2
|
Orús P, Sigloch F, Sangiao S, De Teresa JM. Superconducting Materials and Devices Grown by Focused Ion and Electron Beam Induced Deposition. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1367. [PMID: 35458074 PMCID: PMC9029853 DOI: 10.3390/nano12081367] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 01/27/2023]
Abstract
Since its discovery in 1911, superconductivity has represented an equally inciting and fascinating field of study in several areas of physics and materials science, ranging from its most fundamental theoretical understanding, to its practical application in different areas of engineering. The fabrication of superconducting materials can be downsized to the nanoscale by means of Focused Ion/Electron Beam Induced Deposition: nanopatterning techniques that make use of a focused beam of ions or electrons to decompose a gaseous precursor in a single step. Overcoming the need to use a resist, these approaches allow for targeted, highly-flexible nanopatterning of nanostructures with lateral resolution in the range of 10 nm to 30 nm. In this review, the fundamentals of these nanofabrication techniques are presented, followed by a literature revision on the published work that makes use of them to grow superconducting materials, the most remarkable of which are based on tungsten, niobium, molybdenum, carbon, and lead. Several examples of the application of these materials to functional devices are presented, related to the superconducting proximity effect, vortex dynamics, electric-field effect, and to the nanofabrication of Josephson junctions and nanoSQUIDs. Owing to the patterning flexibility they offer, both of these techniques represent a powerful and convenient approach towards both fundamental and applied research in superconductivity.
Collapse
Affiliation(s)
- Pablo Orús
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Fabian Sigloch
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Soraya Sangiao
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Laboratorio de Microscopías Avanzadas (LMA), University of Zaragoza, 50018 Zaragoza, Spain
| | - José María De Teresa
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Laboratorio de Microscopías Avanzadas (LMA), University of Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
3
|
Niu X, Chen BB, Zhong N, Xiang PH, Duan CG. Topological Hall effect in SrRuO 3thin films and heterostructures. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:244001. [PMID: 35325882 DOI: 10.1088/1361-648x/ac60d0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Transition metal oxides hold a wide spectrum of fascinating properties endowed by the strong electron correlations. In 4dand 5doxides, exotic phases can be realized with the involvement of strong spin-orbit coupling (SOC), such as unconventional magnetism and topological superconductivity. Recently, topological Hall effects (THEs) and magnetic skyrmions have been uncovered in SrRuO3thin films and heterostructures, where the presence of SOC and inversion symmetry breaking at the interface are believed to play a key role. Realization of magnetic skyrmions in oxides not only offers a platform to study topological physics with correlated electrons, but also opens up new possibilities for magnetic oxides using in the low-power spintronic devices. In this review, we discuss recent observations of THE and skyrmions in the SRO film interfaced with various materials, with a focus on the electric tuning of THE. We conclude with a discussion on the directions of future research in this field.
Collapse
Affiliation(s)
- Xu Niu
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Bin-Bin Chen
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Ni Zhong
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Ping-Hua Xiang
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Chun-Gang Duan
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, Shanghai, 200241, People's Republic of China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| |
Collapse
|
4
|
Barman A, Gubbiotti G, Ladak S, Adeyeye AO, Krawczyk M, Gräfe J, Adelmann C, Cotofana S, Naeemi A, Vasyuchka VI, Hillebrands B, Nikitov SA, Yu H, Grundler D, Sadovnikov AV, Grachev AA, Sheshukova SE, Duquesne JY, Marangolo M, Csaba G, Porod W, Demidov VE, Urazhdin S, Demokritov SO, Albisetti E, Petti D, Bertacco R, Schultheiss H, Kruglyak VV, Poimanov VD, Sahoo S, Sinha J, Yang H, Münzenberg M, Moriyama T, Mizukami S, Landeros P, Gallardo RA, Carlotti G, Kim JV, Stamps RL, Camley RE, Rana B, Otani Y, Yu W, Yu T, Bauer GEW, Back C, Uhrig GS, Dobrovolskiy OV, Budinska B, Qin H, van Dijken S, Chumak AV, Khitun A, Nikonov DE, Young IA, Zingsem BW, Winklhofer M. The 2021 Magnonics Roadmap. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:413001. [PMID: 33662946 DOI: 10.1088/1361-648x/abec1a] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 03/04/2021] [Indexed: 05/26/2023]
Abstract
Magnonics is a budding research field in nanomagnetism and nanoscience that addresses the use of spin waves (magnons) to transmit, store, and process information. The rapid advancements of this field during last one decade in terms of upsurge in research papers, review articles, citations, proposals of devices as well as introduction of new sub-topics prompted us to present the first roadmap on magnonics. This is a collection of 22 sections written by leading experts in this field who review and discuss the current status besides presenting their vision of future perspectives. Today, the principal challenges in applied magnonics are the excitation of sub-100 nm wavelength magnons, their manipulation on the nanoscale and the creation of sub-micrometre devices using low-Gilbert damping magnetic materials and its interconnections to standard electronics. To this end, magnonics offers lower energy consumption, easier integrability and compatibility with CMOS structure, reprogrammability, shorter wavelength, smaller device features, anisotropic properties, negative group velocity, non-reciprocity and efficient tunability by various external stimuli to name a few. Hence, despite being a young research field, magnonics has come a long way since its early inception. This roadmap asserts a milestone for future emerging research directions in magnonics, and hopefully, it will inspire a series of exciting new articles on the same topic in the coming years.
Collapse
Affiliation(s)
- Anjan Barman
- Department of Condensed Matter Physics and Material Sciences, S N Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700106, India
| | - Gianluca Gubbiotti
- Istituto Officina dei Materiali del Consiglio nazionale delle Ricerche (IOM-CNR), Perugia, Italy
| | - S Ladak
- School of Physics and Astronomy, Cardiff University, United Kingdom
| | - A O Adeyeye
- Department of Physics, University of Durham, United Kingdom
| | - M Krawczyk
- Adam Mickiewicz University, Poznan, Poland
| | - J Gräfe
- Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | | | - S Cotofana
- Delft University of Technology, The Netherlands
| | - A Naeemi
- Georgia Institute of Technology, United States of America
| | - V I Vasyuchka
- Department of Physics and State Research Center OPTIMAS, Technische Universität Kaiserslautern (TUK), Kaiserslautern, Germany
| | - B Hillebrands
- Department of Physics and State Research Center OPTIMAS, Technische Universität Kaiserslautern (TUK), Kaiserslautern, Germany
| | - S A Nikitov
- Kotelnikov Institute of Radioengineering and Electronics, Moscow, Russia
| | - H Yu
- Fert Beijing Institute, BDBC, School of Microelectronics, Beijing Advanced Innovation Center for Big Data and Brian Computing, Beihang University, People's Republic of China
| | - D Grundler
- Laboratory of Nanoscale Magnetic Materials and Magnonics, Institute of Materials (IMX), Institute of Electrical and Micro Engineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - A V Sadovnikov
- Kotelnikov Institute of Radioengineering and Electronics, Moscow, Russia
- Laboratory 'Magnetic Metamaterials', Saratov State University, Saratov, Russia
| | - A A Grachev
- Kotelnikov Institute of Radioengineering and Electronics, Moscow, Russia
- Laboratory 'Magnetic Metamaterials', Saratov State University, Saratov, Russia
| | - S E Sheshukova
- Kotelnikov Institute of Radioengineering and Electronics, Moscow, Russia
- Laboratory 'Magnetic Metamaterials', Saratov State University, Saratov, Russia
| | - J-Y Duquesne
- Institut des NanoSciences de Paris, Sorbonne University, CNRS, Paris, France
| | - M Marangolo
- Institut des NanoSciences de Paris, Sorbonne University, CNRS, Paris, France
| | - G Csaba
- Pázmány University, Budapest, Hungary
| | - W Porod
- University of Notre Dame, IN, United States of America
| | - V E Demidov
- Institute for Applied Physics, University of Muenster, Muenster, Germany
| | - S Urazhdin
- Department of Physics, Emory University, Atlanta, United States of America
| | - S O Demokritov
- Institute for Applied Physics, University of Muenster, Muenster, Germany
| | | | - D Petti
- Polytechnic University of Milan, Italy
| | | | - H Schultheiss
- Helmholtz-Center Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research, Germany
- Technische Universität Dresden, Germany
| | | | | | - S Sahoo
- Department of Condensed Matter Physics and Material Sciences, S N Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700106, India
| | - J Sinha
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, India
| | - H Yang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | - M Münzenberg
- Institute of Physics, University of Greifswald, Greifswald, Germany
| | - T Moriyama
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, Japan
- Centre for Spintronics Research Network, Japan
| | - S Mizukami
- Centre for Spintronics Research Network, Japan
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Japan
| | - P Landeros
- Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago, Chile
| | - R A Gallardo
- Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago, Chile
| | - G Carlotti
- Dipartimento di Fisica e Geologia, University of Perugia, Perugia, Italy
- CNR Instituto Nanoscienze, Modena, Italy
| | - J-V Kim
- Centre for Nanosciences and Nanotechnology, CNRS, Université Paris-Saclay, Palaiseau, France
| | - R L Stamps
- Department of Physics and Astronomy, University of Manitoba, Canada
| | - R E Camley
- Center for Magnetism and Magnetic Nanostructures, University of Colorado, Colorado Springs, United States of America
| | | | - Y Otani
- RIKEN, Japan
- Institute for Solid State Physics (ISSP), University of Tokyo, Japan
| | - W Yu
- Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - T Yu
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany
| | - G E W Bauer
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, Japan
- Zernike Institute for Advanced Materials, Groningen University, The Netherlands
| | - C Back
- Technical University Munich, Germany
| | - G S Uhrig
- Technical University Dortmund, Germany
| | | | - B Budinska
- Faculty of Physics, University of Vienna, Vienna, Austria
| | - H Qin
- Department of Applied Physics, School of Science, Aalto University, Finland
| | - S van Dijken
- Department of Applied Physics, School of Science, Aalto University, Finland
| | - A V Chumak
- Faculty of Physics, University of Vienna, Vienna, Austria
| | - A Khitun
- University of California Riverside, United States of America
| | - D E Nikonov
- Components Research, Intel, Hillsboro, Oregon, United States of America
| | - I A Young
- Components Research, Intel, Hillsboro, Oregon, United States of America
| | - B W Zingsem
- The University of Duisburg-Essen, CENIDE, Germany
| | - M Winklhofer
- The Carl von Ossietzky University of Oldenburg, Germany
| |
Collapse
|
5
|
Petrović AP, Raju M, Tee XY, Louat A, Maggio-Aprile I, Menezes RM, Wyszyński MJ, Duong NK, Reznikov M, Renner C, Milošević MV, Panagopoulos C. Skyrmion-(Anti)Vortex Coupling in a Chiral Magnet-Superconductor Heterostructure. PHYSICAL REVIEW LETTERS 2021; 126:117205. [PMID: 33798341 DOI: 10.1103/physrevlett.126.117205] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
We report experimental coupling of chiral magnetism and superconductivity in [IrFeCoPt]/Nb heterostructures. The stray field of skyrmions with radius ≈50 nm is sufficient to nucleate antivortices in a 25 nm Nb film, with unique signatures in the magnetization, critical current, and flux dynamics, corroborated via simulations. We also detect a thermally tunable Rashba-Edelstein exchange coupling in the isolated skyrmion phase. This realization of a strongly interacting skyrmion-(anti)vortex system opens a path toward controllable topological hybrid materials, unattainable to date.
Collapse
Affiliation(s)
- A P Petrović
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - M Raju
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - X Y Tee
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - A Louat
- Department of Physics, Technion, Haifa 32000, Israel
| | - I Maggio-Aprile
- Department of Quantum Matter Physics, Université de Genève, 24 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - R M Menezes
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
- Departamento de Física, Universidade Federal de Pernambuco, Cidade Universitária, 50670-901 Recife-PE, Brazil
| | - M J Wyszyński
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - N K Duong
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - M Reznikov
- Department of Physics, Technion, Haifa 32000, Israel
| | - Ch Renner
- Department of Quantum Matter Physics, Université de Genève, 24 Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| | - M V Milošević
- Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - C Panagopoulos
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| |
Collapse
|
6
|
Dobrovolskiy OV, Vodolazov DY, Porrati F, Sachser R, Bevz VM, Mikhailov MY, Chumak AV, Huth M. Ultra-fast vortex motion in a direct-write Nb-C superconductor. Nat Commun 2020; 11:3291. [PMID: 32620789 PMCID: PMC7335109 DOI: 10.1038/s41467-020-16987-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/05/2020] [Indexed: 11/09/2022] Open
Abstract
The ultra-fast dynamics of superconducting vortices harbors rich physics generic to nonequilibrium collective systems. The phenomenon of flux-flow instability (FFI), however, prevents its exploration and sets practical limits for the use of vortices in various applications. To suppress the FFI, a superconductor should exhibit a rarely achieved combination of properties: weak volume pinning, close-to-depairing critical current, and fast heat removal from heated electrons. Here, we demonstrate experimentally ultra-fast vortex motion at velocities of 10-15 km s-1 in a directly written Nb-C superconductor with a close-to-perfect edge barrier. The spatial evolution of the FFI is described using the edge-controlled FFI model, implying a chain of FFI nucleation points along the sample edge and their development into self-organized Josephson-like junctions (vortex rivers). In addition, our results offer insights into the applicability of widely used FFI models and suggest Nb-C to be a good candidate material for fast single-photon detectors.
Collapse
Affiliation(s)
- O V Dobrovolskiy
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090, Vienna, Austria.
- School of Physics, V. Karazin Kharkiv National University, Svobody Sq. 4, Kharkiv, 61022, Ukraine.
| | - D Yu Vodolazov
- Institute for Physics of Microstructures, Russian Academy of Sciences, Academicheskaya Str. 7, Afonino, Nizhny Novgorod region, 603087, Russia
- Physics Department, Moscow Pedagogical State University, Malaya Pirogovskaya Str. 29/7, Bld. 1, Moscow, 119435, Russia
| | - F Porrati
- Institute of Physics, Goethe University, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - R Sachser
- Institute of Physics, Goethe University, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| | - V M Bevz
- School of Physics, V. Karazin Kharkiv National University, Svobody Sq. 4, Kharkiv, 61022, Ukraine
| | - M Yu Mikhailov
- B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Nauky Avenue 47, Kharkiv, 61103, Ukraine
| | - A V Chumak
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090, Vienna, Austria
| | - M Huth
- Institute of Physics, Goethe University, Max-von-Laue-Str. 1, 60438, Frankfurt, Germany
| |
Collapse
|