1
|
Sahle CJ, Gerbon F, Henriquet C, Verbeni R, Detlefs B, Longo A, Mirone A, Lagier MC, Otte F, Spiekermann G, Petitgirard S. A compact von Hámos spectrometer for parallel X-ray Raman scattering and X-ray emission spectroscopy at ID20 of the European Synchrotron Radiation Facility. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:251-257. [PMID: 36601944 PMCID: PMC9814058 DOI: 10.1107/s1600577522011171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
A compact spectrometer for medium-resolution resonant and non-resonant X-ray emission spectroscopy in von Hámos geometry is described. The main motivation for the design and construction of the spectrometer is to allow for acquisition of non-resonant X-ray emission spectra while measuring non-resonant X-ray Raman scattering spectra at beamline ID20 of the European Synchrotron Radiation Facility. Technical details are provided and the performance and possible use of the spectrometer are demonstrated by presenting results of several X-ray spectroscopic methods on various compounds.
Collapse
Affiliation(s)
- Ch. J. Sahle
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38000 Grenoble, France
| | - F. Gerbon
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38000 Grenoble, France
| | - C. Henriquet
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38000 Grenoble, France
| | - R. Verbeni
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38000 Grenoble, France
| | - B. Detlefs
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38000 Grenoble, France
| | - A. Longo
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38000 Grenoble, France
| | - A. Mirone
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38000 Grenoble, France
| | - M.-C. Lagier
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38000 Grenoble, France
| | - F. Otte
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Resource Ecology, PO Box 510119, 01314 Dresden, Germany
- The Rossendorf Beamline at ESRF – The European Synchrotron, CS40220, 38043 Grenoble Cedex 9, France
| | - G. Spiekermann
- Department of Earth Sciences, ETH Zürich, Zürich 8092, Switzerland
| | - S. Petitgirard
- Department of Earth Sciences, ETH Zürich, Zürich 8092, Switzerland
| |
Collapse
|
2
|
Bordage A, N’Diaye A, Bleuzen A. Prussian Blue analogs and transition metal K-edge XMCD: a longstanding friendship. CR CHIM 2022. [DOI: 10.5802/crchim.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
3
|
Bazin D, Reguer S, Vantelon D, Haymann JP, Letavernier E, Frochot V, Daudon M, Esteve E, Colboc H. XANES spectroscopy for the clinician. CR CHIM 2022. [DOI: 10.5802/crchim.129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
4
|
Sanchez-Cano C, Alvarez-Puebla RA, Abendroth JM, Beck T, Blick R, Cao Y, Caruso F, Chakraborty I, Chapman HN, Chen C, Cohen BE, Conceição ALC, Cormode DP, Cui D, Dawson KA, Falkenberg G, Fan C, Feliu N, Gao M, Gargioni E, Glüer CC, Grüner F, Hassan M, Hu Y, Huang Y, Huber S, Huse N, Kang Y, Khademhosseini A, Keller TF, Körnig C, Kotov NA, Koziej D, Liang XJ, Liu B, Liu S, Liu Y, Liu Z, Liz-Marzán LM, Ma X, Machicote A, Maison W, Mancuso AP, Megahed S, Nickel B, Otto F, Palencia C, Pascarelli S, Pearson A, Peñate-Medina O, Qi B, Rädler J, Richardson JJ, Rosenhahn A, Rothkamm K, Rübhausen M, Sanyal MK, Schaak RE, Schlemmer HP, Schmidt M, Schmutzler O, Schotten T, Schulz F, Sood AK, Spiers KM, Staufer T, Stemer DM, Stierle A, Sun X, Tsakanova G, Weiss PS, Weller H, Westermeier F, Xu M, Yan H, Zeng Y, Zhao Y, Zhao Y, Zhu D, Zhu Y, Parak WJ. X-ray-Based Techniques to Study the Nano-Bio Interface. ACS NANO 2021; 15:3754-3807. [PMID: 33650433 PMCID: PMC7992135 DOI: 10.1021/acsnano.0c09563] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/25/2021] [Indexed: 05/03/2023]
Abstract
X-ray-based analytics are routinely applied in many fields, including physics, chemistry, materials science, and engineering. The full potential of such techniques in the life sciences and medicine, however, has not yet been fully exploited. We highlight current and upcoming advances in this direction. We describe different X-ray-based methodologies (including those performed at synchrotron light sources and X-ray free-electron lasers) and their potentials for application to investigate the nano-bio interface. The discussion is predominantly guided by asking how such methods could better help to understand and to improve nanoparticle-based drug delivery, though the concepts also apply to nano-bio interactions in general. We discuss current limitations and how they might be overcome, particularly for future use in vivo.
Collapse
Affiliation(s)
- Carlos Sanchez-Cano
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
| | - Ramon A. Alvarez-Puebla
- Universitat
Rovira i Virgili, 43007 Tarragona, Spain
- ICREA, Passeig Lluís
Companys 23, 08010 Barcelona, Spain
| | - John M. Abendroth
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Tobias Beck
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Robert Blick
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yuan Cao
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Frank Caruso
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology
and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Indranath Chakraborty
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Henry N. Chapman
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Centre
for Ultrafast Imaging, Universität
Hamburg, 22761 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Chunying Chen
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Bruce E. Cohen
- The
Molecular Foundry and Division of Molecular Biophysics and Integrated
Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | | | - David P. Cormode
- Radiology
Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daxiang Cui
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | - Gerald Falkenberg
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Chunhai Fan
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Neus Feliu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- CAN, Fraunhofer Institut, 20146 Hamburg, Germany
| | - Mingyuan Gao
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Elisabetta Gargioni
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Claus-C. Glüer
- Section
Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Clinic Schleswig-Holstein and Christian-Albrechts-University
Kiel, 24105 Kiel, Germany
| | - Florian Grüner
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Moustapha Hassan
- Karolinska University Hospital, Huddinge, and Karolinska
Institutet, 17177 Stockholm, Sweden
| | - Yong Hu
- College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, China
| | - Yalan Huang
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Samuel Huber
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nils Huse
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yanan Kang
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90049, United States
| | - Thomas F. Keller
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Christian Körnig
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Nicholas A. Kotov
- Department
of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Biointerfaces
Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Michigan
Institute for Translational Nanotechnology (MITRAN), Ypsilanti, Michigan 48198, United States
| | - Dorota Koziej
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Xing-Jie Liang
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Beibei Liu
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 China
| | - Yang Liu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ziyao Liu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Luis M. Liz-Marzán
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
- Centro de Investigación Biomédica
en Red de Bioingeniería,
Biomateriales y Nanomedicina (CIBER-BBN), Paseo de Miramon 182, 20014 Donostia-San Sebastián, Spain
| | - Xiaowei Ma
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Andres Machicote
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Wolfgang Maison
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Adrian P. Mancuso
- European XFEL, 22869 Schenefeld, Germany
- Department of Chemistry and Physics, La
Trobe Institute for Molecular
Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Saad Megahed
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Bert Nickel
- Sektion Physik, Ludwig Maximilians Universität
München, 80539 München, Germany
| | - Ferdinand Otto
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Cristina Palencia
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | | | - Arwen Pearson
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Oula Peñate-Medina
- Section
Biomedical Imaging, Department of Radiology and Neuroradiology, University Medical Clinic Schleswig-Holstein and Christian-Albrechts-University
Kiel, 24105 Kiel, Germany
| | - Bing Qi
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Joachim Rädler
- Sektion Physik, Ludwig Maximilians Universität
München, 80539 München, Germany
| | - Joseph J. Richardson
- ARC
Centre of Excellence in Convergent Bio-Nano Science and Technology
and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Axel Rosenhahn
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Kai Rothkamm
- Department
of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Michael Rübhausen
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | | | - Raymond E. Schaak
- Department of Chemistry, Department of Chemical Engineering,
and
Materials Research Institute, The Pennsylvania
State University, University Park, Pensylvania 16802, United States
| | - Heinz-Peter Schlemmer
- Department of Radiology, German Cancer
Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Marius Schmidt
- Department of Physics, University
of Wisconsin-Milwaukee, 3135 N. Maryland Avenue, Milwaukee, Wisconsin 53211, United States
| | - Oliver Schmutzler
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | | | - Florian Schulz
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - A. K. Sood
- Department of Physics, Indian Institute
of Science, Bangalore 560012, India
| | - Kathryn M. Spiers
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Theresa Staufer
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Universität
Hamburg and Center for Free-Electron Laser Science, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Dominik M. Stemer
- California NanoSystems Institute, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Andreas Stierle
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Xing Sun
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- Molecular Science and Biomedicine Laboratory (MBL) State
Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry
and Chemical Engineering, Hunan University, Changsha 410082, P.R. China
| | - Gohar Tsakanova
- Institute of Molecular Biology of National
Academy of Sciences of
Republic of Armenia, 7 Hasratyan str., 0014 Yerevan, Armenia
- CANDLE Synchrotron Research Institute, 31 Acharyan str., 0040 Yerevan, Armenia
| | - Paul S. Weiss
- California NanoSystems Institute, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Bioengineering, University
of California, Los Angeles, Los Angeles, California 90095, United States
| | - Horst Weller
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- CAN, Fraunhofer Institut, 20146 Hamburg, Germany
| | - Fabian Westermeier
- Deutsches
Elektronen-Synchrotron DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology,
Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085 China
| | - Huijie Yan
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Yuan Zeng
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ying Zhao
- Karolinska University Hospital, Huddinge, and Karolinska
Institutet, 17177 Stockholm, Sweden
| | - Yuliang Zhao
- National
Center for Nanoscience and Technology (NCNST), 100190 Beijing China
| | - Dingcheng Zhu
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
| | - Ying Zhu
- Bioimaging Center, Shanghai Synchrotron Radiation Facility,
Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Division of Physical Biology, CAS Key Laboratory
of Interfacial
Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Wolfgang J. Parak
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, 20014 Donostia San Sebastián, Spain
- Mathematics,
Informatics, and Natural Sciences (MIN) Faculty, University of Hamburg, 20354 Hamburg, Germany
- School
of Chemistry and Chemical Engineering, Frontiers Science Center for
Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Lafuerza S, Retegan M, Detlefs B, Chatterjee R, Yachandra V, Yano J, Glatzel P. New reflections on hard X-ray photon-in/photon-out spectroscopy. NANOSCALE 2020; 12:16270-16284. [PMID: 32760987 PMCID: PMC7808884 DOI: 10.1039/d0nr01983f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Analysis of the electronic structure and local coordination of an element is an important aspect in the study of the chemical and physical properties of materials. This is particularly relevant at the nanoscale where new phases of matter may emerge below a critical size. X-ray emission spectroscopy (XES) at synchrotron radiation sources and free electron lasers has enriched the field of X-ray spectroscopy. The spectroscopic techniques derived from the combination of X-ray absorption and emission spectroscopy (XAS-XES), such as resonant inelastic X-ray scattering (RIXS) and high energy resolution fluorescence detected (HERFD) XAS, are an ideal tool for the study of nanomaterials. New installations and beamline upgrades now often include wavelength dispersive instruments for the analysis of the emitted X-rays. With the growing use of XAS-XES, scientists are learning about the possibilities and pitfalls. We discuss some experimental aspects, assess the feasibility of measuring weak fluorescence lines in dilute, radiation sensitive samples, and present new experimental approaches for studying magnetic properties of colloidal nanoparticles directly in the liquid phase.
Collapse
Affiliation(s)
- Sara Lafuerza
- European Synchrotron Radiation Facility, 71 Avenue des Martyres, 38000 Grenoble, France.
| | | | | | | | | | | | | |
Collapse
|
6
|
Kuciakowski J, Kmita A, Lachowicz D, Wytrwal-Sarna M, Pitala K, Lafuerza S, Koziej D, Juhin A, Sikora M. Selective magnetometry of superparamagnetic iron oxide nanoparticles in liquids. NANOSCALE 2020; 12:16420-16426. [PMID: 32744559 DOI: 10.1039/d0nr02866e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We show that the properties of superparamagnetic iron oxide nanoparticles suspended in liquids can be effectively studied using Magnetic Circular Dichroism in Resonant Inelastic X-ray Scattering. Analysis of the spectral shape and magnetic contrast produced by this experiment enables an assessment of the site distribution and magnetic state of metal ions in the spinel phase. The selective magnetization profile of particles as derived from the field dependence of dichroism empowers an estimation of particle size distribution. Furthermore, the new proposed methodology discriminates sizes that are below the detection limits of X-ray and light scattering probes and that are difficult to spot in TEM.
Collapse
Affiliation(s)
- Juliusz Kuciakowski
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. Mickiewicza 30, 30-059 Krakow, Poland. and AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Angelika Kmita
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. Mickiewicza 30, 30-059 Krakow, Poland.
| | - Dorota Lachowicz
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. Mickiewicza 30, 30-059 Krakow, Poland.
| | - Magdalena Wytrwal-Sarna
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. Mickiewicza 30, 30-059 Krakow, Poland.
| | - Krzysztof Pitala
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. Mickiewicza 30, 30-059 Krakow, Poland. and AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Sara Lafuerza
- European Synchrotron Radiation Facility, CS40220, 38043 Grenoble Cedex 9, France
| | - Dorota Koziej
- Institute of Nanostructure- and Solid State Physics, Center for Hybrid Nanostructures, University of Hamburg, Luruper Chaussee 149, 22607 Hamburg, Germany
| | - Amélie Juhin
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, UMR CNRS 7590, Muséum National d'Histoire Naturelle, 4 Place Jussieu, 75005 Paris, France
| | - Marcin Sikora
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. Mickiewicza 30, 30-059 Krakow, Poland.
| |
Collapse
|
7
|
Daffé N, Zečević J, Trohidou KN, Sikora M, Rovezzi M, Carvallo C, Vasilakaki M, Neveu S, Meeldijk JD, Bouldi N, Gavrilov V, Guyodo Y, Choueikani F, Dupuis V, Taverna D, Sainctavit P, Juhin A. Bad neighbour, good neighbour: how magnetic dipole interactions between soft and hard ferrimagnetic nanoparticles affect macroscopic magnetic properties in ferrofluids. NANOSCALE 2020; 12:11222-11231. [PMID: 32412032 DOI: 10.1039/d0nr02023k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Fluids responding to magnetic fields (ferrofluids) offer a scene with no equivalent in nature to explore long-range magnetic dipole interactions. Here, we studied the very original class of binary ferrofluids, embedding soft and hard ferrimagnetic nanoparticles. We used a combination of X-ray magnetic spectroscopy measurements supported by multi-scale experimental techniques and Monte-Carlo simulations to unveil the origin of the emergent macroscopic magnetic properties of the binary mixture. We found that the association of soft and hard magnetic nanoparticles in the fluid has a considerable influence on their inherent magnetic properties. While the ferrofluid remains in a single phase, magnetic interactions at the nanoscale between both types of particles induce a modification of their respective coercive fields. By connecting the microscopic properties of binary ferrofluids containing small particles, our findings lay the groundwork for the manipulation of magnetic interactions between particles at the nanometer scale in magnetic liquids.
Collapse
Affiliation(s)
- Niéli Daffé
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS, MNHN, UMR7590, 4 place Jussieu, 75052 Paris Cedex 05, France. and Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin - BP48, 91192 Gif-sur-Yvette, France and Laboratoire de Physicochimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX), Sorbonne Université, CNRS, F-75005 Paris, France
| | - Jovana Zečević
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Kalliopi N Trohidou
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", 153 10 Aghia Paraskevi, Attiki, Greece
| | - Marcin Sikora
- AGH University of Science and Technology, Academic Centre for Materials and Nanotechnology, Al. Mickiewicza 30, 30-059 Krakow, Poland
| | - Mauro Rovezzi
- Université Grenoble Alpes, CNRS, Institut de Recherche pour le Développement, Irstea, Météo France, OSUG, FAME, 38000 Grenoble, France
| | - Claire Carvallo
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS, MNHN, UMR7590, 4 place Jussieu, 75052 Paris Cedex 05, France.
| | - Marianna Vasilakaki
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", 153 10 Aghia Paraskevi, Attiki, Greece
| | - Sophie Neveu
- Laboratoire de Physicochimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX), Sorbonne Université, CNRS, F-75005 Paris, France
| | - Johannes D Meeldijk
- Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Nadejda Bouldi
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS, MNHN, UMR7590, 4 place Jussieu, 75052 Paris Cedex 05, France. and Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin - BP48, 91192 Gif-sur-Yvette, France
| | - Véronica Gavrilov
- Laboratoire de Physicochimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX), Sorbonne Université, CNRS, F-75005 Paris, France
| | - Yohan Guyodo
- Université de Paris, Institut de physique du globe de Paris (IPGP), CNRS, F-75005 Paris, France
| | - Fadi Choueikani
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin - BP48, 91192 Gif-sur-Yvette, France
| | - Vincent Dupuis
- Laboratoire de Physicochimie des Electrolytes et Nanosystèmes Interfaciaux (PHENIX), Sorbonne Université, CNRS, F-75005 Paris, France
| | - Dario Taverna
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS, MNHN, UMR7590, 4 place Jussieu, 75052 Paris Cedex 05, France.
| | - Philippe Sainctavit
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS, MNHN, UMR7590, 4 place Jussieu, 75052 Paris Cedex 05, France. and Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin - BP48, 91192 Gif-sur-Yvette, France
| | - Amélie Juhin
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS, MNHN, UMR7590, 4 place Jussieu, 75052 Paris Cedex 05, France.
| |
Collapse
|
8
|
Donnelly C, Scagnoli V. Imaging three-dimensional magnetic systems with x-rays. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:213001. [PMID: 31796657 DOI: 10.1088/1361-648x/ab5e3c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent progress in nanofabrication and additive manufacturing have facilitated the building of nanometer-scale three-dimensional (3D) structures, that promise to lead to an emergence of new functionalities within a number of fields, compared to state-of-the-art two dimensional systems. In magnetism, the move to 3D systems offers the possibility for novel magnetic properties not available in planar systems, as well as enhanced performance, both of which are key for the development of new technological applications. In this review paper we will focus our attention on 3D magnetic systems and how their magnetic configuration can be retrieved using x-ray magnetic nanotomography. We will start with an introduction to magnetic materials, and their relevance to our everyday life, along with the growing impact that they will have in the coming years in, for example, reducing energy consumption. We will then briefly introduce common methods used to study magnetic materials, such as electron holography, neutron and x-ray imaging. In particular, we will focus on x-ray magnetic circular dichroism (XMCD) and how it can be used to image magnetic moment configurations. As a next step we will introduce tomography for 3D imaging, and how it can be adapted to study magnetic materials. Particular attention will be given to explaining the reconstruction algorithms that can be used to retrieve the magnetic moment configuration from the experimental data, as these represent one of the main challenges so far, as well as the different experimental geometries that are available. Recent experimental results will be used as specific examples to guide the reader through each step in order to make sure that the paper will be accessible for those interested in the topic that do not have a specialized background on magnetic imaging. Finally, we will describe the future prospects of such studies, identifying the current challenges facing the field, and how these can be tackled. In particular we will highlight the exciting possibilities offered by the next generation of synchrotron sources which will deliver diffraction limited beams, as well as with the extension of well-established methodologies currently implemented for the study of two-dimensional magnetic materials to achieve higher dimensional investigations.
Collapse
Affiliation(s)
- C Donnelly
- Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, United Kingdom
| | | |
Collapse
|
9
|
Werellapatha K, Escanhoela CA, Fabbris G, Haskel D, Ankudinov A, Chow P. Evolution of electronic and magnetic properties of nominal magnetite nanoparticles at high pressure probed by x-ray absorption and emission techniques. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:255301. [PMID: 30889564 DOI: 10.1088/1361-648x/ab111d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present a study of electronic and magnetic properties of nominal magnetite nanoparticles (NPs) (~6 nm) at high pressure in the presence of silicon pressure medium using x-ray absorption near edge structure (XANES), x-ray magnetic circular dichroism (XMCD) and non-resonant x-ray emission spectroscopy (XES). XANES data show a reduction of Fe charge state, a change in local environment around Fe at tetrahedral sites, and a reduced occupation of Fe 4p orbitals, not seen in previous pressure studies of bulk magnetite. XMCD data show a continuous magnetic moment reduction of ~50% between ambient pressure and 20 GPa, similar to what was observed in previous bulk magnetite studies. XES spectra of NPs indicate a gradual change in spin configuration away from the high-spin state consistent with a postulated charge transfer from Fe 4p to 3d states and the observed reduction in XMCD signal. Taken together, the results point to substantial differences in the response of electronic and magnetic properties of the nano-counterparts of bulk magnetite at high pressure.
Collapse
Affiliation(s)
- Kalpani Werellapatha
- Department of Physics and Astronomy, University of Maine, Orono, ME 04469, United States of America
| | | | | | | | | | | |
Collapse
|
10
|
Ablett JM, Prieur D, Céolin D, Lassalle-Kaiser B, Lebert B, Sauvage M, Moreno T, Bac S, Balédent V, Ovono A, Morand M, Gélebart F, Shukla A, Rueff JP. The GALAXIES inelastic hard X-ray scattering end-station at Synchrotron SOLEIL. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:263-271. [PMID: 30655494 DOI: 10.1107/s160057751801559x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
GALAXIES is an in-vacuum undulator hard X-ray micro-focused beamline dedicated to the study of the electronic structure of materials with high energy resolution using both photoelectron spectroscopy and inelastic X-ray scattering and under both non-resonant (NR-IXS) and resonant (RIXS) conditions. Due to the penetrating power of hard X-rays and the `photon-in/photon-out' technique, the sample environment is not a limitation. Materials under extreme conditions, for example in diamond anvil cells or catalysis chambers, thus constitute a major research direction. Here, the design and performance of the inelastic X-ray scattering end-station that operates in the energy range from ∼4 keV up to 12 keV is reported, and its capabilities are highlighted using a selection of data taken from recently performed experiments. The ability to scan `on the fly' the incident and scattered/emitted X-ray energies, and the sample position enables fast data collection and high experimental throughput. A diamond X-ray transmission phase retarder, which can be used to generate circularly polarized light, will also be discussed in the light of the recent RIXS-MCD approach.
Collapse
Affiliation(s)
- J M Ablett
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, Saint Aubin, 91192 Gif-sur-Yvette, France
| | - D Prieur
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, Saint Aubin, 91192 Gif-sur-Yvette, France
| | - D Céolin
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, Saint Aubin, 91192 Gif-sur-Yvette, France
| | - B Lassalle-Kaiser
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, Saint Aubin, 91192 Gif-sur-Yvette, France
| | - B Lebert
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, Saint Aubin, 91192 Gif-sur-Yvette, France
| | - M Sauvage
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, Saint Aubin, 91192 Gif-sur-Yvette, France
| | - Th Moreno
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, Saint Aubin, 91192 Gif-sur-Yvette, France
| | - S Bac
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, Saint Aubin, 91192 Gif-sur-Yvette, France
| | - V Balédent
- Laboratoire de Physique des Solides, 91400 Orsay, France
| | - A Ovono
- École Nationale Supérieure d'Ingénieurs de Limoges, France
| | - M Morand
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, UMR CNRS 7590, MNHN, IRD UMR 206, 4 Place Jussieu, F-75005 Paris, France
| | - F Gélebart
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, UMR CNRS 7590, MNHN, IRD UMR 206, 4 Place Jussieu, F-75005 Paris, France
| | - A Shukla
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, UMR CNRS 7590, MNHN, IRD UMR 206, 4 Place Jussieu, F-75005 Paris, France
| | - J P Rueff
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, Saint Aubin, 91192 Gif-sur-Yvette, France
| |
Collapse
|
11
|
Inami T. Magnetic Circular Dichroism in X-Ray Emission from Ferromagnets. PHYSICAL REVIEW LETTERS 2017; 119:137203. [PMID: 29341717 DOI: 10.1103/physrevlett.119.137203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Indexed: 06/07/2023]
Abstract
The existence of novel magnetic circular dichroism in core-level x-ray emission is reported. By means of circular polarization analysis, the dichroic effect of the Fe Kα_{1} emission spectrum is measured on an Fe single crystal. The observed dichroic effect (12%) is remarkably large, if one takes into account the small dichroic effect (about 0.5%) in the conventional K-edge absorption spectroscopy of 3d transition metal elements. The mechanism is ascribed to exchange splitting of the 2p level possessing large spin-orbit coupling. This new magnetooptical effect enables us to explore a variety of new research subjects in the magnetism of 3d transition metals and their compounds by fully utilizing its large dichroic effect, the true bulk sensitivity of hard x rays, and the element selectivity of core-level spectroscopy.
Collapse
Affiliation(s)
- Toshiya Inami
- Synchrotron Radiation Research Center, National Institutes for Quantum and Radiological Science and Technology, Sayo, Hyogo 679-5148, Japan
| |
Collapse
|
12
|
Pichler M, Szlachetko J, Castelli IE, Marzari N, Döbeli M, Wokaun A, Pergolesi D, Lippert T. Determination of Conduction and Valence Band Electronic Structure of LaTiO x N y Thin Film. CHEMSUSCHEM 2017; 10:2099-2106. [PMID: 28332773 DOI: 10.1002/cssc.201601632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 02/13/2017] [Indexed: 06/06/2023]
Abstract
The nitrogen substitution into the oxygen sites of several oxide materials leads to a reduction of the band gap to the visible-light energy range, which makes these oxynitride semiconductors potential photocatalysts for efficient solar water splitting. Oxynitrides typically show a different crystal structure compared to the pristine oxide material. As the band gap is correlated to both the chemical composition and the crystal structure, it is not trivial to distinguish which modifications of the electronic structure induced by the nitrogen substitution are related to compositional and/or structural effects. Here, X-ray emission and absorption spectroscopy are used to investigate the electronic structures of orthorhombic perovskite LaTiOx Ny thin films in comparison with films of the pristine oxide LaTiOx with similar orthorhombic structure and cationic oxidation state. Experiment and theory show the expected upward shift in energy of the valence band maximum that reduces the band gap as a consequence of the nitrogen incorporation. This study also shows that the conduction band minimum, typically considered almost unaffected by nitrogen substitution, undergoes a significant downward shift in energy. For a rational design of oxynitride photocatalysts, the observed changes of both the unoccupied and occupied electronic states have to be taken into account to justify the total band-gap narrowing induced by the nitrogen incorporation.
Collapse
Affiliation(s)
- Markus Pichler
- Research with Neutrons and Muons Division, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland
| | - Jakub Szlachetko
- Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland
- Institute of Physics, Jan Kochanowski University, Kielce, Poland
| | - Ivano E Castelli
- Theory and Simulation of Materials and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Nicola Marzari
- Theory and Simulation of Materials and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Max Döbeli
- Ion Beam Physics, ETH Zurich, 8093, Zurich, Switzerland
| | - Alexander Wokaun
- Research with Neutrons and Muons Division, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland
| | - Daniele Pergolesi
- Research with Neutrons and Muons Division, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland
| | - Thomas Lippert
- Research with Neutrons and Muons Division, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland
- Laboratory of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| |
Collapse
|
13
|
Juhin A, Sainctavit P, Ollefs K, Sikora M, Filipponi A, Glatzel P, Wilhelm F, Rogalev A. X-ray magnetic circular dichroism measured at the Fe K-edge with a reduced intrinsic broadening: x-ray absorption spectroscopy versus resonant inelastic x-ray scattering measurements. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:505202. [PMID: 27783570 DOI: 10.1088/0953-8984/28/50/505202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
X-ray magnetic circular dichroism is measured at the Fe K pre-edge in yttrium iron garnet using two different procedures that allow reducing the intrinsic broadening due to the 1s corehole lifetime. First, deconvolution of XMCD data measured in total fluorescence yield (TFY) with an extremely high signal-to-noise ratio enables a factor of 2.4 to be gained in the XMCD intensity. Ligand field multiplet calculations performed with different values of intrinsic broadening show that deconvolving such high quality XMCD data is similar to reducing the lifetime broadening from a 1s corehole to a 2p corehole. Second, MCD is measured by resonant inelastic x-ray scattering spectroscopy as a function of incident energy and emission energy. Selection of a fixed emission energy, instead of using the TFY, allows enhancing the MCD intensity up to a factor of ∼4.7. However, this significantly changes the spectral shape of the XMCD signal, which cannot be interpreted any more as an absorption spectrum.
Collapse
Affiliation(s)
- Amélie Juhin
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Universités, UMR CNRS 7590, UPMC Univ Paris 06, Muséum National d'Histoire Naturelle, IRD UMR206, 4 Place Jussieu, F-75005 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Juhin A, López-Ortega A, Sikora M, Carvallo C, Estrader M, Estradé S, Peiró F, Baró MD, Sainctavit P, Glatzel P, Nogués J. Direct evidence for an interdiffused intermediate layer in bi-magnetic core-shell nanoparticles. NANOSCALE 2014; 6:11911-11920. [PMID: 25174899 DOI: 10.1039/c4nr02886d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Core-shell nanoparticles attract continuously growing interest due to their numerous applications, which are driven by the possibility of tuning their functionalities by adjusting structural and morphological parameters. However, despite the critical role interdiffused interfaces may have in the properties, these are usually only estimated in indirect ways. Here we directly evidence the existence of a 1.1 nm thick (Fe,Mn)3O4 interdiffused intermediate shell in nominally γ-Fe2O3-Mn3O4 core-shell nanoparticles using resonant inelastic X-ray scattering spectroscopy combined with magnetic circular dichroism (RIXS-MCD). This recently developed magneto-spectroscopic probe exploits the unique advantages of hard X-rays (i.e., chemical selectivity, bulk sensitivity, and low self-absorption at the K pre-edge) and can be advantageously combined with transmission electron microscopy and electron energy loss spectroscopy to quantitatively elucidate the buried internal structure of complex objects. The detailed information on the structure of the nanoparticles allows understanding the influence of the interface quality on the magnetic properties.
Collapse
Affiliation(s)
- Amélie Juhin
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Universités, UMR CNRS 7590, UPMC Univ Paris 06, Muséum National d'Histoire Naturelle, IRD UMR 206, 4 Place Jussieu, F-75005 Paris, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Sá J, Szlachetko J, Sikora M, Kavčič M, Safonova OV, Nachtegaal M. Magnetic manipulation of molecules on a non-magnetic catalytic surface. NANOSCALE 2013; 5:8462-8465. [PMID: 23842714 DOI: 10.1039/c3nr02237d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Non-magnetic Pt catalysts, supported on carbon coated magnetic Co nanoparticles, changed catalytic performance in the presence of an external magnetic field. This behavior relates to an electronic change of Pt induced by a localized magnetic field, which modifies the CO adsorption geometry. In situ resonant inelastic X-ray scattering (RIXS) experiments and theory reveal the change of atop CO adsorption geometry on the Pt catalyst to bridged geometry under an external magnetic field. This observation opens the possibility of catalytic control by means of an external magnetic field.
Collapse
Affiliation(s)
- Jacinto Sá
- Paul Scherrer Institute (PSI), 5232 Villigen-PSI, Switzerland.
| | | | | | | | | | | |
Collapse
|
16
|
Sá J, Szlachetko J, Kleymenov E, Lothschütz C, Nachtegaal M, Ranocchiari M, Safonova OV, Servalli M, Smolentsev G, van Bokhoven JA. Fine tuning of gold electronic structure by IRMOF post-synthetic modification. RSC Adv 2013. [DOI: 10.1039/c3ra40970h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
17
|
Wilkinson K, Ekstrand-Hammarström B, Ahlinder L, Guldevall K, Pazik R, Kępiński L, Kvashnina KO, Butorin SM, Brismar H, Önfelt B, Österlund L, Seisenbaeva GA, Kessler VG. Visualization of custom-tailored iron oxide nanoparticles chemistry, uptake, and toxicity. NANOSCALE 2012; 4:7383-7393. [PMID: 23070150 DOI: 10.1039/c2nr32572a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Nanoparticles of iron oxide generated by wearing of vehicles have been modelled with a tailored solution of size-uniform engineered magnetite particles produced by the Bradley reaction, a solvothermal metal-organic approach rendering hydrophilic particles. The latter does not bear any pronounced surface charge in analogy with that originating from anthropogenic sources in the environment. Physicochemical properties of the nanoparticles were thoroughly characterized by a wide range of methods, including XPD, TEM, SEM, DLS and spectroscopic techniques. The magnetite nanoparticles were found to be sensitive for transformation into maghemite under ambient conditions. This process was clearly revealed by Raman spectroscopy for high surface energy magnetite particles containing minor impurities of the hydromaghemite phase and was followed by quantitative measurements with EXAFS spectroscopy. In order to assess the toxicological effects of the produced nanoparticles in humans, with and without surface modification with ATP (a model of bio-corona formed in alveolar liquid), a pathway of potential uptake and clearance was modelled with a sequence of in vitro studies using A549 lung epithelial cells, lymphocyte 221-B cells, and 293T embryonal kidney cells, respectively. Raman microscopy unambiguously showed that magnetite nanoparticles are internalized within the A549 cells after 24 h co-incubation, and that the ATP ligand is retained on the nanoparticles throughout the uptake process. The toxicity of the nanoparticles was estimated using confocal fluorescence microscopy and indicated no principal difference for unmodified and modified particles, but revealed considerably different biochemical responses. The IL-8 cytokine response was found to be significantly lower for the magnetite nanoparticles compared to TiO(2), while an enhancement of ROS was observed, which was further increased for the ATP-modified nanoparticles, implicating involvement of the ATP signalling pathway in the epithelium.
Collapse
Affiliation(s)
- Kai Wilkinson
- Department of Chemistry, SLU BioCenter, P.O. Box 7015, SE-75007 Uppsala, Sweden.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Szlachetko J, Nachtegaal M, de Boni E, Willimann M, Safonova O, Sa J, Smolentsev G, Szlachetko M, van Bokhoven JA, Dousse JC, Hoszowska J, Kayser Y, Jagodzinski P, Bergamaschi A, Schmitt B, David C, Lücke A. A von Hamos x-ray spectrometer based on a segmented-type diffraction crystal for single-shot x-ray emission spectroscopy and time-resolved resonant inelastic x-ray scattering studies. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2012; 83:103105. [PMID: 23126749 DOI: 10.1063/1.4756691] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
We report on the design and performance of a wavelength-dispersive type spectrometer based on the von Hamos geometry. The spectrometer is equipped with a segmented-type crystal for x-ray diffraction and provides an energy resolution in the order of 0.25 eV and 1 eV over an energy range of 8000 eV-9600 eV. The use of a segmented crystal results in a simple and straightforward crystal preparation that allows to preserve the spectrometer resolution and spectrometer efficiency. Application of the spectrometer for time-resolved resonant inelastic x-ray scattering and single-shot x-ray emission spectroscopy is demonstrated.
Collapse
Affiliation(s)
- J Szlachetko
- Paul Scherrer Institut, 5232 Villigen PSI, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Szlachetko J, Nachtegaal M, Sá J, Dousse JC, Hoszowska J, Kleymenov E, Janousch M, Safonova OV, König C, van Bokhoven JA. High energy resolution off-resonant spectroscopy at sub-second time resolution: (Pt(acac)2) decomposition. Chem Commun (Camb) 2012; 48:10898-900. [DOI: 10.1039/c2cc35086f] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|