1
|
Nakamura T, Sugihara H, Chen Y, Yukawa R, Ohtsubo Y, Tanaka K, Kitamura M, Kumigashira H, Kimura SI. Two-dimensional heavy fermion in a monoatomic-layer Kondo lattice YbCu 2. Nat Commun 2023; 14:7850. [PMID: 38040781 PMCID: PMC10692116 DOI: 10.1038/s41467-023-43662-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023] Open
Abstract
The Kondo effect between localized f-electrons and conductive carriers leads to exotic physical phenomena. Among them, heavy-fermion (HF) systems, in which massive effective carriers appear due to the Kondo effect, have fascinated many researchers. Dimensionality is also an important characteristic of the HF system, especially because it is strongly related to quantum criticality. However, the realization of the perfect two-dimensional (2D) HF materials is still a challenging topic. Here, we report the surface electronic structure of the monoatomic-layer Kondo lattice YbCu2 on a Cu(111) surface observed by synchrotron-based angle-resolved photoemission spectroscopy. The 2D conducting band and the Yb 4f state, located very close to the Fermi level, are observed. These bands are hybridized at low-temperature, forming the 2D HF state, with an evaluated coherence temperature of about 30 K. The effective mass of the 2D state is enhanced by a factor of 100 by the development of the HF state. Furthermore, clear evidence of the hybridization gap formation in the temperature dependence of the Kondo-resonance peak has been observed below the coherence temperature. Our study provides a new candidate as an ideal 2D HF material for understanding the Kondo effect at low dimensions.
Collapse
Affiliation(s)
- Takuto Nakamura
- Graduate School of Frontier Biosciences, Osaka University, Suita, 565-0871, Japan.
- Department of Physics, Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan.
| | - Hiroki Sugihara
- Department of Physics, Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan
| | - Yitong Chen
- Department of Physics, Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan
| | - Ryu Yukawa
- Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Yoshiyuki Ohtsubo
- National Institutes for Quantum Science and Technology, Sendai, 980-8579, Japan
| | | | - Miho Kitamura
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, 305-0801, Japan
| | - Hiroshi Kumigashira
- Institute of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku University, Sendai, 980-8577, Japan
| | - Shin-Ichi Kimura
- Graduate School of Frontier Biosciences, Osaka University, Suita, 565-0871, Japan.
- Department of Physics, Graduate School of Science, Osaka University, Toyonaka, 560-0043, Japan.
- Institute for Molecular Science, Okazaki, 444-8585, Japan.
| |
Collapse
|
2
|
Raczkowski M, Assaad FF. Emergent Coherent Lattice Behavior in Kondo Nanosystems. PHYSICAL REVIEW LETTERS 2019; 122:097203. [PMID: 30932556 DOI: 10.1103/physrevlett.122.097203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/14/2019] [Indexed: 06/09/2023]
Abstract
How many magnetic moments periodically arranged on a metallic surface are needed to generate a coherent Kondo lattice behavior? We investigate this fundamental issue within the particle-hole symmetric Kondo lattice model using quantum Monte Carlo simulations. Extra magnetic atoms forming closed shells around the initial impurity induce a fast splitting of the Kondo resonance at the inner shells, which signals the formation of composite heavy-fermion bands. The onset of the hybridization gap matches well the enhancement of antiferromagnetic spin correlations in the plane perpendicular to the applied magnetic field, a genuine feature of the coherent Kondo lattice. In contrast, the outermost shell remains dominated by a local Kondo physics with spectral features resembling the single-impurity behavior.
Collapse
Affiliation(s)
- Marcin Raczkowski
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Fakher F Assaad
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
3
|
Goremychkin EA, Park H, Osborn R, Rosenkranz S, Castellan JP, Fanelli VR, Christianson AD, Stone MB, Bauer ED, McClellan KJ, Byler DD, Lawrence JM. Coherent band excitations in CePd 3: A comparison of neutron scattering and ab initio theory. Science 2018; 359:186-191. [PMID: 29326267 DOI: 10.1126/science.aan0593] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 12/01/2017] [Indexed: 11/02/2022]
Abstract
In common with many strongly correlated electron systems, intermediate valence compounds are believed to display a crossover from a high-temperature regime of incoherently fluctuating local moments to a low-temperature regime of coherent hybridized bands. We show that inelastic neutron scattering measurements of the dynamic magnetic susceptibility of CePd3 provides a benchmark for ab initio calculations based on dynamical mean field theory. The magnetic response is strongly momentum dependent thanks to the formation of coherent f-electron bands at low temperature, with an amplitude that is strongly enhanced by local particle-hole interactions. The agreement between experiment and theory shows that we have a robust first-principles understanding of the temperature dependence of f-electron coherence.
Collapse
Affiliation(s)
- Eugene A Goremychkin
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Moscow Region, 141980, Russia
| | - Hyowon Park
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439-4845, USA.,Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Raymond Osborn
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439-4845, USA.
| | - Stephan Rosenkranz
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439-4845, USA
| | - John-Paul Castellan
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439-4845, USA.,Institute for Solid State Physics, Karlsruhe Institute of Technology, D-76021 Karlsruhe, Germany
| | - Victor R Fanelli
- Instrument and Source Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Andrew D Christianson
- Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Matthew B Stone
- Quantum Condensed Matter Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Eric D Bauer
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | | | - Darrin D Byler
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Jon M Lawrence
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA.,Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA
| |
Collapse
|
4
|
Fujimori SI. Band structures of 4f and 5f materials studied by angle-resolved photoelectron spectroscopy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:153002. [PMID: 26974712 DOI: 10.1088/0953-8984/28/15/153002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recent remarkable progress in angle-resolved photoelectron spectroscopy (ARPES) has enabled the direct observation of the band structures of 4f and 5f materials. In particular, ARPES with various light sources such as lasers (hν ~ 7 eV) or high-energy synchrotron radiations (hν >/~ 400 eV) has shed light on the bulk band structures of strongly correlated materials with energy scales of a few millielectronvolts to several electronvolts. The purpose of this paper is to summarize the behaviors of 4f and 5f band structures of various rare-earth and actinide materials observed by modern ARPES techniques, and understand how they can be described using various theoretical frameworks. For 4f-electron materials, ARPES studies of CeMIn5(M = Rh, Ir, and Co) and YbRh2Si2 with various incident photon energies are summarized. We demonstrate that their 4f electronic structures are essentially described within the framework of the periodic Anderson model, and that the band-structure calculation based on the local density approximation cannot explain their low-energy electronic structures. Meanwhile, electronic structures of 5f materials exhibit wide varieties ranging from itinerant to localized states. For itinerant U5f compounds such as UFeGa5, their electronic structures can be well-described by the band-structure calculation assuming that all U5f electrons are itinerant. In contrast, the band structures of localized U5f compounds such as UPd3 and UO2 are essentially explained by the localized model that treats U5f electrons as localized core states. In regards to heavy fermion U-based compounds such as the hidden-order compound URu2Si2, their electronic structures exhibit complex behaviors. Their overall band structures are generally well-explained by the band-structure calculation, whereas the states in the vicinity of EF show some deviations due to electron correlation effects. Furthermore, the electronic structures of URu2Si2 in the paramagnetic and hidden-order phases are summarized based on various ARPES studies. The present status of the field as well as possible future directions are also discussed.
Collapse
Affiliation(s)
- Shin-ichi Fujimori
- Condensed Matter Science Division, Japan Atomic Energy Agency, Hyogo 679-5148, Japan
| |
Collapse
|
5
|
Boariu FL, Bareille C, Schwab H, Nuber A, Lejay P, Durakiewicz T, Reinert F, Santander-Syro AF. Momentum-resolved evolution of the Kondo lattice into "hidden order" in URu2Si2. PHYSICAL REVIEW LETTERS 2013; 110:156404. [PMID: 25167291 DOI: 10.1103/physrevlett.110.156404] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Indexed: 06/03/2023]
Abstract
We study, using high-resolution angle-resolved photoemission spectroscopy, the evolution of the electronic structure in URu2Si2 at the Γ, Z, and X high-symmetry points from the high-temperature Kondo-screened regime to the low-temperature hidden-order (HO) state. At all temperatures and symmetry points, we find structures resulting from the interaction between heavy and light bands related to the Kondo-lattice formation. At the X point, we directly measure a hybridization gap of 11 meV already open at temperatures above the ordered phase. Strikingly, we find that while the HO induces pronounced changes at Γ and Z, the hybridization gap at X does not change, indicating that the hidden-order parameter is anisotropic. Furthermore, at the Γ and Z points, we observe the opening of a gap in momentum in the HO state, and show that the associated electronic structure results from the hybridization of a light electron band with the Kondo-lattice bands characterizing the paramagnetic state.
Collapse
Affiliation(s)
- F L Boariu
- Lehrstuhl für Experimentelle Physik VII, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - C Bareille
- CSNSM, Université Paris-Sud and CNRS/IN2P3, Bâtiments 104 et 108, 91405 Orsay Cedex, France
| | - H Schwab
- Lehrstuhl für Experimentelle Physik VII, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - A Nuber
- Lehrstuhl für Experimentelle Physik VII, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - P Lejay
- Institut Néel, CNRS/UJF, B.P. 166, 38042 Grenoble Cedex 9, France
| | - T Durakiewicz
- MPA-CMMS, Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| | - F Reinert
- Lehrstuhl für Experimentelle Physik VII, Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany and Karlsruher Institut für Technologie (KIT), Gemeinschaftslabor für Nanoanalythik, D-76021 Karlsruhe, Germany
| | - A F Santander-Syro
- CSNSM, Université Paris-Sud and CNRS/IN2P3, Bâtiments 104 et 108, 91405 Orsay Cedex, France
| |
Collapse
|