1
|
Punia R, Goel G. Free Energy Surface and Molecular Mechanism of Slow Structural Transitions in Lipid Bilayers. J Chem Theory Comput 2023; 19:8245-8257. [PMID: 37947833 DOI: 10.1021/acs.jctc.3c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Lipid membrane remodeling, crucial for many cellular processes, is governed by the coupling of membrane structure and shape fluctuations. Given the importance of the ∼ nm length scale, details of the transition intermediates for conformational change are not fully captured by a continuum-mechanical description. Slow dynamics and the lack of knowledge of reaction coordinates (RCs) for biasing methods pose a challenge for all-atom (AA) simulations. Here, we map system dynamics on Langevin dynamics in a normal mode space determined from an elastic network model representation for the lipid-water Hamiltonian. AA molecular dynamics (MD) simulations are used to determine model parameters, and Langevin dynamics predictions for bilayer structural, mechanical, and dynamic properties are validated against MD simulations and experiments. Transferability to describe the dynamics of a larger lipid bilayer and a heterogeneous membrane-protein system is assessed. A set of generic RCs for pore formation in two tensionless bilayers is obtained by coupling Langevin dynamics to the underlying energy landscape for membrane deformations. Structure evolution is carried out by AA MD, wherein the generic RCs are used in a path metadynamics or an umbrella sampling simulation to determine the thermodynamics of pore formation and its molecular determinants, such as the role of distinct bilayer motions, lipid solvation, and lipid packing.
Collapse
Affiliation(s)
- Rajat Punia
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Gaurav Goel
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
2
|
Nilsson LB, Sun F, Kadupitiya JCS, Jadhao V. Molecular Dynamics Simulations of Deformable Viral Capsomers. Viruses 2023; 15:1672. [PMID: 37632014 PMCID: PMC10459744 DOI: 10.3390/v15081672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Most coarse-grained models of individual capsomers associated with viruses employ rigid building blocks that do not exhibit shape adaptation during self-assembly. We develop a coarse-grained general model of viral capsomers that incorporates their stretching and bending energies while retaining many features of the rigid-body models, including an overall trapezoidal shape with attractive interaction sites embedded in the lateral walls to favor icosahedral capsid assembly. Molecular dynamics simulations of deformable capsomers reproduce the rich self-assembly behavior associated with a general T=1 icosahedral virus system in the absence of a genome. Transitions from non-assembled configurations to icosahedral capsids to kinetically-trapped malformed structures are observed as the steric attraction between capsomers is increased. An assembly diagram in the space of capsomer-capsomer steric attraction and capsomer deformability reveals that assembling capsomers of higher deformability into capsids requires increasingly large steric attraction between capsomers. Increasing capsomer deformability can reverse incorrect capsomer-capsomer binding, facilitating transitions from malformed structures to symmetric capsids; however, making capsomers too soft inhibits assembly and yields fluid-like structures.
Collapse
Affiliation(s)
| | | | | | - Vikram Jadhao
- Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, USA; (L.B.N.); (F.S.); (J.C.S.K.)
| |
Collapse
|
3
|
Lynch D, Pavlova A, Fan Z, Gumbart JC. Understanding Virus Structure and Dynamics through Molecular Simulations. J Chem Theory Comput 2023; 19:3025-3036. [PMID: 37192279 PMCID: PMC10269348 DOI: 10.1021/acs.jctc.3c00116] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Indexed: 05/18/2023]
Abstract
Viral outbreaks remain a serious threat to human and animal populations and motivate the continued development of antiviral drugs and vaccines, which in turn benefits from a detailed understanding of both viral structure and dynamics. While great strides have been made in characterizing these systems experimentally, molecular simulations have proven to be an essential, complementary approach. In this work, we review the contributions of molecular simulations to the understanding of viral structure, functional dynamics, and processes related to the viral life cycle. Approaches ranging from coarse-grained to all-atom representations are discussed, including current efforts at modeling complete viral systems. Overall, this review demonstrates that computational virology plays an essential role in understanding these systems.
Collapse
Affiliation(s)
- Diane
L. Lynch
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anna Pavlova
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zixing Fan
- Interdisciplinary
Bioengineering Graduate Program, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - James C. Gumbart
- School
of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
4
|
Jana AK, Sharawy M, May ER. Non-equilibrium virus particle dynamics: Microsecond MD simulations of the complete Flock House virus capsid under different conditions. J Struct Biol 2023; 215:107964. [PMID: 37105277 PMCID: PMC10205670 DOI: 10.1016/j.jsb.2023.107964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/22/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023]
Abstract
Flock House virus (FHV) is an animal virus and considered a model system for non-enveloped viruses. It has a small, icosahedral capsid (T=3) and a bipartite positive-sense RNA genome. We present an extensive study of the FHV capsid dynamics from all-atom molecular dynamics simulations of the complete capsid. The simulations explore different biologically relevant conditions (neutral/low pH, with/without RNA in the capsid) using the CHARMM force field. The results show that low pH destabilizes the capsid, causing radial expansion, and RNA stabilizes the capsid. The finding of low pH destabilization is biologically relevant because the capsid is exposed to low pH in the endosome, where conformational changes occur leading to genome release. We also observe structural changes at the fivefold and twofold symmetry axes that likely relate to the externalization of membrane active γ peptides through the fivefold vertex and extrusion of RNA at the twofold axis. Simulations using the Amber force field at neutral pH are also performed and display similar characteristics to the CHARMM simulations.
Collapse
Affiliation(s)
- Asis K Jana
- DepartmentofMolecularandCellBiology, UniversityofConnecticut, Storrs, CT06269-3125, USA; Department of Microbiology and Biotechnology, Sister Nivedita University, New Town, West Bengal 700156, India
| | - Mahmoud Sharawy
- DepartmentofMolecularandCellBiology, UniversityofConnecticut, Storrs, CT06269-3125, USA
| | - Eric R May
- DepartmentofMolecularandCellBiology, UniversityofConnecticut, Storrs, CT06269-3125, USA.
| |
Collapse
|
5
|
Andoh Y, Ichikawa SI, Sakashita T, Yoshii N, Okazaki S. Algorithm to minimize MPI communications in the parallelized fast multipole method combined with molecular dynamics calculations. J Comput Chem 2021; 42:1073-1087. [PMID: 33780021 DOI: 10.1002/jcc.26524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 11/07/2022]
Abstract
In the era of exascale supercomputers, large-scale, and long-time molecular dynamics (MD) calculations are expected to make breakthroughs in various fields of science and technology. Here, we propose a new algorithm to improve the parallelization performance of message passing interface (MPI)-communication in the MPI-parallelized fast multipole method (FMM) combined with MD calculations under three-dimensional periodic boundary conditions. Our approach enables a drastic reduction in the amount of communication data, including the atomic coordinates and multipole coefficients, both of which are required to calculate the electrostatic interaction by using the FMM. In communications of multipole coefficients, the reduction rate of communication data in the new algorithm relative to the amount of data in the conventional one increases as both the number of FMM levels and the number of MPI processes increase. The aforementioned rate increase could exceed 50% as the number of MPI processes becomes larger for very large systems. The proposed algorithm, named the minimum-transferred data (MTD) method, should enable large-scale and long-time MD calculations to be calculated efficiently, under the condition of massive MPI-parallelization on exascale supercomputers.
Collapse
Affiliation(s)
- Yoshimichi Andoh
- Center for Computational Science, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Shin-Ichi Ichikawa
- Computational Science Division, Technical Computing Business Unit, Fujitsu Limited, Chiba, Japan
| | - Tatsuya Sakashita
- Department of Information and Communication Technology, College of Engineering, Tamagawa University, Machida, Tokyo, Japan
| | - Noriyuki Yoshii
- Center for Computational Science, Graduate School of Engineering, Nagoya University, Nagoya, Japan
- Department of Materials Chemistry, Nagoya University, Nagoya, Japan
| | - Susumu Okazaki
- Department of Materials Chemistry, Nagoya University, Nagoya, Japan
- Department of Advanced Materials Science, The University of Tokyo, Kashiwa, Chiba, Japan
| |
Collapse
|
6
|
Machado MR, Pantano S. Fighting viruses with computers, right now. Curr Opin Virol 2021; 48:91-99. [PMID: 33975154 DOI: 10.1016/j.coviro.2021.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/20/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
The synergistic conjunction of various technological revolutions with the accumulated knowledge and workflows is rapidly transforming several scientific fields. Particularly, Virology can now feed from accurate physical models, polished computational tools, and massive computational power to readily integrate high-resolution structures into biological representations of unprecedented detail. That preparedness allows for the first time to get crucial information for vaccine and drug design from in-silico experiments against emerging pathogens of worldwide concern at relevant action windows. The present work reviews some of the main milestones leading to these breakthroughs in Computational Virology, providing an outlook for future developments in capacity building and accessibility to computational resources.
Collapse
Affiliation(s)
- Matías R Machado
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay.
| | - Sergio Pantano
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay.
| |
Collapse
|
7
|
Hagan MF, Grason GM. Equilibrium mechanisms of self-limiting assembly. REVIEWS OF MODERN PHYSICS 2021; 93:025008. [PMID: 35221384 PMCID: PMC8880259 DOI: 10.1103/revmodphys.93.025008] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Self-assembly is a ubiquitous process in synthetic and biological systems, broadly defined as the spontaneous organization of multiple subunits (e.g. macromolecules, particles) into ordered multi-unit structures. The vast majority of equilibrium assembly processes give rise to two states: one consisting of dispersed disassociated subunits, and the other, a bulk-condensed state of unlimited size. This review focuses on the more specialized class of self-limiting assembly, which describes equilibrium assembly processes resulting in finite-size structures. These systems pose a generic and basic question, how do thermodynamic processes involving non-covalent interactions between identical subunits "measure" and select the size of assembled structures? In this review, we begin with an introduction to the basic statistical mechanical framework for assembly thermodynamics, and use this to highlight the key physical ingredients that ensure equilibrium assembly will terminate at finite dimensions. Then, we introduce examples of self-limiting assembly systems, and classify them within this framework based on two broad categories: self-closing assemblies and open-boundary assemblies. These include well-known cases in biology and synthetic soft matter - micellization of amphiphiles and shell/tubule formation of tapered subunits - as well as less widely known classes of assemblies, such as short-range attractive/long-range repulsive systems and geometrically-frustrated assemblies. For each of these self-limiting mechanisms, we describe the physical mechanisms that select equilibrium assembly size, as well as potential limitations of finite-size selection. Finally, we discuss alternative mechanisms for finite-size assemblies, and draw contrasts with the size-control that these can achieve relative to self-limitation in equilibrium, single-species assemblies.
Collapse
Affiliation(s)
- Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, MA 02454, USA
| | - Gregory M Grason
- Department of Polymer Science and Engineering, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
8
|
Zeng C, Scott L, Malyutin A, Zandi R, Van der Schoot P, Dragnea B. Virus Mechanics under Molecular Crowding. J Phys Chem B 2021; 125:1790-1798. [PMID: 33577322 DOI: 10.1021/acs.jpcb.0c10947] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Viruses avoid exposure of the viral genome to harmful agents with the help of a protective protein shell known as the capsid. A secondary effect of this protective barrier is that macromolecules that may be in high concentration on the outside cannot freely diffuse across it. Therefore, inside the cell and possibly even outside, the intact virus is generally under a state of osmotic stress. Viruses deal with this type of stress in various ways. In some cases, they might harness it for infection. However, the magnitude and influence of osmotic stress on virus physical properties remains virtually unexplored for single-stranded RNA viruses-the most abundant class of viruses. Here, we report on how a model system for the positive-sense RNA icosahedral viruses, brome mosaic virus (BMV), responds to osmotic pressure. Specifically, we study the mechanical properties and structural stability of BMV under controlled molecular crowding conditions. We show that BMV is mechanically reinforced under a small external osmotic pressure but starts to yield after a threshold pressure is reached. We explain this mechanochemical behavior as an effect of the molecular crowding on the entropy of the "breathing" fluctuation modes of the virus shell. The experimental results are consistent with the viral RNA imposing a small negative internal osmotic pressure that prestresses the capsid. Our findings add a new line of inquiry to be considered when addressing the mechanisms of viral disassembly inside the crowded environment of the cell.
Collapse
Affiliation(s)
- Cheng Zeng
- Department of Chemistry, Indiana University, Bloomington, Bloomington, Indiana 47405, United States
| | - Liam Scott
- Department of Chemistry, Indiana University, Bloomington, Bloomington, Indiana 47405, United States
| | - Andrey Malyutin
- Department of Chemistry, Indiana University, Bloomington, Bloomington, Indiana 47405, United States
| | - Roya Zandi
- Department of Physics and Astronomy, University of California at Riverside, Riverside, California 92521, United States
| | | | - Bogdan Dragnea
- Department of Chemistry, Indiana University, Bloomington, Bloomington, Indiana 47405, United States
| |
Collapse
|
9
|
Jernigan RL, Sankar K, Jia K, Faraggi E, Kloczkowski A. Computational Ways to Enhance Protein Inhibitor Design. Front Mol Biosci 2021; 7:607323. [PMID: 33614705 PMCID: PMC7886686 DOI: 10.3389/fmolb.2020.607323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/08/2020] [Indexed: 11/22/2022] Open
Abstract
Two new computational approaches are described to aid in the design of new peptide-based drugs by evaluating ensembles of protein structures from their dynamics and through the assessing of structures using empirical contact potential. These approaches build on the concept that conformational variability can aid in the binding process and, for disordered proteins, can even facilitate the binding of more diverse ligands. This latter consideration indicates that such a design process should be less restrictive so that multiple inhibitors might be effective. The example chosen here focuses on proteins/peptides that bind to hemagglutinin (HA) to block the large-scale conformational change for activation. Variability in the conformations is considered from sets of experimental structures, or as an alternative, from their simple computed dynamics; the set of designe peptides/small proteins from the David Baker lab designed to bind to hemagglutinin, is the large set considered and is assessed with the new empirical contact potentials.
Collapse
Affiliation(s)
- Robert L. Jernigan
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Kannan Sankar
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Kejue Jia
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| | - Eshel Faraggi
- Research and Information Systems, LLC, Indianapolis, IN, United States
- Department of Physics, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States
| | - Andrzej Kloczkowski
- Battelle Center for Mathematical Medicine, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
10
|
Emanuel MD, Cherstvy AG, Metzler R, Gompper G. Buckling transitions and soft-phase invasion of two-component icosahedral shells. Phys Rev E 2021; 102:062104. [PMID: 33465945 DOI: 10.1103/physreve.102.062104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 11/11/2020] [Indexed: 12/18/2022]
Abstract
What is the optimal distribution of two types of crystalline phases on the surface of icosahedral shells, such as of many viral capsids? We here investigate the distribution of a thin layer of soft material on a crystalline convex icosahedral shell. We demonstrate how the shapes of spherical viruses can be understood from the perspective of elasticity theory of thin two-component shells. We develop a theory of shape transformations of an icosahedral shell upon addition of a softer, but still crystalline, material onto its surface. We show how the soft component "invades" the regions with the highest elastic energy and stress imposed by the 12 topological defects on the surface. We explore the phase diagram as a function of the surface fraction of the soft material, the shell size, and the incommensurability of the elastic moduli of the rigid and soft phases. We find that, as expected, progressive filling of the rigid shell by the soft phase starts from the most deformed regions of the icosahedron. With a progressively increasing soft-phase coverage, the spherical segments of domes are filled first (12 vertices of the shell), then the cylindrical segments connecting the domes (30 edges) are invaded, and, ultimately, the 20 flat faces of the icosahedral shell tend to be occupied by the soft material. We present a detailed theoretical investigation of the first two stages of this invasion process and develop a model of morphological changes of the cone structure that permits noncircular cross sections. In conclusion, we discuss the biological relevance of some structures predicted from our calculations, in particular for the shape of viral capsids.
Collapse
Affiliation(s)
- Marc D Emanuel
- Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Kavli Institute for Nanoscience, Technical University Delft, 2628 CJ Delft, Netherlands
| | - Andrey G Cherstvy
- Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Gerhard Gompper
- Theoretical Physics of Living Matter, Institute of Biological Information Processing, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
11
|
Optical Trapping, Sizing, and Probing Acoustic Modes of a Small Virus. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10010394] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prior opto-mechanical techniques to measure vibrational frequencies of viruses work on large ensembles of particles, whereas, in this work, individually trapped viral particles were studied. Double nanohole (DNH) apertures in a gold film were used to achieve optical trapping of one of the smallest virus particles yet reported, PhiX174, which has a diameter of 25 nm. When a laser was focused onto these DNH apertures, it created high local fields due to plasmonic enhancement, which allowed stable trapping of small particles for prolonged periods at low powers. Two techniques were performed to characterize the virus particles. The particles were sized via an established autocorrelation analysis technique, and the acoustic modes were probed using the extraordinary acoustic Raman (EAR) method. The size of the trapped particle was determined to be 25 ± 3.8 nm, which is in good agreement with the established diameter of PhiX174. A peak in the EAR signal was observed at 32 GHz, which fits well with the predicted value from elastic theory.
Collapse
|
12
|
Hernando-Pérez M, Zeng C, Miguel MC, Dragnea B. Intermittency of Deformation and the Elastic Limit of an Icosahedral Virus under Compression. ACS NANO 2019; 13:7842-7849. [PMID: 31241887 DOI: 10.1021/acsnano.9b02133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Viruses undergo mesoscopic morphological changes as they interact with host interfaces and in response to chemical cues. The dynamics of these changes, over the entire temporal range relevant to virus processes, are unclear. Here, we report on creep compliance experiments on a small icosahedral virus under uniaxial constant stress. We find that even at small stresses, well below the yielding point and generally thought to induce a Hookean response, strain continues to develop in time via sparse, randomly distributed, relatively rapid plastic events. The intermittent character of mechanical compliance only appears above a loading threshold, similar to situations encountered in granular flows and the plastic deformation of crystalline solids. The threshold load is much smaller for the empty capsids of the brome mosaic virus than for the wild-type virions. The difference highlights the involvement of RNA in stabilizing the assembly interface. Numerical simulations of spherical crystal deformation suggest intermittency is mediated by lattice defect dynamics and identify the type of compression-induced defect that nucleates the transition to plasticity.
Collapse
Affiliation(s)
| | - Cheng Zeng
- Departament de Física de la Matèria Condensada, Facultat de Física , Universitat de Barcelona , Martí i Franquès 1 , 08028 Barcelona , Spain
- Harvard , John A. Paulson School of Applied Sciences , 29 Oxford Street Cambridge , Massachusetts 02138 , United States
| | - M Carmen Miguel
- Departament de Física de la Matèria Condensada, Facultat de Física , Universitat de Barcelona , Martí i Franquès 1 , 08028 Barcelona , Spain
| | - Bogdan Dragnea
- Department of Chemistry , Indiana University , Bloomington , Indiana 47405 , United States
| |
Collapse
|
13
|
Hadden JA, Perilla JR. All-atom virus simulations. Curr Opin Virol 2018; 31:82-91. [PMID: 30181049 PMCID: PMC6456034 DOI: 10.1016/j.coviro.2018.08.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/04/2018] [Accepted: 08/13/2018] [Indexed: 12/11/2022]
Abstract
The constant threat of viral disease can be combated by the development of novel vaccines and therapeutics designed to disrupt key features of virus structure or infection cycle processes. Such development relies on high-resolution characterization of viruses and their dynamical behaviors, which are often challenging to obtain solely by experiment. In response, all-atom molecular dynamics simulations are widely leveraged to study the structural components of viruses, leading to some of the largest simulation endeavors undertaken to date. The present work reviews exemplary all-atom simulation work on viruses, as well as progress toward simulating entire virions.
Collapse
Affiliation(s)
- Jodi A Hadden
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States.
| | - Juan R Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
14
|
Zhang L, Ru CQ. Post-buckling of a pressured biopolymer spherical shell with the mode interaction. Proc Math Phys Eng Sci 2018; 474:20170834. [PMID: 29662343 DOI: 10.1098/rspa.2017.0834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/05/2018] [Indexed: 12/20/2022] Open
Abstract
Imperfection sensitivity is essential for mechanical behaviour of biopolymer shells characterized by high geometric heterogeneity. The present work studies initial post-buckling and imperfection sensitivity of a pressured biopolymer spherical shell based on non-axisymmetric buckling modes and associated mode interaction. Our results indicate that for biopolymer spherical shells with moderate radius-to-thickness ratio (say, less than 30) and smaller effective bending thickness (say, less than 0.2 times average shell thickness), the imperfection sensitivity predicted based on the axisymmetric mode without the mode interaction is close to the present results based on non-axisymmetric modes with the mode interaction with a small (typically, less than 10%) relative errors. However, for biopolymer spherical shells with larger effective bending thickness, the maximum load an imperfect shell can sustain predicted by the present non-axisymmetric analysis can be significantly (typically, around 30%) lower than those predicted based on the axisymmetric mode without the mode interaction. In such cases, a more accurate non-axisymmetric analysis with the mode interaction, as given in the present work, is required for imperfection sensitivity of pressured buckling of biopolymer spherical shells. Finally, the implications of the present study to two specific types of biopolymer spherical shells (viral capsids and ultrasound contrast agents) are discussed.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Mechanical Engineering, University of Alberta, Edmonton, CanadaT6G 2G8
| | - C Q Ru
- Department of Mechanical Engineering, University of Alberta, Edmonton, CanadaT6G 2G8
| |
Collapse
|
15
|
Aggarwal A. Determination of prestress and elastic properties of virus capsids. Phys Rev E 2018; 97:032414. [PMID: 29776150 DOI: 10.1103/physreve.97.032414] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Indexed: 06/08/2023]
Abstract
Virus capsids are protein shells that protect the virus genome, and determination of their mechanical properties has been a topic of interest because of their potential use in nanotechnology and therapeutics. It has been demonstrated that stresses exist in virus capsids, even in their equilibrium state, due to their construction. These stresses, termed "prestresses" in this study, closely affect the capsid's mechanical behavior. Three methods-shape-based metric, atomic force microscope indentation, and molecular dynamics-have been proposed to determine the capsid elastic properties without fully accounting for prestresses. In this paper, we theoretically analyze the three methods used for mechanical characterization of virus capsids and numerically investigate how prestresses affect the capsid's mechanical properties. We consolidate all the results and propose that by using these techniques collectively, it is possible to accurately determine both the mechanical properties and prestresses in capsids.
Collapse
Affiliation(s)
- Ankush Aggarwal
- Zienkiewicz Centre for Computational Engineering, Swansea University, Swansea, SA1 8EN, United Kingdom
| |
Collapse
|
16
|
Normal mode analysis of Zika virus. Comput Biol Chem 2018; 72:53-61. [PMID: 29414097 DOI: 10.1016/j.compbiolchem.2018.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/04/2018] [Accepted: 01/12/2018] [Indexed: 02/06/2023]
Abstract
In recent years, Zika virus (ZIKV) caused a new pandemic due to its rapid spread and close relationship with microcephaly. As a result, ZIKV has become an obvious global health concern. Information about the fundamental viral features or the biological process of infection remains limited, despite considerable efforts. Meanwhile, the icosahedral shell structure of the mature ZIKV was recently revealed by cryo-electron microscopy. This structural information enabled us to simulate ZIKV. In this study, we analyzed the dynamic properties of ZIKV through simulation from the mechanical viewpoint. We performed normal mode analysis (NMA) for a dimeric structure of ZIKV consisting of the envelope proteins and the membrane proteins as a unit structure. By analyzing low-frequency normal modes, we captured intrinsic vibrational motions and defined basic vibrational properties of the unit structure. Moreover, we also simulated the entire shell structure of ZIKV at the reduced computational cost, similar to the case of the unit structure, by utilizing its icosahedral symmetry. From the NMA results, we can not only comprehend the putative dynamic fluctuations of ZIKV but also verify previous inference such that highly mobile glycosylation sites would play an important role in ZIKV. Consequently, this theoretical study is expected to give us an insight on the underlying biological functions and infection mechanism of ZIKV.
Collapse
|
17
|
Ward MD, Nangia S, May ER. Evaluation of the hybrid resolution PACE model for the study of folding, insertion, and pore formation of membrane associated peptides. J Comput Chem 2017; 38:1462-1471. [PMID: 28102001 PMCID: PMC5407926 DOI: 10.1002/jcc.24694] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 10/20/2016] [Accepted: 11/17/2016] [Indexed: 12/29/2022]
Abstract
The PACE force field presents an attractive model for conducting molecular dynamics simulations of membrane-protein systems. PACE is a hybrid model, in which lipids and solvents are coarse-grained consistent with the MARTINI mapping, while proteins are described by a united atom model. However, given PACE is linked to MARTINI, which is widely used to study membranes, the behavior of proteins interacting with membranes has only been limitedly examined in PACE. In this study, PACE is used to examine the behavior of several peptides in membrane environments, namely WALP peptides, melittin and influenza hemagglutinin fusion peptide (HAfp). Overall, we find PACE provides an improvement over MARTINI for modeling helical peptides, based on the membrane insertion energetics for WALP16 and more realistic melittin pore dynamics. Our studies on HAfp, which forms a helical hairpin structure, do not show the hairpin structure to be stable, which may point toward a deficiency in the model. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Michael D. Ward
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| | - Shivangi Nangia
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| | - Eric R. May
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
18
|
Zhang L, Ru CQ. Imperfection sensitivity of pressured buckling of biopolymer spherical shells. Phys Rev E 2016; 93:062403. [PMID: 27415294 DOI: 10.1103/physreve.93.062403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Indexed: 12/18/2022]
Abstract
Imperfection sensitivity is essential for mechanical behavior of biopolymer shells [such as ultrasound contrast agents (UCAs) and spherical viruses] characterized by high geometric heterogeneity. In this work, an imperfection sensitivity analysis is conducted based on a refined shell model recently developed for spherical biopolymer shells of high structural heterogeneity and thickness nonuniformity. The influence of related parameters (including the ratio of radius to average shell thickness, the ratio of transverse shear modulus to in-plane shear modulus, and the ratio of effective bending thickness to average shell thickness) on imperfection sensitivity is examined for pressured buckling. Our results show that the ratio of effective bending thickness to average shell thickness has a major effect on the imperfection sensitivity, while the effect of the ratio of transverse shear modulus to in-plane shear modulus is usually negligible. For example, with physically realistic parameters for typical imperfect spherical biopolymer shells, the present model predicts that actual maximum external pressure could be reduced to as low as 60% of that of a perfect UCA spherical shell or 55%-65% of that of a perfect spherical virus shell, respectively. The moderate imperfection sensitivity of spherical biopolymer shells with physically realistic imperfection is largely attributed to the fact that biopolymer shells are relatively thicker (defined by smaller radius-to-thickness ratio) and therefore practically realistic imperfection amplitude normalized by thickness is very small as compared to that of classical elastic thin shells which have much larger radius-to-thickness ratio.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada T6G 2G8
| | - C Q Ru
- Department of Mechanical Engineering, University of Alberta, Edmonton, Canada T6G 2G8
| |
Collapse
|
19
|
Moerman P, van der Schoot P, Kegel W. Kinetics versus Thermodynamics in Virus Capsid Polymorphism. J Phys Chem B 2016; 120:6003-9. [PMID: 27027925 DOI: 10.1021/acs.jpcb.6b01953] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Virus coat proteins spontaneously self-assemble into empty shells in aqueous solution under the appropriate physicochemical conditions, driven by an interaction free energy per bond on the order of 2-5 times the thermal energy kBT. For this seemingly modest interaction strength, each protein building block nonetheless gains a very large binding free energy, between 10 and 20 kBT. Because of this, there is debate about whether the assembly process is reversible or irreversible. Here we discuss capsid polymorphism observed in in vitro experiments from the perspective of nucleation theory and of the thermodynamics of mass action. We specifically consider the potential contribution of a curvature free energy term to the effective interaction potential between the proteins. From these models, we propose experiments that may conclusively reveal whether virus capsid assembly into a mixture of polymorphs is a reversible or an irreversible process.
Collapse
Affiliation(s)
| | - Paul van der Schoot
- Department of Applied Physics, Eindhoven University of Technology , 612 AZ Eindhoven, The Netherlands
| | | |
Collapse
|
20
|
Wilson DP. Protruding Features of Viral Capsids Are Clustered on Icosahedral Great Circles. PLoS One 2016; 11:e0152319. [PMID: 27045511 PMCID: PMC4821576 DOI: 10.1371/journal.pone.0152319] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 03/11/2016] [Indexed: 11/20/2022] Open
Abstract
Spherical viruses are remarkably well characterized by the Triangulation (T) number developed by Casper and Klug. The T-number specifies how many viral capsid proteins are required to cover the virus, as well as how they are further subdivided into pentamer and hexamer subunits. The T-number however does not constrain the orientations of these proteins within the subunits or dictate where the proteins should place their protruding features. These protrusions often take the form of loops, spires and helices, and are significant because they aid in stability of the capsid as well as recognition by the host organism. Until now there has be no overall understanding of the placement of protrusions for spherical viruses, other than they have icosahedral symmetry. We constructed a set of gauge points based upon the work affine extensions of Keef and Twarock, which have fixed relative angular locations with which to measure the locations of these features. This work adds a new element to our understanding of the geometric arrangement of spherical viral capsid proteins; chiefly that the locations of protruding features are not found stochastically distributed in an icosahedral manner across the viral surface, but instead these features are found only in specific locations along the 15 icosahedral great circles. We have found that this result holds true as the T number and viral capsids size increases, suggesting an underlying geometric constraint on their locations. This is in spite of the fact that the constraints on the pentamers and hexamer orientations change as a function of T-number, as you need to accommodate more hexamers in the same solid angle between pentamers. The existence of this angular constraint of viral capsids suggests that there is a fitness or energetic benefit to the virus placing its protrusions in this manner. This discovery may have profound impacts on identifying and eliminating viral pathogens, understanding evolutionary constraints as well as bioengineering for capsid drug delivery systems. This result also suggests that in addition to biochemical attachment restrictions, there are additional geometric constraints that should be adhered to when modifying protein capsids.
Collapse
Affiliation(s)
- David P. Wilson
- Department of Physics, Albion College, 611 E. Porter St., Albion, Michigan, United States of America
- * E-mail:
| |
Collapse
|
21
|
Hernando-Pérez M, Zeng C, Delalande L, Tsvetkova I, Bousquet A, Tayachi-Pigeonnat M, Temam R, Dragnea B. Nanoindentation of Isometric Viruses on Deterministically Corrugated Substrates. J Phys Chem B 2016; 120:340-7. [DOI: 10.1021/acs.jpcb.5b08362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. Hernando-Pérez
- Department of Chemistry and ‡Department of Mathematics, Indiana University, Bloomington, Indiana 47405, United States
| | - C. Zeng
- Department of Chemistry and ‡Department of Mathematics, Indiana University, Bloomington, Indiana 47405, United States
| | - L. Delalande
- Department of Chemistry and ‡Department of Mathematics, Indiana University, Bloomington, Indiana 47405, United States
| | - I.B. Tsvetkova
- Department of Chemistry and ‡Department of Mathematics, Indiana University, Bloomington, Indiana 47405, United States
| | - A. Bousquet
- Department of Chemistry and ‡Department of Mathematics, Indiana University, Bloomington, Indiana 47405, United States
| | - M. Tayachi-Pigeonnat
- Department of Chemistry and ‡Department of Mathematics, Indiana University, Bloomington, Indiana 47405, United States
| | - R. Temam
- Department of Chemistry and ‡Department of Mathematics, Indiana University, Bloomington, Indiana 47405, United States
| | - B. Dragnea
- Department of Chemistry and ‡Department of Mathematics, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
22
|
Aggarwal A, May ER, Brooks CL, Klug WS. Nonuniform elastic properties of macromolecules and effect of prestrain on their continuum nature. Phys Rev E 2016; 93:012417. [PMID: 26871111 DOI: 10.1103/physreve.93.012417] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Indexed: 06/05/2023]
Abstract
Many experimental and theoretical methods have been developed to calculate the coarse-grained continuum elastic properties of macromolecules. However, all of those methods assume uniform elastic properties. Following the continuum mechanics framework, we present a systematic way of calculating the nonuniform effective elastic properties from atomic thermal fluctuations obtained from molecular dynamics simulation at any coarse-grained scale using a potential of the mean-force approach. We present the results for a mutant of Sesbania mosaic virus capsid, where we calculate the elastic moduli at different scales and observe an apparent problem with the chosen reference configuration in some cases. We present a possible explanation using an elastic network model, where inducing random prestrain results in a similar behavior. This phenomenon provides a novel insight into the continuum nature of macromolecules and defines the limits on details that the elasticity theory can capture. Further investigation into prestrains could elucidate important aspects of conformational dynamics of macromolecules.
Collapse
Affiliation(s)
- Ankush Aggarwal
- Zienkiewicz Centre for Computational Engineering, Swansea University, Swansea SA1 8EN, United Kigdom
| | - Eric R May
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, Connecticut 06269, USA
| | - Charles L Brooks
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - William S Klug
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
23
|
Hoang Man V, Van-Oanh NT, Derreumaux P, Li MS, Roland C, Sagui C, Nguyen PH. Picosecond infrared laser-induced all-atom nonequilibrium molecular dynamics simulation of dissociation of viruses. Phys Chem Chem Phys 2016; 18:11951-8. [DOI: 10.1039/c5cp07711g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Laser-induced all-atom nonequilibrium molecular dynamics simulation of virus dissociation.
Collapse
Affiliation(s)
- Viet Hoang Man
- Department of Physics
- North Carolina State University
- Raleigh
- USA
| | - Nguyen-Thi Van-Oanh
- Laboratoire de Chimie Physique
- Université Paris-Sud XI
- F91405 Orsay Cedex
- France
| | - Philippe Derreumaux
- Laboratoire de Biochimie Theorique
- UPR 9080 CNRS
- IBPC
- Universite Denis Diderot
- Paris
| | - Mai Suan Li
- Institute of Physics
- Polish Academy of Sciences
- 02-668 Warsaw
- Poland
- Institute for Computational Science and Technology
| | | | - Celeste Sagui
- Department of Physics
- North Carolina State University
- Raleigh
- USA
| | | |
Collapse
|
24
|
Abstract
I present a review of the theoretical and computational methodologies that have been used to model the assembly of viral capsids. I discuss the capabilities and limitations of approaches ranging from equilibrium continuum theories to molecular dynamics simulations, and I give an overview of some of the important conclusions about virus assembly that have resulted from these modeling efforts. Topics include the assembly of empty viral shells, assembly around single-stranded nucleic acids to form viral particles, and assembly around synthetic polymers or charged nanoparticles for nanotechnology or biomedical applications. I present some examples in which modeling efforts have promoted experimental breakthroughs, as well as directions in which the connection between modeling and experiment can be strengthened.
Collapse
|
25
|
Andoh Y, Yoshii N, Yamada A, Fujimoto K, Kojima H, Mizutani K, Nakagawa A, Nomoto A, Okazaki S. All-atom molecular dynamics calculation study of entire poliovirus empty capsids in solution. J Chem Phys 2014; 141:165101. [DOI: 10.1063/1.4897557] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Y. Andoh
- Department of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - N. Yoshii
- Department of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - A. Yamada
- Department of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - K. Fujimoto
- Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Nojihigashi, Kusatsu, Shiga 525-8577, Japan
| | - H. Kojima
- Department of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - K. Mizutani
- Department of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - A. Nakagawa
- Institute for Protein Research, Osaka University, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - A. Nomoto
- Institute of Microbial Chemistry, Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - S. Okazaki
- Department of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|
26
|
Zhdanov VP. Viral capsids: kinetics of assembly under transient conditions and kinetics of disassembly. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:042721. [PMID: 25375537 DOI: 10.1103/physreve.90.042721] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Indexed: 06/04/2023]
Abstract
The available kinetic models of assembly of viral protein capsids are focused primarily on the situations in vitro where the amount of protein is fixed. In vivo, however, the viral protein synthesis and capsid assembly occur under transient conditions in parallel with viral genome replication. Herein, a kinetic model describing the latter case of capsid assembly is proposed with emphasis on the period corresponding to the initial stage of viral genome replication. The analysis is aimed at small icosahedral capsids. With biologically reasonable values of model parameters, the model predicts rapid exponential growth of the populations of monomers and fully assembled capsids during the transient period of genome replication. Under the subsequent steady-state conditions with respect to replication, the monomer population is predicted to be nearly constant while the number of fully assembled capsids increases linearly. The kinetics of capsid disassembly, described briefly as well under conditions of negligible monomer concentration, exhibit a short induction period when the number of proteins in a capsid is only slightly smaller than in the beginning, followed by more rapid protein detachment. According to calculations, the latter kinetics may strongly depend on protein degradation.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Section of Biological Physics, Department of Applied Physics, Chalmers University of Technology, S-41296 Göteborg, Sweden and Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk 630090, Russia
| |
Collapse
|
27
|
May ER. Recent Developments in Molecular Simulation Approaches to Study Spherical Virus Capsids. MOLECULAR SIMULATION 2014; 40:878-888. [PMID: 25197162 DOI: 10.1080/08927022.2014.907899] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Viruses are a particularly challenging systems to study via molecular simulation methods. Virus capsids typically consist of over 100 subunit proteins and reach dimensions of over 100 nm; solvated viruses capsid systems can be over 1 million atoms in size. In this review, I will present recent developments which have attempted to overcome the significant computational expense to perform simulations which can inform experimental studies, make useful predictions about biological phenomena and calculate material properties relevant to nanotechnology design efforts.
Collapse
Affiliation(s)
- Eric R May
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA 06269
| |
Collapse
|
28
|
Vashisth H, Skiniotis G, Brooks CL. Collective variable approaches for single molecule flexible fitting and enhanced sampling. Chem Rev 2014; 114:3353-65. [PMID: 24446720 PMCID: PMC3983124 DOI: 10.1021/cr4005988] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Harish Vashisth
- Department
of Chemical Engineering, University of New
Hampshire, Durham, New Hampshire 03824, United States
| | - Georgios Skiniotis
- Life Sciences Institute, Department
of Biological Chemistry, and
Biophysics Program, and Department of Chemistry and Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charles Lee Brooks
- Life Sciences Institute, Department
of Biological Chemistry, and
Biophysics Program, and Department of Chemistry and Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
29
|
Ahadi A, Johansson D, Evilevitch A. Modeling and simulation of the mechanical response from nanoindentation test of DNA-filled viral capsids. J Biol Phys 2013; 39:183-99. [PMID: 23860868 DOI: 10.1007/s10867-013-9297-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 01/03/2013] [Indexed: 01/31/2023] Open
Abstract
Viruses can be described as biological objects composed mainly of two parts: a stiff protein shell called a capsid, and a core inside the capsid containing the nucleic acid and liquid. In many double-stranded DNA bacterial viruses (aka phage), the volume ratio between the liquid and the encapsidated DNA is approximately 1:1. Due to the dominant DNA hydration force, water strongly mediates the interaction between the packaged DNA strands. Therefore, water that hydrates the DNA plays an important role in nanoindentation experiments of DNA-filled viral capsids. Nanoindentation measurements allow us to gain further insight into the nature of the hydration and electrostatic interactions between the DNA strands. With this motivation, a continuum-based numerical model for simulating the nanoindentation response of DNA-filled viral capsids is proposed here. The viral capsid is modeled as large- strain isotropic hyper-elastic material, whereas porous elasticity is adopted to capture the mechanical response of the filled viral capsid. The voids inside the viral capsid are assumed to be filled with liquid, which is modeled as a homogenous incompressible fluid. The motion of a fluid flowing through the porous medium upon capsid indentation is modeled using Darcy's law, describing the flow of fluid through a porous medium. The nanoindentation response is simulated using three-dimensional finite element analysis and the simulations are performed using the finite element code Abaqus. Force-indentation curves for empty, partially and completely DNA-filled capsids are directly compared to the experimental data for bacteriophage λ. Material parameters such as Young's modulus, shear modulus, and bulk modulus are determined by comparing computed force-indentation curves to the data from the atomic force microscopy (AFM) experiments. Predictions are made for pressure distribution inside the capsid, as well as the fluid volume ratio variation during the indentation test.
Collapse
Affiliation(s)
- Aylin Ahadi
- Department of Mechanical Engineering, Lund University, Lund, Sweden.
| | | | | |
Collapse
|
30
|
Abstract
All matter has to obey the general laws of physics and living matter is not an exception. Viruses have not only learnt how to cope with them, but have managed to use them for their own survival. In this chapter we will review some of the exciting physics behind viruses and discuss simple physical models that can shed some light on different aspects of the viral life cycle and viral properties. In particular, we will focus on how the structure and shape of the capsid, its assembly and stability, and the entry and exit of viral particles and their genomes can be understood using fundamental physics theories.
Collapse
Affiliation(s)
- Antoni Luque
- Department of Fundamental Physics, Universitat de Barcelona, c/Martí i Franquès 1, 08028, Barcelona, Spain
| | | |
Collapse
|
31
|
Aznar M, Luque A, Reguera D. Relevance of capsid structure in the buckling and maturation of spherical viruses. Phys Biol 2012; 9:036003. [DOI: 10.1088/1478-3975/9/3/036003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
32
|
Computer simulation studies of self-assembling macromolecules. Curr Opin Struct Biol 2012; 22:175-86. [DOI: 10.1016/j.sbi.2012.01.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 01/30/2012] [Accepted: 01/31/2012] [Indexed: 11/20/2022]
|
33
|
May ER, Brooks CL. On the morphology of viral capsids: elastic properties and buckling transitions. J Phys Chem B 2012; 116:8604-9. [PMID: 22409201 DOI: 10.1021/jp300005g] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The morphology of icosahedral viruses ranges from highly spherical to highly faceted, and for some viruses a shape transition occurs during the viral life cycle. This phenomena is predicted from continuum elasticity, via the buckling transition theory by Nelson (Phys. Rev. E 2003, 68, 051910), in which the shape is dependent on the Foppl-von Kármán number (γ), which is a ratio of the two-dimensional Young's modulus (Y) and the bending modulus (κ). However, until now, no direct calculations have been performed on atomic-level capsid structures to test the predictions of the theory. In this study, we employ a previously described multiscale method by May and Brooks (Phys. Rev. Lett. 2011, 106, 188101) to calculate Y and κ for the bacteriophage HK97, which undergoes a spherical to faceted transition during its viral life cycle. We observe a change in γ consistent with the buckling transition theory and also a significant reduction in κ, which facilitates formation of the faceted state. We go on to examine many capsids from the T = 3 and 7 classes using only elastic network models, which allows us to calculate the ratio Y/κ, without the expense of all-atom molecular dynamics. We observe for the T = 7 capsids, there is strong correlation between the shape of the capsid and γ; however, there is no such correlation for the smaller T = 3 viruses.
Collapse
Affiliation(s)
- Eric R May
- Department of Chemistry and Biophysics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
34
|
May ER, Feng J, Brooks CL. Exploring the symmetry and mechanism of virus capsid maturation via an ensemble of pathways. Biophys J 2012; 102:606-12. [PMID: 22325284 DOI: 10.1016/j.bpj.2011.12.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 11/25/2011] [Accepted: 12/01/2011] [Indexed: 12/16/2022] Open
Abstract
Many icosahedral viruses undergo large-scale conformational transitions between icosahedrally symmetric conformations during their life cycles. However, whether icosahedral symmetry is maintained along the transition pathways for this process is unknown. By employing a simplified and directed structure-based potential we compute an ensemble of transition pathways for the maturation transition of bacteriophage HK97. We observe localized symmetry-breaking events, but find that the large-scale displacements are dominated by icosahedrally symmetric deformation modes. We find that all pathways obey a common mechanism characterized by formation of pentameric contacts early in the transition.
Collapse
Affiliation(s)
- Eric R May
- Department of Chemistry and Biophysics Program, University of Michigan, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
35
|
Abstract
Capsid maturation with large-scale subunit reorganization occurs in virtually all viruses that use a motor to package nucleic acid into preformed particles. A variety of ensemble studies indicate that the particles gain greater stability during this process, however, it is unknown which material properties of the fragile procapsids change. Using Atomic Force Microscopy-based nano-indentation, we study the development of the mechanical properties during maturation of bacteriophage HK97, a λ-like phage of which the maturation-induced morphological changes are well described. We show that mechanical stabilization and strengthening occurs in three independent ways: (i) an increase of the Young's modulus, (ii) a strong rise of the capsid's ultimate strength, and (iii) a growth of the resistance against material fatigue. The Young's modulus of immature and mature capsids, as determined from thin shell theory, fit with the values calculated using a new multiscale simulation approach. This multiscale calculation shows that the increase in Young's modulus isn't dependent on the crosslinking between capsomers. In contrast, the ultimate strength of the capsids does increase even when a limited number of cross-links are formed while full crosslinking appears to protect the shell against material fatigue. Compared to phage λ, the covalent crosslinking at the icosahedral and quasi threefold axes of HK97 yields a mechanically more robust particle than the addition of the gpD protein during maturation of phage λ. These results corroborate the expected increase in capsid stability and strength during maturation, however in an unexpected intricate way, underlining the complex structure of these self-assembling nanocontainers.
Collapse
|
36
|
May ER, Aggarwal A, Klug WS, Brooks CL. Viral capsid equilibrium dynamics reveals nonuniform elastic properties. Biophys J 2011; 100:L59-61. [PMID: 21641297 DOI: 10.1016/j.bpj.2011.04.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/08/2011] [Accepted: 04/12/2011] [Indexed: 11/26/2022] Open
Abstract
The long wavelength, low-frequency modes of motion are the relevant motions for understanding the continuum mechanical properties of biomolecules. By examining these low-frequency modes, in the context of a spherical harmonic basis set, we identify four elastic moduli that are required to describe the two-dimensional elastic behavior of capsids. This is in contrast to previous modeling and theoretical studies on elastic shells, which use only the two-dimensional Young's modulus (Y) and the bending modulus (κ) to describe the system. Presumably, the heterogeneity of the structure and the anisotropy of the biomolecular interactions lead to a deviation from the homogeneous, isotropic, linear elastic shell theory. We assign functional relevance of the various moduli governing different deformation modes, including a mode primarily sensed in atomic force microscopy nanoindentation experiments. We have performed our analysis on the T = 3 cowpea chlorotic mottle virus and our estimate for the nanoindentation modulus is in accord with experimental measurements.
Collapse
Affiliation(s)
- Eric R May
- Department of Chemistry and Biophysics Program, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|