1
|
Kawasaki S, Tsukuda N, Lin C, Zheng GQ. Strain-induced long-range charge-density wave order in the optimally doped Bi 2Sr 2-xLa xCuO 6 superconductor. Nat Commun 2024; 15:5082. [PMID: 38877031 PMCID: PMC11178839 DOI: 10.1038/s41467-024-49225-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/23/2024] [Indexed: 06/16/2024] Open
Abstract
The mechanism of high-temperature superconductivity in copper oxides (cuprate) remains elusive, with the pseudogap phase considered a potential factor. Recent attention has focused on a long-range symmetry-broken charge-density wave (CDW) order in the underdoped regime, induced by strong magnetic fields. Here by 63,65Cu-nuclear magnetic resonance, we report the discovery of a long-range CDW order in the optimally doped Bi2Sr2-xLaxCuO6 superconductor, induced by in-plane strain exceeding ∣ε∣ = 0.15 %, which deliberately breaks the crystal symmetry of the CuO2 plane. We find that compressive/tensile strains reduce superconductivity but enhance CDW, leaving superconductivity to coexist with CDW. The findings show that a long-range CDW order is an underlying hidden order in the pseudogap state, not limited to the underdoped regime, becoming apparent under strain. Our result sheds light on the intertwining of various orders in the cuprates.
Collapse
Affiliation(s)
| | - Nao Tsukuda
- Department of Physics, Okayama University, Okayama, Japan
| | - Chengtian Lin
- Max-Planck-Institut fur Festkorperforschung, Stuttgart, Germany
| | - Guo-Qing Zheng
- Department of Physics, Okayama University, Okayama, Japan.
| |
Collapse
|
2
|
Robinson NJ, Johnson PD, Rice TM, Tsvelik AM. Anomalies in the pseudogap phase of the cuprates: competing ground states and the role of umklapp scattering. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:126501. [PMID: 31300626 DOI: 10.1088/1361-6633/ab31ed] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Over the past two decades, advances in computational algorithms have revealed a curious property of the two-dimensional Hubbard model (and related theories) with hole doping: the presence of close-in-energy competing ground states that display very different physical properties. On the one hand, there is a complicated state exhibiting intertwined spin, charge, and pair density wave orders. We call this 'type A'. On the other hand, there is a uniform d-wave superconducting state that we denote as 'type B'. We advocate, with the support of both microscopic theoretical calculations and experimental data, dividing the high-temperature cuprate superconductors into two corresponding families, whose properties reflect either the type A or type B ground states at low temperatures. We review the anomalous properties of the pseudogap phase that led us to this picture, and present a modern perspective on the role that umklapp scattering plays in these phenomena in the type B materials. This reflects a consistent framework that has emerged over the last decade, in which Mott correlations at weak coupling drive the formation of the pseudogap. We discuss this development, recent theory and experiments, and open issues.
Collapse
Affiliation(s)
- Neil J Robinson
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Postbus 94485, 1098 XH Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
3
|
Kloss T, Montiel X, de Carvalho VS, Freire H, Pépin C. Charge orders, magnetism and pairings in the cuprate superconductors. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:084507. [PMID: 27427401 DOI: 10.1088/0034-4885/79/8/084507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We review the recent developments in the field of cuprate superconductors with special focus on the recently observed charge order in the underdoped compounds. We introduce new theoretical developments following the study of the antiferromagnetic quantum critical point in two dimensions, in which preemptive orders in both charge and superconducting (SC) sectors emerge, that are in turn related by an SU(2) symmetry. We consider the implications of this proliferation of orders in the underdoped region, and provide a study of the type of fluctuations which characterize the SU(2) symmetry. We identify an intermediate energy scale where the SC fluctuations are dominant and argue that they are unstable towards the formation of a resonant excitonic state at the pseudogap temperature T (*). We discuss the implications of this scenario for a few key experiments.
Collapse
Affiliation(s)
- T Kloss
- IPhT, L'Orme des Merisiers, CEA-Saclay, 91191 Gif-sur-Yvette, France
| | | | | | | | | |
Collapse
|
4
|
Incipient charge order observed by NMR in the normal state of YBa2Cu3Oy. Nat Commun 2015; 6:6438. [PMID: 25751448 PMCID: PMC4366503 DOI: 10.1038/ncomms7438] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 01/28/2015] [Indexed: 11/08/2022] Open
Abstract
The pseudogap regime of high-temperature cuprates harbours diverse manifestations of electronic ordering whose exact nature and universality remain debated. Here, we show that the short-ranged charge order recently reported in the normal state of YBa2Cu3Oy corresponds to a truly static modulation of the charge density. We also show that this modulation impacts on most electronic properties, that it appears jointly with intra-unit-cell nematic, but not magnetic, order, and that it exhibits differences with the charge density wave observed at lower temperatures in high magnetic fields. These observations prove mostly universal, they place new constraints on the origin of the charge density wave and they reveal that the charge modulation is pinned by native defects. Similarities with results in layered metals such as NbSe2, in which defects nucleate halos of incipient charge density wave at temperatures above the ordering transition, raise the possibility that order-parameter fluctuations, but no static order, would be observed in the normal state of most cuprates if disorder were absent.
Collapse
|
5
|
Varma CM. Pseudogap in cuprates in the loop-current ordered state. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:505701. [PMID: 25406917 DOI: 10.1088/0953-8984/26/50/505701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Scanning tunneling microscopy (STM) has revealed that the magnitude of the pseudo-gap in under-doped cuprates varies spatially and is correlated with disorder. The loop-current order, characterized by the anapole vector Ω, discovered in under-doped cuprates occurs in the same region of the temperature and doping as the pseudo gap observed in STM and ARPES experiments. Since translational symmetry remains unchanged in the pure limit, no gap occurs at the chemical potential. On the other hand for disorder coupling linearly to the different possible orientations of Ω, there can only be a finite temperature dependent static correlation length for the loop-current state at any temperature. This leads to formation of domains of the ordered state with different orientation and magnitude of Ω in each. For the characteristic size of the domains much larger than the Fermi-vectors [Formula: see text], the boundary of the domains leads to forward scattering of the Fermions. Such forward scattering is shown to push states near the chemical potential to energies both above and below it leading to a pseudo-gap with an angular dependence which is maximum in the [Formula: see text] directions because the single-particle energies are degenerate in these directions for all domains. The magnitude of the average gap systematically increases with the square of the average loop order parameter measured by polarized neutron scattering. This result is tested. A unique result of the gap due to forward scattering is the lack of a bump in the density of states at the 'edge' of the pseudo-gap so that the depletion of states near the chemical potential is recovered only in integration up to the edge of the band. This is also in agreement with a variety of experiments. Some predictions for further experiments are provided. Due to the finite correlation length, low frequency excitations are expected at long wavelength at all temperatures in the 'ordered' phase. Such fluctuations motionally average over the shifts in frequencies of local probes such as NMR and muon resonance expected for a truly static order.
Collapse
Affiliation(s)
- C M Varma
- Department of Physics, University of California, 900 University Ave, Riverside, CA 92521, USA
| |
Collapse
|
6
|
Laughlin RB. Fermi-liquid computation of the phase diagram of high-Tc cuprate superconductors with an orbital antiferromagnetic pseudogap. PHYSICAL REVIEW LETTERS 2014; 112:017004. [PMID: 24483922 DOI: 10.1103/physrevlett.112.017004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Indexed: 06/03/2023]
Abstract
A 4-parameter Fermi-liquid calculation of the high-Tc cuprate phase diagram is reported. Simultaneously accounted for are the special doping densities of 5% and 16%, the d-wave functional form of the (orbital antiferromagnetic) pseudogap, the measured Tc, superconducting gap, pseudogap and superfluid density as a function of doping, the particle-hole doping asymmetry and the half-filling spin wave velocity.
Collapse
Affiliation(s)
- R B Laughlin
- Department of Physics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
7
|
Mounce AM, Oh S, Lee JA, Halperin WP, Reyes AP, Kuhns PL, Chan MK, Dorow C, Ji L, Xia D, Zhao X, Greven M. Absence of static loop-current magnetism at the apical oxygen site in HgBa2CuO4+δ from NMR. PHYSICAL REVIEW LETTERS 2013; 111:187003. [PMID: 24237553 DOI: 10.1103/physrevlett.111.187003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Indexed: 06/02/2023]
Abstract
The simple structure of HgBa(2)CuO(4+δ) (Hg1201) is ideal among cuprates for study of the pseudogap phase as a broken symmetry state. We have performed (17)O nuclear magnetic resonance on an underdoped Hg1201 crystal with a transition temperature of 74 K to look for circulating loop currents proposed theoretically and inferred from neutron scattering. The narrow spectra preclude static local fields in the pseudogap phase at the apical site, suggesting that the moments observed with neutrons are fluctuating. The nuclear magnetic resonance frequency shifts are consistent with a dipolar field from the Cu(2+) site.
Collapse
Affiliation(s)
- A M Mounce
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Pershoguba SS, Kechedzhi K, Yakovenko VM. Proposed chiral texture of the magnetic moments of unit-cell loop currents in the pseudogap phase of cuprate superconductors. PHYSICAL REVIEW LETTERS 2013; 111:047005. [PMID: 23931399 DOI: 10.1103/physrevlett.111.047005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Indexed: 06/02/2023]
Abstract
We propose a novel chiral order parameter to explain the unusual polar Kerr effect in underdoped cuprates. It is based on the loop-current model by Varma, which is characterized by the in-plane anapole moment N and exhibits the magnetoelectric effect. We propose a helical structure where the vector N(n) in the layer n is twisted by the angle π/2 relative to N(n-1), thus breaking inversion symmetry. We show that coupling between magnetoelectric terms in the neighboring layers for this structure produces optical gyrotropy, which results in circular dichroism and the polar Kerr effect.
Collapse
Affiliation(s)
- Sergey S Pershoguba
- Department of Physics, Condensed Matter Theory Center, University of Maryland, College Park, Maryland 20742-4111, USA
| | | | | |
Collapse
|
9
|
Lee BS, Abd-Shukor R. Can Magnetic Moments Due to Orbital Currents Exist in an Electron-Lattice Model of Cuprate Superconductors? JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM 2012; 25:861-865. [DOI: 10.1007/s10948-011-1369-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
10
|
Rice TM, Yang KY, Zhang FC. A phenomenological theory of the anomalous pseudogap phase in underdoped cuprates. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2012; 75:016502. [PMID: 22790307 DOI: 10.1088/0034-4885/75/1/016502] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The theoretical description of the anomalous properties of the pseudogap phase in the underdoped region of the cuprate phase diagram lags behind the progress in spectroscopic and other experiments. A phenomenological ansatz, based on analogies to the approach to Mott localization at weak coupling in lower dimensional systems, has been proposed by Yang et al (2006 Phys. Rev. B 73 174501). This ansatz has had success in describing a range of experiments. The motivation underlying this ansatz is described and the comparisons with experiment are reviewed. Implications for a more microscopic theory are discussed together with the relation to theories that start directly from microscopic strongly coupled Hamiltonians.
Collapse
Affiliation(s)
- T M Rice
- Institut fur Theoretische Physik, ETH Zurich, CH-8093 Zurich, Switzerland
| | | | | |
Collapse
|
11
|
Orenstein J. Optical nonreciprocity in magnetic structures related to high-Tc superconductors. PHYSICAL REVIEW LETTERS 2011; 107:067002. [PMID: 21902360 DOI: 10.1103/physrevlett.107.067002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Indexed: 05/31/2023]
Abstract
Rotation of the plane of polarization of reflected light (Kerr effect) is a direct manifestation of broken time-reversal symmetry and is generally associated with the appearance of a ferromagnetic moment. Here I identify magnetic structures that may arise within the unit cell of cuprate superconductors that generate polarization rotation despite the absence of a net moment. For these magnetic symmetries the Kerr effect is mediated by magnetoelectric coupling, which can arise when antiferromagnetic order breaks inversion symmetry. The structures identified are candidates for a time-reversal breaking phase in the pseudogap regime of the cuprates.
Collapse
Affiliation(s)
- J Orenstein
- Department of Physics, University of California, Berkeley, 94720, USA
| |
Collapse
|