quantum enhanced sensitivity of the states is combined with the subsequent application of a compound pulse sequence that allows us to separate atoms by several lattice sites. This, together with the capability to load small atomic clouds in the lattice at micrometric distances from a surface, make our setup ideal for sensing short-range forces. We show that for arrays of 10^{4} atoms, our protocol can reduce the required averaging time by a factor of 10 compared to unentangled lattice-based interferometers after accounting for primary sources of decoherence.
Collapse
Affiliation(s)
- Anjun Chu
- JILA, NIST and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| | - Peiru He
- JILA, NIST and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| | - James K Thompson
- JILA, NIST and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Ana Maria Rey
- JILA, NIST and Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
12
|
Bilitewski T, De Marco L, Li JR, Matsuda K, Tobias WG, Valtolina G, Ye J, Rey AM. Dynamical Generation of Spin Squeezing in Ultracold Dipolar Molecules. PHYSICAL REVIEW LETTERS 2021; 126:113401. [PMID: 33798369 DOI: 10.1103/physrevlett.126.113401] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
We study a bulk fermionic dipolar molecular gas in the quantum degenerate regime confined in a two-dimensional geometry. Using two rotational states of the molecules, we encode a spin 1/2 degree of freedom. To describe the many-body spin dynamics of the molecules, we derive a long-range interacting XXZ model valid in the regime where motional degrees of freedom are frozen. Because of the spatially extended nature of the harmonic oscillator modes, the interactions in the spin model are very long ranged, and the system behaves close to the collective limit, resulting in robust dynamics and generation of entanglement in the form of spin squeezing even at finite temperature and in the presence of dephasing and chemical reactions. We discuss how the internal state structure can be exploited to realize time reversal and enhanced metrological sensing protocols.
Collapse
Affiliation(s)
- Thomas Bilitewski
- JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, Colorado, 80309, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado, 80309, USA
| | - Luigi De Marco
- JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, Colorado, 80309, USA
| | - Jun-Ru Li
- JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, Colorado, 80309, USA
| | - Kyle Matsuda
- JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, Colorado, 80309, USA
| | - William G Tobias
- JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, Colorado, 80309, USA
| | - Giacomo Valtolina
- JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, Colorado, 80309, USA
| | - Jun Ye
- JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, Colorado, 80309, USA
| | - Ana Maria Rey
- JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, Colorado, 80309, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado, 80309, USA
| |
Collapse
|
13
|
Pezzè L, Smerzi A. Heisenberg-Limited Noisy Atomic Clock Using a Hybrid Coherent and Squeezed State Protocol. PHYSICAL REVIEW LETTERS 2020; 125:210503. [PMID: 33274961 DOI: 10.1103/physrevlett.125.210503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/29/2020] [Indexed: 06/12/2023]
Abstract
We propose a hybrid quantum-classical atomic clock where the interrogation of atoms prepared in a spin-coherent (or weakly squeezed) state is used to feed back one or more highly spin-squeezed atomic states toward their optimal phase-sensitivity point. The hybrid clock overcomes the stability of a single Ramsey clock using coherent or optimal spin-squeezed states and reaches a Heisenberg-limited stability while avoiding nondestructive measurements. When optimized with respect to the total number of particles, the protocol surpasses the state-of-the-art proposals that use Greenberger-Horne-Zeilinger or NOON states. We compare analytical predictions with numerical simulations of clock operations, including correlated 1/f local oscillator noise.
Collapse
Affiliation(s)
- Luca Pezzè
- QSTAR, INO-CNR and LENS, Largo Enrico Fermi 2, 50125 Firenze, Italy
| | - Augusto Smerzi
- QSTAR, INO-CNR and LENS, Largo Enrico Fermi 2, 50125 Firenze, Italy
| |
Collapse
|
14
|
Rossi MAC, Albarelli F, Tamascelli D, Genoni MG. Noisy Quantum Metrology Enhanced by Continuous Nondemolition Measurement. PHYSICAL REVIEW LETTERS 2020; 125:200505. [PMID: 33258625 DOI: 10.1103/physrevlett.125.200505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/19/2020] [Indexed: 06/12/2023]
Abstract
We show that continuous quantum nondemolition (QND) measurement of an atomic ensemble is able to improve the precision of frequency estimation even in the presence of independent dephasing acting on each atom. We numerically simulate the dynamics of an ensemble with up to N=150 atoms initially prepared in a (classical) spin coherent state, and we show that, thanks to the spin squeezing dynamically generated by the measurement, the information obtainable from the continuous photocurrent scales superclassically with respect to the number of atoms N. We provide evidence that such superclassical scaling holds for different values of dephasing and monitoring efficiency. We moreover calculate the extra information obtainable via a final strong measurement on the conditional states generated during the dynamics and show that the corresponding ultimate limit is nearly achieved via a projective measurement of the spin-squeezed collective spin operator. We also briefly discuss the difference between our protocol and standard estimation schemes, where the state preparation time is neglected.
Collapse
Affiliation(s)
- Matteo A C Rossi
- QTF Centre of Excellence, Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turun Yliopisto, Finland
| | - Francesco Albarelli
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa, Poland
| | - Dario Tamascelli
- Dipartimento di Fisica "Aldo Pontremoli," Università degli Studi di Milano, I-20133 Milano, Italy
| | - Marco G Genoni
- Dipartimento di Fisica "Aldo Pontremoli," Università degli Studi di Milano, I-20133 Milano, Italy
- INFN - Sezione di Milano, I-20133 Milano, Italy
| |
Collapse
|
15
|
Szigeti SS, Nolan SP, Close JD, Haine SA. High-Precision Quantum-Enhanced Gravimetry with a Bose-Einstein Condensate. PHYSICAL REVIEW LETTERS 2020; 125:100402. [PMID: 32955338 DOI: 10.1103/physrevlett.125.100402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
We show that the inherently large interatomic interactions of a Bose-Einstein condensate (BEC) can enhance the sensitivity of a high precision cold-atom gravimeter beyond the shot-noise limit (SNL). Through detailed numerical simulation, we demonstrate that our scheme produces spin-squeezed states with variances up to 14 dB below the SNL, and that absolute gravimetry measurement sensitivities between two and five times below the SNL are achievable with BECs between 10^{4} and 10^{6} in atom number. Our scheme is robust to phase diffusion, imperfect atom counting, and shot-to-shot variations in atom number and laser intensity. Our proposal is immediately achievable in current laboratories, since it needs only a small modification to existing state-of-the-art experiments and does not require additional guiding potentials or optical cavities.
Collapse
Affiliation(s)
- Stuart S Szigeti
- Department of Quantum Science, Research School of Physics, The Australian National University, Canberra 2601, Australia
| | - Samuel P Nolan
- QSTAR, INO-CNR and LENS, Largo Enrico Fermi 2, Firenze 50125, Italy
| | - John D Close
- Department of Quantum Science, Research School of Physics, The Australian National University, Canberra 2601, Australia
| | - Simon A Haine
- Department of Quantum Science, Research School of Physics, The Australian National University, Canberra 2601, Australia
| |
Collapse
|
16
|
Davis EJ, Periwal A, Cooper ES, Bentsen G, Evered SJ, Van Kirk K, Schleier-Smith MH. Protecting Spin Coherence in a Tunable Heisenberg Model. PHYSICAL REVIEW LETTERS 2020; 125:060402. [PMID: 32845652 DOI: 10.1103/physrevlett.125.060402] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/15/2020] [Accepted: 06/09/2020] [Indexed: 05/09/2023]
Abstract
Using an ensemble of atoms in an optical cavity, we engineer a family of nonlocal Heisenberg Hamiltonians with continuously tunable anisotropy of the spin-spin couplings. We thus gain access to a rich phase diagram, including a paramagnetic-to-ferromagnetic Ising phase transition that manifests as a diverging magnetic susceptibility at the critical point. The susceptibility displays a symmetry between Ising interactions and XY (spin-exchange) interactions of the opposite sign, which is indicative of the spatially extended atomic system behaving as a single collective spin. Images of the magnetization dynamics show that spin-exchange interactions protect the coherence of the collective spin, even against inhomogeneous fields that completely dephase the noninteracting and Ising systems. Our results underscore prospects for harnessing spin-exchange interactions to enhance the robustness of spin squeezing protocols.
Collapse
Affiliation(s)
- Emily J Davis
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Avikar Periwal
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Eric S Cooper
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Gregory Bentsen
- Department of Physics, Stanford University, Stanford, California 94305, USA
- Department of Physics, Princeton University, Princeton, New Jersey 08540, USA
| | - Simon J Evered
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Katherine Van Kirk
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Monika H Schleier-Smith
- Department of Physics, Stanford University, Stanford, California 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
17
|
Malia BK, Martínez-Rincón J, Wu Y, Hosten O, Kasevich MA. Free Space Ramsey Spectroscopy in Rubidium with Noise below the Quantum Projection Limit. PHYSICAL REVIEW LETTERS 2020; 125:043202. [PMID: 32794788 DOI: 10.1103/physrevlett.125.043202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
We demonstrate the utility of optical cavity generated spin-squeezed states in free space atomic fountain clocks in ensembles of 390 000 ^{87}Rb atoms. Fluorescence imaging, correlated to an initial quantum nondemolition measurement, is used for population spectroscopy after the atoms are released from a confining lattice. For a free fall time of 4 milliseconds, we resolve a single-shot phase sensitivity of 814(61) microradians, which is 5.8(0.6) decibels (dB) below the quantum projection limit. We observe that this squeezing is preserved as the cloud expands to a roughly 200 μm radius and falls roughly 300 μm in free space. Ramsey spectroscopy with 240 000 atoms at a 3.6 ms Ramsey time results in a single-shot fractional frequency stability of 8.4(0.2)×10^{-12}, 3.8(0.2) dB below the quantum projection limit. The sensitivity and stability are limited by the technical noise in the fluorescence detection protocol and the microwave system, respectively.
Collapse
Affiliation(s)
- Benjamin K Malia
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | | | - Yunfan Wu
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Onur Hosten
- Institute of Science and Technology Austria, Klosterneuburg 3400, Austria
| | - Mark A Kasevich
- Department of Physics, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
18
|
Alexander B, Bollinger JJ, Uys H. Generating Greenberger-Horne-Zeilinger states with squeezing and postselection. PHYSICAL REVIEW. A 2020; 101:10.1103/PhysRevA.101.062303. [PMID: 34796312 PMCID: PMC8597541 DOI: 10.1103/physreva.101.062303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Many quantum state preparation methods rely on a combination of dissipative quantum state initialization followed by unitary evolution to a desired target state. Here we demonstrate the usefulness of quantum measurement as an additional tool for quantum state preparation. Starting from a pure separable multipartite state, a control sequence, which includes rotation, spin squeezing via one-axis twisting, quantum measurement, and postselection, generates highly entangled multipartite states, which we refer to as projected squeezed (PS) states. Through an optimization method, we then identify parameters required to maximize the overlap fidelity of the PS states with the maximally entangled Greenberger-Horne-Zeilinger (GHZ) states. The method leads to an appreciable decrease in the state preparation time of GHZ states for successfully postselected outcomes when compared to preparation through unitary evolution with one-axis twisting only.
Collapse
Affiliation(s)
- Byron Alexander
- Department of Physics, Stellenbosch University, Stellenbosch Central 7600, Stellenbosch, South Africa
| | - John J. Bollinger
- National Institute of Standards and Technology, Boulder, Colorado 80305, USA
| | - Hermann Uys
- Department of Physics, Stellenbosch University, Stellenbosch Central 7600, Stellenbosch, South Africa
- Council for Scientific and Industrial Research, National Laser Centre, Brummeria, Pretoria 0184, South Africa
| |
Collapse
|
19
|
Lewis-Swan RJ, Barberena D, Muniz JA, Cline JRK, Young D, Thompson JK, Rey AM. Protocol for Precise Field Sensing in the Optical Domain with Cold Atoms in a Cavity. PHYSICAL REVIEW LETTERS 2020; 124:193602. [PMID: 32469538 DOI: 10.1103/physrevlett.124.193602] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
In the context of quantum metrology, optical cavity-QED platforms have primarily been focused on the generation of entangled atomic spin states useful for next-generation frequency and time standards. Here, we report a complementary application: the use of optical cavities to generate nonclassical states of light for electric field sensing below the standard quantum limit. We show that cooperative atom-light interactions in the strong collective coupling regime can be used to engineer generalized atom-light cat states which enable quantum enhanced sensing of small displacements of the cavity field even in the presence of photon loss. We demonstrate that metrological gains of 10-20 dB below the standard quantum limit are within reach for current cavity-QED systems operating with long-lived alkaline-earth atoms.
Collapse
Affiliation(s)
- Robert J Lewis-Swan
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| | - Diego Barberena
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| | - Juan A Muniz
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Julia R K Cline
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Dylan Young
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - James K Thompson
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Ana Maria Rey
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
20
|
Bao H, Duan J, Jin S, Lu X, Li P, Qu W, Wang M, Novikova I, Mikhailov EE, Zhao KF, Mølmer K, Shen H, Xiao Y. Spin squeezing of 10 11 atoms by prediction and retrodiction measurements. Nature 2020; 581:159-163. [PMID: 32405021 DOI: 10.1038/s41586-020-2243-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 02/26/2020] [Indexed: 11/09/2022]
Abstract
The measurement sensitivity of quantum probes using N uncorrelated particles is restricted by the standard quantum limit1, which is proportional to [Formula: see text]. This limit, however, can be overcome by exploiting quantum entangled states, such as spin-squeezed states2. Here we report the measurement-based generation of a quantum state that exceeds the standard quantum limit for probing the collective spin of 1011 rubidium atoms contained in a macroscopic vapour cell. The state is prepared and verified by sequences of stroboscopic quantum non-demolition (QND) measurements. We then apply the theory of past quantum states3,4 to obtain spin state information from the outcomes of both earlier and later QND measurements. Rather than establishing a physically squeezed state in the laboratory, the past quantum state represents the combined system information from these prediction and retrodiction measurements. This information is equivalent to a noise reduction of 5.6 decibels and a metrologically relevant squeezing of 4.5 decibels relative to the coherent spin state. The past quantum state yields tighter constraints on the spin component than those obtained by conventional QND measurements. Our measurement uses 1,000 times more atoms than previous squeezing experiments5-10, with a corresponding angular variance of the squeezed collective spin of 4.6 × 10-13 radians squared. Although this work is rooted in the foundational theory of quantum measurements, it may find practical use in quantum metrology and quantum parameter estimation, as we demonstrate by applying our protocol to quantum enhanced atomic magnetometry.
Collapse
Affiliation(s)
- Han Bao
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures, Ministry of Education, Fudan University, Shanghai, China
| | - Junlei Duan
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures, Ministry of Education, Fudan University, Shanghai, China
| | - Shenchao Jin
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures, Ministry of Education, Fudan University, Shanghai, China
| | - Xingda Lu
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures, Ministry of Education, Fudan University, Shanghai, China
| | - Pengxiong Li
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures, Ministry of Education, Fudan University, Shanghai, China
| | - Weizhi Qu
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures, Ministry of Education, Fudan University, Shanghai, China
| | - Mingfeng Wang
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures, Ministry of Education, Fudan University, Shanghai, China.,Department of Physics, Wenzhou University, Zhejiang, China
| | - Irina Novikova
- Department of Physics, College of William and Mary, Williamsburg, VA, USA
| | | | - Kai-Feng Zhao
- Applied Ion Beam Physics Laboratory, Key Laboratory of the Ministry of Education, and Institute of Modern Physics, Fudan University, Shanghai, China
| | - Klaus Mølmer
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark.
| | - Heng Shen
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan, China. .,Clarendon Laboratory, University of Oxford, Oxford, UK.
| | - Yanhong Xiao
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures, Ministry of Education, Fudan University, Shanghai, China. .,State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan, China.
| |
Collapse
|
21
|
Garcia S, Ferri F, Reichel J, Long R. Overlapping two standing waves in a microcavity for a multi-atom photon interface. OPTICS EXPRESS 2020; 28:15515-15528. [PMID: 32403578 DOI: 10.1364/oe.392207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
We develop a light-matter interface enabling strong and uniform coupling between a chain of cold atoms and photons of an optical cavity. This interface is a fiber Fabry-Perot cavity, doubly resonant for both the wavelength of the atomic transition and for a geometrically commensurate red-detuned intracavity trapping lattice. Fulfilling the condition of a strong and uniform atom-photon coupling requires optimization of the spatial overlap between the two standing waves in the cavity. In a strong-coupling cavity, where the mode waists and Rayleigh range are small, we derive the expression of the optimal trapping wavelength, taking into account the Gouy phase. The main parameter controlling the overlap of the standing waves is the relative phase shift at the reflection on the cavity mirrors between the two wavelengths, for which we derive the optimal value. We have built a microcavity optimized according to these results, employing custom-made mirrors with engineered reflection phase for both wavelengths. We present a method to measure with high precision the relative phase shift at reflection, which allows us to determine the spatial overlap of the two modes in this cavity.
Collapse
|
22
|
Gomez P, Martin F, Mazzinghi C, Benedicto Orenes D, Palacios S, Mitchell MW. Bose-Einstein Condensate Comagnetometer. PHYSICAL REVIEW LETTERS 2020; 124:170401. [PMID: 32412288 DOI: 10.1103/physrevlett.124.170401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
We describe a comagnetometer employing the f=1 and f=2 ground state hyperfine manifolds of a ^{87}Rb spinor Bose-Einstein condensate as colocated magnetometers. The hyperfine manifolds feature nearly opposite gyromagnetic ratios and thus the sum of their precession angles is only weakly coupled to external magnetic fields, while being highly sensitive to any effect that rotates both manifolds in the same way. The f=1 and f=2 transverse magnetizations and azimuth angles are independently measured by nondestructive Faraday rotation probing, and we demonstrate a 44.0(8) dB common-mode rejection in good agreement with theory. We show how the magnetometer coherence time can be extended to ∼1 s, by using spin-dependent interactions to inhibit hyperfine relaxing collisions between f=2 atoms. The technique could be used in high sensitivity searches for new physics on submillimeter length scales, precision studies of ultracold collision physics, and angle-resolved studies of quantum spin dynamics.
Collapse
Affiliation(s)
- Pau Gomez
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- Quside Technologies S.L., C/Esteve Terradas 1, Of. 217, 08860 Castelldefels (Barcelona), Spain
| | - Ferran Martin
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- Quside Technologies S.L., C/Esteve Terradas 1, Of. 217, 08860 Castelldefels (Barcelona), Spain
| | - Chiara Mazzinghi
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Daniel Benedicto Orenes
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Silvana Palacios
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Morgan W Mitchell
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- ICREA - Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
23
|
Muñoz-Arias MH, Poggi PM, Jessen PS, Deutsch IH. Simulating Nonlinear Dynamics of Collective Spins via Quantum Measurement and Feedback. PHYSICAL REVIEW LETTERS 2020; 124:110503. [PMID: 32242733 DOI: 10.1103/physrevlett.124.110503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
We study a method to simulate quantum many-body dynamics of spin ensembles using measurement-based feedback. By performing a weak collective measurement on a large ensemble of two-level quantum systems and applying global rotations conditioned on the measurement outcome, one can simulate the dynamics of a mean-field quantum kicked top, a standard paradigm of quantum chaos. We analytically show that there exists a regime in which individual quantum trajectories adequately recover the classical limit, and show the transition between noisy quantum dynamics to full deterministic chaos described by classical Lyapunov exponents. We also analyze the effects of decoherence, and show that the proposed scheme represents a robust method to explore the emergence of chaos from complex quantum dynamics in a realistic experimental platform based on an atom-light interface.
Collapse
Affiliation(s)
- Manuel H Muñoz-Arias
- Center for Quantum Information and Control, CQuIC, Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Pablo M Poggi
- Center for Quantum Information and Control, CQuIC, Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Poul S Jessen
- Center for Quantum Information and Control, CQuIC, College of Optical Sciences and Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
| | - Ivan H Deutsch
- Center for Quantum Information and Control, CQuIC, Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
24
|
Hobson R, Bowden W, Vianello A, Hill IR, Gill P. Cavity-enhanced non-destructive detection of atoms for an optical lattice clock. OPTICS EXPRESS 2019; 27:37099-37110. [PMID: 31878496 DOI: 10.1364/oe.27.037099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023]
Abstract
We demonstrate a new method of cavity-enhanced non-destructive detection of atoms for a strontium optical lattice clock. The detection scheme is shown to be linear in atom number up to at least 2×104 atoms, to reject technical noise sources, to achieve signal to noise ratio close to the photon shot noise limit, to provide spatially uniform atom-cavity coupling, and to minimize inhomogeneous ac Stark shifts. These features enable detection of atoms with minimal perturbation to the atomic state, a critical step towards realizing an ultra-high-stability, quantum-enhanced optical lattice clock.
Collapse
|
25
|
Compact chip-scale guided cold atom gyrometers for inertial navigation: Enabling technologies and design study. ACTA ACUST UNITED AC 2019. [DOI: 10.1116/1.5120348] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Garcia S, Stammeier M, Deiglmayr J, Merkt F, Wallraff A. Single-Shot Nondestructive Detection of Rydberg-Atom Ensembles by Transmission Measurement of a Microwave Cavity. PHYSICAL REVIEW LETTERS 2019; 123:193201. [PMID: 31765186 DOI: 10.1103/physrevlett.123.193201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Indexed: 06/10/2023]
Abstract
We present an experimental realization of single-shot nondestructive detection of ensembles of helium Rydberg atoms. We use the dispersive frequency shift of a superconducting microwave cavity interacting with the ensemble. By probing the transmission of the cavity, we determine the number of Rydberg atoms or the populations of Rydberg quantum states when the ensemble is prepared in a superposition. At the optimal microwave probe power, determined by the critical photon number, we reach single-shot detection of the atom number with 13% relative precision for ensembles of about 500 Rydberg atoms with a measurement backaction characterized by approximately 2% population transfer.
Collapse
Affiliation(s)
- S Garcia
- Department of Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - M Stammeier
- Department of Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - J Deiglmayr
- Laboratorium für Physikalische Chemie, ETH Zürich, CH-8093 Zürich, Switzerland
| | - F Merkt
- Laboratorium für Physikalische Chemie, ETH Zürich, CH-8093 Zürich, Switzerland
| | - A Wallraff
- Department of Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
27
|
Braverman B, Kawasaki A, Pedrozo-Peñafiel E, Colombo S, Shu C, Li Z, Mendez E, Yamoah M, Salvi L, Akamatsu D, Xiao Y, Vuletić V. Near-Unitary Spin Squeezing in ^{171}Yb. PHYSICAL REVIEW LETTERS 2019; 122:223203. [PMID: 31283296 DOI: 10.1103/physrevlett.122.223203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Spin squeezing can improve atomic precision measurements beyond the standard quantum limit (SQL), and unitary spin squeezing is essential for improving atomic clocks. We report substantial and nearly unitary spin squeezing in ^{171}Yb, an optical lattice clock atom. The collective nuclear spin of ∼10^{3} atoms is squeezed by cavity feedback, using light detuned from the system's resonances to attain unitarity. The observed precision gain over the SQL is limited by state readout to 6.5(4) dB, while the generated states offer a gain of 12.9(6) dB, limited by the curvature of the Bloch sphere. Using a squeezed state within 30% of unitarity, we demonstrate an interferometer that improves the averaging time over the SQL by a factor of 3.7(2). In the future, the squeezing can be simply transferred onto the optical-clock transition of ^{171}Yb.
Collapse
Affiliation(s)
- Boris Braverman
- Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Akio Kawasaki
- Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Edwin Pedrozo-Peñafiel
- Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Simone Colombo
- Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Chi Shu
- Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Zeyang Li
- Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Enrique Mendez
- Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Megan Yamoah
- Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Leonardo Salvi
- Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Dipartimento di Fisica e Astronomia and LENS-Università di Firenze, INFN-Sezione di Firenze, Via Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Daisuke Akamatsu
- Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563, Japan
| | - Yanhong Xiao
- Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Vladan Vuletić
- Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
28
|
Hurst HM, Spielman IB. Measurement-induced dynamics and stabilization of spinor-condensate domain walls. PHYSICAL REVIEW. A 2019; 99:10.1103/physreva.99.053612. [PMID: 32166204 PMCID: PMC7067049 DOI: 10.1103/physreva.99.053612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Weakly measuring many-body systems and allowing for feedback in real time can simultaneously create and measure new phenomena in quantum systems. We theoretically study the dynamics of a continuously measured two-component Bose-Einstein condensate (BEC) potentially containing a domain wall and focus on the tradeoff between usable information obtained from measurement and quantum backaction. Each weakly measured system yields a measurement record from which we extract real-time dynamics of the domain wall. We show that quantum backaction due to measurement causes two primary effects: domain-wall diffusion and overall heating. The system dynamics and signal-to-noise ratio depend on the choice of measurement observable. We propose a feedback protocol to dynamically create a stable domain wall in the regime where domain walls are unstable, giving a prototype example of Hamiltonian engineering using measurement and feedback.
Collapse
Affiliation(s)
- Hilary M Hurst
- Joint Quantum Institute, National Institute of Standards and Technology, and University of Maryland, Gaithersburg, Maryland 20899, USA
| | - I B Spielman
- Joint Quantum Institute, National Institute of Standards and Technology, and University of Maryland, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
29
|
Lewis-Swan RJ, Norcia MA, Cline JRK, Thompson JK, Rey AM. Robust Spin Squeezing via Photon-Mediated Interactions on an Optical Clock Transition. PHYSICAL REVIEW LETTERS 2018; 121:070403. [PMID: 30169094 DOI: 10.1103/physrevlett.121.070403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Cavity QED is a promising avenue for the deterministic generation of entangled and spin-squeezed states for quantum metrology. One archetypal scheme generates squeezing via collective one-axis twisting interactions. However, we show that in implementations using optical transitions in long-lived atoms the achievable squeezing is fundamentally limited by collectively enhanced emission into the cavity mode which is generated in parallel with the cavity-mediated spin-spin interactions. We propose an alternative scheme which generates a squeezed state that is protected from collective emission, and investigate its sensitivity to realistic sources of experimental noise and imperfections.
Collapse
Affiliation(s)
- Robert J Lewis-Swan
- JILA, NIST, and Department of Physics, University of Colorado, 440 UCB, Boulder, Colorado 80309, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| | - Matthew A Norcia
- JILA, NIST, and Department of Physics, University of Colorado, 440 UCB, Boulder, Colorado 80309, USA
| | - Julia R K Cline
- JILA, NIST, and Department of Physics, University of Colorado, 440 UCB, Boulder, Colorado 80309, USA
| | - James K Thompson
- JILA, NIST, and Department of Physics, University of Colorado, 440 UCB, Boulder, Colorado 80309, USA
| | - Ana Maria Rey
- JILA, NIST, and Department of Physics, University of Colorado, 440 UCB, Boulder, Colorado 80309, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
30
|
Salvi L, Poli N, Vuletić V, Tino GM. Squeezing on Momentum States for Atom Interferometry. PHYSICAL REVIEW LETTERS 2018; 120:033601. [PMID: 29400516 DOI: 10.1103/physrevlett.120.033601] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/06/2017] [Indexed: 06/07/2023]
Abstract
We propose and analyze a method that allows for the production of squeezed states of the atomic center-of-mass motion that can be injected into an atom interferometer. Our scheme employs dispersive probing in a ring resonator on a narrow transition in order to provide a collective measurement of the relative population of two momentum states. We show that this method is applicable to a Bragg diffraction-based strontium atom interferometer with large diffraction orders. This technique can be extended also to small diffraction orders and large atom numbers N by inducing atomic transparency at the frequency of the probe field, reaching an interferometer phase resolution scaling Δϕ∼N^{-3/4}. We show that for realistic parameters it is possible to obtain a 20 dB gain in interferometer phase estimation compared to the standard quantum limit. Our method is applicable to other atomic species where a narrow transition is available or can be synthesized.
Collapse
Affiliation(s)
- Leonardo Salvi
- Dipartimento di Fisica e Astronomia and LENS-Università di Firenze, INFN-Sezione di Firenze, Via Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Nicola Poli
- Dipartimento di Fisica e Astronomia and LENS-Università di Firenze, INFN-Sezione di Firenze, Via Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Vladan Vuletić
- Department of Physics, Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Guglielmo M Tino
- Dipartimento di Fisica e Astronomia and LENS-Università di Firenze, INFN-Sezione di Firenze, Via Sansone 1, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
31
|
Martin Ciurana F, Colangelo G, Slodička L, Sewell RJ, Mitchell MW. Entanglement-Enhanced Radio-Frequency Field Detection and Waveform Sensing. PHYSICAL REVIEW LETTERS 2017; 119:043603. [PMID: 29341778 DOI: 10.1103/physrevlett.119.043603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Indexed: 06/07/2023]
Abstract
We demonstrate a new technique for detecting the amplitude of arbitrarily chosen components of radio-frequency waveforms based on stroboscopic backaction evading measurements. We combine quantum nondemolition measurements and stroboscopic probing to detect waveform components with magnetic sensitivity beyond the standard quantum limit. Using an ensemble of 1.5×10^{6} cold rubidium atoms, we demonstrate entanglement-enhanced sensing of sinusoidal and linearly chirped waveforms, with 1.0(2) and 0.8(3) dB metrologically relevant noise reduction, respectively. We achieve volume-adjusted sensitivity of δBsqrt[V]≈3.96 fTsqrt[cm^{3}/Hz], comparable to the best rf magnetometers.
Collapse
Affiliation(s)
- F Martin Ciurana
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - G Colangelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - L Slodička
- Department of Optics, Palacký University, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - R J Sewell
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - M W Mitchell
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
32
|
Opatrný T. Quasicontinuous-Variable Quantum Computation with Collective Spins in Multipath Interferometers. PHYSICAL REVIEW LETTERS 2017; 119:010502. [PMID: 28731740 DOI: 10.1103/physrevlett.119.010502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Indexed: 06/07/2023]
Abstract
Collective spins of large atomic samples trapped inside optical resonators can carry quantum information that can be processed in a way similar to quantum computation with continuous variables. It is shown here that by combining the resonators in multipath interferometers one can realize coupling between different samples, and that polynomial Hamiltonians can be constructed by repeated spin rotations and twisting induced by dispersive interaction of the atoms with light. Application can be expected in the efficient simulation of quantum systems.
Collapse
Affiliation(s)
- Tomáš Opatrný
- Optics Department, Faculty of Science, Palacký University, 17. Listopadu 12, 77146 Olomouc, Czech Republic
| |
Collapse
|
33
|
Colangelo G, Ciurana FM, Bianchet LC, Sewell RJ, Mitchell MW. Simultaneous tracking of spin angle and amplitude beyond classical limits. Nature 2017; 543:525-528. [PMID: 28332519 PMCID: PMC5407441 DOI: 10.1038/nature21434] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/19/2017] [Indexed: 11/09/2022]
Abstract
Measurement of spin precession is central to extreme sensing in physics, geophysics, chemistry, nanotechnology and neuroscience, and underlies magnetic resonance spectroscopy. Because there is no spin-angle operator, any measurement of spin precession is necessarily indirect, for example, it may be inferred from spin projectors at different times. Such projectors do not commute, and so quantum measurement back-action-the random change in a quantum state due to measurement-necessarily enters the spin measurement record, introducing errors and limiting sensitivity. Here we show that this disturbance in the spin projector can be reduced below N1/2-the classical limit for N spins-by directing the quantum measurement back-action almost entirely into an unmeasured spin component. This generates a planar squeezed state that, because spins obey non-Heisenberg uncertainty relations, enables simultaneous precise knowledge of spin angle and spin amplitude. We use high-dynamic-range optical quantum non-demolition measurements applied to a precessing magnetic spin ensemble to demonstrate spin tracking with steady-state angular sensitivity 2.9 decibels below the standard quantum limit, simultaneously with amplitude sensitivity 7.0 decibels below the Poissonian variance. The standard quantum limit and Poissonian variance indicate the best possible sensitivity with independent particles. Our method surpasses these limits in non-commuting observables, enabling orders-of-magnitude improvements in sensitivity for state-of-the-art sensing and spectroscopy.
Collapse
Affiliation(s)
- Giorgio Colangelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Ferran Martin Ciurana
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Lorena C. Bianchet
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Robert J. Sewell
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Morgan W. Mitchell
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
- ICREA – Institució Catalana de Recerca i Estudis Avançats, 08015 Barcelona, Spain
| |
Collapse
|
34
|
Huang Y, Xiong HN, Yang Y, Hu ZD, Xi Z. Quantum control of spin-nematic squeezing in a dipolar spin-1 condensate. Sci Rep 2017; 7:43159. [PMID: 28233786 PMCID: PMC5324127 DOI: 10.1038/srep43159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/20/2017] [Indexed: 11/09/2022] Open
Abstract
Versatile controllability of interactions and magnetic field in ultracold atomic gases ha now reached an era where spin mixing dynamics and spin-nematic squeezing can be studied. Recent experiments have realized spin-nematic squeezed vacuum and dynamic stabilization following a quench through a quantum phase transition. Here we propose a scheme for storage of maximal spin-nematic squeezing, with its squeezing angle maintained in a fixed direction, in a dipolar spin-1 condensate by applying a microwave pulse at a time that maximal squeezing occurs. The dynamic stabilization of the system is achieved by manipulating the external periodic microwave pulses. The stability diagram for the range of pulse periods and phase shifts that stabilize the dynamics is numerical simulated and agrees with a stability analysis. Moreover, the stability range coincides well with the spin-nematic vacuum squeezed region which indicates that the spin-nematic squeezed vacuum will never disappear as long as the spin dynamics are stabilized.
Collapse
Affiliation(s)
- Yixiao Huang
- School of Science, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, 310023, China.,College of Computer Science, Shaanxi Normal University, Xi'an 710062, China
| | - Heng-Na Xiong
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Yang Yang
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Zheng-Da Hu
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, Wuxi 214122, China
| | - Zhengjun Xi
- College of Computer Science, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
35
|
Zhang YC, Zhou XF, Zhou X, Guo GC, Zhou ZW. Cavity-Assisted Single-Mode and Two-Mode Spin-Squeezed States via Phase-Locked Atom-Photon Coupling. PHYSICAL REVIEW LETTERS 2017; 118:083604. [PMID: 28282155 DOI: 10.1103/physrevlett.118.083604] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Indexed: 06/06/2023]
Abstract
We propose a scheme to realize the two-axis countertwisting spin-squeezing Hamiltonian inside an optical cavity with the aid of phase-locked atom-photon coupling. By careful analysis and extensive simulation, we demonstrate that our scheme is robust against dissipation caused by cavity loss and atomic spontaneous emission, and it can achieve significantly higher squeezing than one-axis twisting. We further show how our idea can be extended to generate two-mode spin-squeezed states in two coupled cavities. Because of its easy implementation and high tunability, our scheme is experimentally realizable with current technologies.
Collapse
Affiliation(s)
- Yong-Chang Zhang
- Key Laboratory of Quantum Information, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xiang-Fa Zhou
- Key Laboratory of Quantum Information, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Xingxiang Zhou
- Key Laboratory of Quantum Information, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Guang-Can Guo
- Key Laboratory of Quantum Information, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zheng-Wei Zhou
- Key Laboratory of Quantum Information, Chinese Academy of Sciences, University of Science and Technology of China, Hefei 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
36
|
Luo XY, Zou YQ, Wu LN, Liu Q, Han MF, Tey MK, You L. Deterministic entanglement generation from driving through quantum phase transitions. Science 2017; 355:620-623. [DOI: 10.1126/science.aag1106] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 01/12/2017] [Indexed: 11/02/2022]
|
37
|
Kruse I, Lange K, Peise J, Lücke B, Pezzè L, Arlt J, Ertmer W, Lisdat C, Santos L, Smerzi A, Klempt C. Improvement of an Atomic Clock using Squeezed Vacuum. PHYSICAL REVIEW LETTERS 2016; 117:143004. [PMID: 27740781 DOI: 10.1103/physrevlett.117.143004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Indexed: 06/06/2023]
Abstract
Since the pioneering work of Ramsey, atom interferometers are employed for precision metrology, in particular to measure time and to realize the second. In a classical interferometer, an ensemble of atoms is prepared in one of the two input states, whereas the second one is left empty. In this case, the vacuum noise restricts the precision of the interferometer to the standard quantum limit (SQL). Here, we propose and experimentally demonstrate a novel clock configuration that surpasses the SQL by squeezing the vacuum in the empty input state. We create a squeezed vacuum state containing an average of 0.75 atoms to improve the clock sensitivity of 10000 atoms by 2.05_{-0.37}^{+0.34} dB. The SQL poses a significant limitation for today's microwave fountain clocks, which serve as the main time reference. We evaluate the major technical limitations and challenges for devising a next generation of fountain clocks based on atomic squeezed vacuum.
Collapse
Affiliation(s)
- I Kruse
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - K Lange
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - J Peise
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - B Lücke
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - L Pezzè
- QSTAR, INO-CNR and LENS, Largo Enrico Fermi 2, I-50125 Firenze, Italy
| | - J Arlt
- Institut for Fysik og Astronomi, Aarhus Universitet, Ny Munkegade 120, DK-8000 Århus C, Denmark
| | - W Ertmer
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - C Lisdat
- Physikalisch-Technische Bundesanstalt, Bundesallee 100, D-38116 Braunschweig, Germany
| | - L Santos
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, D-30167 Hannover, Germany
| | - A Smerzi
- QSTAR, INO-CNR and LENS, Largo Enrico Fermi 2, I-50125 Firenze, Italy
| | - C Klempt
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| |
Collapse
|
38
|
McConnell R, Zhang H, Hu J, Ćuk S, Vuletić V. Entanglement with negative Wigner function of three thousand atoms heralded by one photon. ACTA ACUST UNITED AC 2016. [DOI: 10.1088/1742-6596/723/1/012054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
39
|
Hosten O, Krishnakumar R, Engelsen NJ, Kasevich MA. Quantum phase magnification. Science 2016; 352:1552-5. [DOI: 10.1126/science.aaf3397] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/17/2016] [Indexed: 11/02/2022]
|
40
|
Cox KC, Greve GP, Weiner JM, Thompson JK. Deterministic Squeezed States with Collective Measurements and Feedback. PHYSICAL REVIEW LETTERS 2016; 116:093602. [PMID: 26991175 DOI: 10.1103/physrevlett.116.093602] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Indexed: 06/05/2023]
Abstract
We demonstrate the creation of entangled, spin-squeezed states using a collective, or joint, measurement and real-time feedback. The pseudospin state of an ensemble of N=5×10^{4} laser-cooled ^{87}Rb atoms is deterministically driven to a specified population state with angular resolution that is a factor of 5.5(8) [7.4(6) dB] in variance below the standard quantum limit for unentangled atoms-comparable to the best enhancements using only unitary evolution. Without feedback, conditioning on the outcome of the joint premeasurement, we directly observe up to 59(8) times [17.7(6) dB] improvement in quantum phase variance relative to the standard quantum limit for N=4×10^{5} atoms. This is one of the largest reported entanglement enhancements to date in any system.
Collapse
Affiliation(s)
- Kevin C Cox
- JILA, NIST, and University of Colorado, 440 UCB, Boulder, Colorado 80309, USA
| | - Graham P Greve
- JILA, NIST, and University of Colorado, 440 UCB, Boulder, Colorado 80309, USA
| | - Joshua M Weiner
- JILA, NIST, and University of Colorado, 440 UCB, Boulder, Colorado 80309, USA
| | - James K Thompson
- JILA, NIST, and University of Colorado, 440 UCB, Boulder, Colorado 80309, USA
| |
Collapse
|
41
|
Measurement noise 100 times lower than the quantum-projection limit using entangled atoms. Nature 2016; 529:505-8. [DOI: 10.1038/nature16176] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/22/2015] [Indexed: 11/08/2022]
|
42
|
Chen W, Hu J, Duan Y, Braverman B, Zhang H, Vuletić V. Carving Complex Many-Atom Entangled States by Single-Photon Detection. PHYSICAL REVIEW LETTERS 2015; 115:250502. [PMID: 26722909 DOI: 10.1103/physrevlett.115.250502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Indexed: 06/05/2023]
Abstract
We propose a versatile and efficient method to generate a broad class of complex entangled states of many atoms via the detection of a single photon. For an atomic ensemble contained in a strongly coupled optical cavity illuminated by weak single- or multifrequency light, the atom-light interaction entangles the frequency spectrum of a transmitted photon with the collective spin of the atomic ensemble. Simple time-resolved detection of the transmitted photon then projects the atomic ensemble into a desired pure entangled state. This method can be implemented with existing technology, yields high success probability per trial, and can generate complex entangled states such as mesoscopic superposition states of coherent spin states with high fidelity.
Collapse
Affiliation(s)
- Wenlan Chen
- Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jiazhong Hu
- Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Yiheng Duan
- Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Boris Braverman
- Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Hao Zhang
- Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Vladan Vuletić
- Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
43
|
Satisfying the Einstein-Podolsky-Rosen criterion with massive particles. Nat Commun 2015; 6:8984. [PMID: 26612105 PMCID: PMC4674826 DOI: 10.1038/ncomms9984] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/23/2015] [Indexed: 11/11/2022] Open
Abstract
In 1935, Einstein, Podolsky and Rosen (EPR) questioned the completeness of quantum mechanics by devising a quantum state of two massive particles with maximally correlated space and momentum coordinates. The EPR criterion qualifies such continuous-variable entangled states, where a measurement of one subsystem seemingly allows for a prediction of the second subsystem beyond the Heisenberg uncertainty relation. Up to now, continuous-variable EPR correlations have only been created with photons, while the demonstration of such strongly correlated states with massive particles is still outstanding. Here we report on the creation of an EPR-correlated two-mode squeezed state in an ultracold atomic ensemble. The state shows an EPR entanglement parameter of 0.18(3), which is 2.4 s.d. below the threshold 1/4 of the EPR criterion. We also present a full tomographic reconstruction of the underlying many-particle quantum state. The state presents a resource for tests of quantum nonlocality and a wide variety of applications in the field of continuous-variable quantum information and metrology. Continuous-variables EPR states present a resource for applications to quantum information processing and metrology, but these states have been created until now only with photon pairs. Here, the authors report the creation of an EPR-correlated two-mode squeezed states in an ultracold atomic ensemble.
Collapse
|
44
|
Tanaka T, Knott P, Matsuzaki Y, Dooley S, Yamaguchi H, Munro WJ, Saito S. Proposed Robust Entanglement-Based Magnetic Field Sensor Beyond the Standard Quantum Limit. PHYSICAL REVIEW LETTERS 2015; 115:170801. [PMID: 26551094 DOI: 10.1103/physrevlett.115.170801] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Indexed: 06/05/2023]
Abstract
Recently, there have been significant developments in entanglement-based quantum metrology. However, entanglement is fragile against experimental imperfections, and quantum sensing to beat the standard quantum limit in scaling has not yet been achieved in realistic systems. Here, we show that it is possible to overcome such restrictions so that one can sense a magnetic field with an accuracy beyond the standard quantum limit even under the effect of decoherence, by using a realistic entangled state that can be easily created even with current technology. Our scheme could pave the way for the realizations of practical entanglement-based magnetic field sensors.
Collapse
Affiliation(s)
- Tohru Tanaka
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan
- Department of Physics, Waseda University, Tokyo 169-8555, Japan
| | - Paul Knott
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| | - Yuichiro Matsuzaki
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| | - Shane Dooley
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan
- National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
| | - Hiroshi Yamaguchi
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| | - William J Munro
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| | - Shiro Saito
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| |
Collapse
|
45
|
Barontini G, Hohmann L, Haas F, Esteve J, Reichel J. Deterministic generation of multiparticle entanglement by quantum Zeno dynamics. Science 2015; 349:1317-21. [DOI: 10.1126/science.aaa0754] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
46
|
Fukuhara T, Hild S, Zeiher J, Schauß P, Bloch I, Endres M, Gross C. Spatially Resolved Detection of a Spin-Entanglement Wave in a Bose-Hubbard Chain. PHYSICAL REVIEW LETTERS 2015; 115:035302. [PMID: 26230800 DOI: 10.1103/physrevlett.115.035302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Indexed: 06/04/2023]
Abstract
Entanglement is an essential property of quantum many-body systems. However, its local detection is challenging and was so far limited to spin degrees of freedom in ion chains. Here we measure entanglement between the spins of atoms located on two lattice sites in a one-dimensional Bose-Hubbard chain which features both local spin- and particle-number fluctuations. Starting with an initially localized spin impurity, we observe an outwards propagating entanglement wave and show quantitatively how entanglement in the spin sector rapidly decreases with increasing particle-number fluctuations in the chain.
Collapse
Affiliation(s)
- Takeshi Fukuhara
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
| | - Sebastian Hild
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
| | - Johannes Zeiher
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
| | - Peter Schauß
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
| | - Immanuel Bloch
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
- Ludwig-Maximilians-Universität, Fakultät für Physik, 80799 München, Germany
| | - Manuel Endres
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Christian Gross
- Max-Planck-Institut für Quantenoptik, 85748 Garching, Germany
| |
Collapse
|
47
|
Liu GQ, Zhang YR, Chang YC, Yue JD, Fan H, Pan XY. Demonstration of entanglement-enhanced phase estimation in solid. Nat Commun 2015; 6:6726. [PMID: 25832364 PMCID: PMC4396365 DOI: 10.1038/ncomms7726] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 02/21/2015] [Indexed: 11/09/2022] Open
Abstract
Precise parameter estimation plays a central role in science and technology. The statistical error in estimation can be decreased by repeating measurement, leading to that the resultant uncertainty of the estimated parameter is proportional to the square root of the number of repetitions in accordance with the central limit theorem. Quantum parameter estimation, an emerging field of quantum technology, aims to use quantum resources to yield higher statistical precision than classical approaches. Here we report the first room-temperature implementation of entanglement-enhanced phase estimation in a solid-state system: the nitrogen-vacancy centre in pure diamond. We demonstrate a super-resolving phase measurement with two entangled qubits of different physical realizations: an nitrogen-vacancy centre electron spin and a proximal (13)C nuclear spin. The experimental data shows clearly the uncertainty reduction when entanglement resource is used, confirming the theoretical expectation. Our results represent an elemental demonstration of enhancement of quantum metrology against classical procedure.
Collapse
Affiliation(s)
- Gang-Qin Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu-Ran Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan-Chun Chang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jie-Dong Yue
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Heng Fan
- 1] Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China [2] Collaborative Innovation Center of Quantum Matter, Beijing 100190, China
| | - Xin-Yu Pan
- 1] Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China [2] Collaborative Innovation Center of Quantum Matter, Beijing 100190, China
| |
Collapse
|
48
|
McConnell R, Zhang H, Hu J, Ćuk S, Vuletić V. Entanglement with negative Wigner function of almost 3,000 atoms heralded by one photon. Nature 2015; 519:439-42. [DOI: 10.1038/nature14293] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/27/2015] [Indexed: 11/09/2022]
|
49
|
Xu M, Holland MJ. Conditional ramsey spectroscopy with synchronized atoms. PHYSICAL REVIEW LETTERS 2015; 114:103601. [PMID: 25815931 DOI: 10.1103/physrevlett.114.103601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Indexed: 06/04/2023]
Abstract
We investigate Ramsey spectroscopy performed on a synchronized ensemble of two-level atoms. The synchronization is induced by the collective coupling of the atoms to a heavily damped mode of an optical cavity. We show that, in principle, with this synchronized system it is possible to observe Ramsey fringes indefinitely, even in the presence of spontaneous emission and other sources of individual-atom dephasing. This could have important consequences for atomic clocks and a wide range of precision metrology applications.
Collapse
Affiliation(s)
- Minghui Xu
- JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, Colorado 80309-0440, USA
| | - M J Holland
- JILA, National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, Colorado 80309-0440, USA
| |
Collapse
|
50
|
Auccaise R, Araujo-Ferreira AG, Sarthour RS, Oliveira IS, Bonagamba TJ, Roditi I. Spin squeezing in a quadrupolar nuclei NMR system. PHYSICAL REVIEW LETTERS 2015; 114:043604. [PMID: 25679893 DOI: 10.1103/physrevlett.114.043604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Indexed: 06/04/2023]
Abstract
We have produced and characterized spin-squeezed states at a temperature of 26 °C in a nuclear magnetic resonance quadrupolar system. The experiment was carried out on 133Cs nuclei of spin I=7/2 in a sample of lyotropic liquid crystal. The source of spin squeezing was identified as the interaction between the quadrupole moment of the nuclei and the electric field gradients present within the molecules. We use the spin angular momentum representation to describe formally the nonlinear operators that produce the spin squeezing on a Hilbert space of dimension 2I+1=8. The quantitative and qualitative characterization of this spin-squeezing phenomenon is expressed by a squeezing parameter and squeezing angle developed for the two-mode Bose-Einstein condensate system, as well as by the Wigner quasiprobability distribution function. The generality of the present experimental scheme points to potential applications in solid-state physics.
Collapse
Affiliation(s)
- R Auccaise
- Departamento de Física, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, Paraná, Brazil
| | - A G Araujo-Ferreira
- Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970 São Carlos, São Paulo, Brazil
| | - R S Sarthour
- Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Rio de Janeiro, Brazil
| | - I S Oliveira
- Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Rio de Janeiro, Brazil
| | - T J Bonagamba
- Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970 São Carlos, São Paulo, Brazil
| | - I Roditi
- Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|