1
|
Kar R, Chandrasekar VK, Senthilkumar DV. Higher-order interaction induced chimeralike state in a bipartite network. Phys Rev E 2024; 110:034205. [PMID: 39425384 DOI: 10.1103/physreve.110.034205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/01/2024] [Indexed: 10/21/2024]
Abstract
We report higher-order coupling induced stable chimeralike state in a bipartite network of coupled phase oscillators without any time-delay in the coupling. We show that the higher-order interaction breaks the symmetry of the homogeneous synchronized state to facilitate the manifestation of symmetry breaking chimeralike state. In particular, such symmetry breaking manifests only when the pairwise interaction is attractive and higher-order interaction is repulsive, and vice versa. Further, we also demonstrate the increased degree of heterogeneity promotes homogeneous symmetric states in the phase diagram by suppressing the asymmetric chimeralike state. We deduce the low-dimensional evolution equations for the macroscopic order parameters using Ott-Antonsen ansatz and obtain the bifurcation curves from them using the software xppaut, which agrees very well with the simulation results. We also deduce the analytical stability conditions for the incoherent state, in-phase and out-of-phase synchronized states, which match with the bifurcation curves.
Collapse
|
2
|
Rybalova E, Semenova N. Impact of pulse exposure on chimera state in ensemble of FitzHugh-Nagumo systems. CHAOS (WOODBURY, N.Y.) 2024; 34:071101. [PMID: 38953753 DOI: 10.1063/5.0214787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
In this article, we consider the influence of a periodic sequence of Gaussian pulses on a chimera state in a ring of coupled FitzHugh-Nagumo systems. We found that on the way to complete spatial synchronization, one can observe a number of variations of chimera states that are not typical for the parameter range under consideration. For example, the following modes were found: breathing chimera, chimera with intermittency in the incoherent part, traveling chimera with strong intermittency, and others. For comparison, here we also consider the impact of a harmonic influence on the same chimera, and to preserve the generality of the conclusions, we compare the regimes caused by both a purely positive harmonic influence and a positive-negative one.
Collapse
Affiliation(s)
- E Rybalova
- Radiophysics and Nonlinear Dynamics Department, Institute of Physics, Saratov State University, Astrakhanskaya str. 83, Saratov 410012, Russia
| | - N Semenova
- Radiophysics and Nonlinear Dynamics Department, Institute of Physics, Saratov State University, Astrakhanskaya str. 83, Saratov 410012, Russia
| |
Collapse
|
3
|
Rybalova E, Nikishina N, Strelkova G. Controlling spatiotemporal dynamics of neural networks by Lévy noise. CHAOS (WOODBURY, N.Y.) 2024; 34:041103. [PMID: 38648383 DOI: 10.1063/5.0206094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
We explore numerically how additive Lévy noise influences the spatiotemporal dynamics of a neural network of nonlocally coupled FitzHugh-Nagumo oscillators. Without noise, the network can exhibit various partial or cluster synchronization patterns, such as chimera and solitary states, which can also coexist in the network for certain values of the control parameters. Our studies show that these structures demonstrate different responses to additive Lévy noise and, thus, the dynamics of the neural network can be effectively controlled by varying the scale parameter and the stability index of Lévy noise. Specifically, introducing Lévy noise in the multistability mode can increase the probability of observing chimera states while suppressing solitary states. Nonetheless, decreasing the stability parameter enables one to diminish the noise effect on chimera states and amplify it on solitary states.
Collapse
Affiliation(s)
- E Rybalova
- Institute of Physics, Radiophysics and Nonlinear Dynamics Departament, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - N Nikishina
- Institute of Physics, Radiophysics and Nonlinear Dynamics Departament, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - G Strelkova
- Institute of Physics, Radiophysics and Nonlinear Dynamics Departament, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| |
Collapse
|
4
|
Zheng Z, Xu C, Fan J, Liu M, Chen X. Order parameter dynamics in complex systems: From models to data. CHAOS (WOODBURY, N.Y.) 2024; 34:022101. [PMID: 38341762 DOI: 10.1063/5.0180340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/14/2023] [Indexed: 02/13/2024]
Abstract
Collective ordering behaviors are typical macroscopic manifestations embedded in complex systems and can be ubiquitously observed across various physical backgrounds. Elements in complex systems may self-organize via mutual or external couplings to achieve diverse spatiotemporal coordinations. The order parameter, as a powerful quantity in describing the transition to collective states, may emerge spontaneously from large numbers of degrees of freedom through competitions. In this minireview, we extensively discussed the collective dynamics of complex systems from the viewpoint of order-parameter dynamics. A synergetic theory is adopted as the foundation of order-parameter dynamics, and it focuses on the self-organization and collective behaviors of complex systems. At the onset of macroscopic transitions, slow modes are distinguished from fast modes and act as order parameters, whose evolution can be established in terms of the slaving principle. We explore order-parameter dynamics in both model-based and data-based scenarios. For situations where microscopic dynamics modeling is available, as prototype examples, synchronization of coupled phase oscillators, chimera states, and neuron network dynamics are analytically studied, and the order-parameter dynamics is constructed in terms of reduction procedures such as the Ott-Antonsen ansatz, the Lorentz ansatz, and so on. For complicated systems highly challenging to be well modeled, we proposed the eigen-microstate approach (EMP) to reconstruct the macroscopic order-parameter dynamics, where the spatiotemporal evolution brought by big data can be well decomposed into eigenmodes, and the macroscopic collective behavior can be traced by Bose-Einstein condensation-like transitions and the emergence of dominant eigenmodes. The EMP is successfully applied to some typical examples, such as phase transitions in the Ising model, climate dynamics in earth systems, fluctuation patterns in stock markets, and collective motion in living systems.
Collapse
Affiliation(s)
- Zhigang Zheng
- Institute of Systems Science, Huaqiao University, Xiamen 361021, China and College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Can Xu
- Institute of Systems Science, Huaqiao University, Xiamen 361021, China and College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Jingfang Fan
- School of Systems Science, Beijing Normal University, Beijing 100875, China and Institute of Nonequilibrium Systems, Beijing Normal University, Beijing 100875, China
| | - Maoxin Liu
- School of Systems Science, Beijing Normal University, Beijing 100875, China and Institute of Nonequilibrium Systems, Beijing Normal University, Beijing 100875, China
| | - Xiaosong Chen
- School of Systems Science, Beijing Normal University, Beijing 100875, China and Institute of Nonequilibrium Systems, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
5
|
Li Y, Li H, Chen Y, Gao S, Dai Q, Yang J. Spiral wave chimeras in nonlocally coupled bicomponent oscillators. Phys Rev E 2023; 108:064206. [PMID: 38243460 DOI: 10.1103/physreve.108.064206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/22/2023] [Indexed: 01/21/2024]
Abstract
Chimera states in nonidentical oscillators have received extensive attention in recent years. Previous studies have demonstrated that chimera states can exist in a ring of nonlocally coupled bicomponent oscillators even in the presence of strong parameter heterogeneity. In this study, we investigate spiral wave chimeras in two-dimensional nonlocally coupled bicomponent oscillators where oscillators are randomly divided into two groups, with identical oscillators in the same group. Using phase oscillators and FitzHugh-Nagumo oscillators as examples, we numerically demonstrate that each group of oscillators supports its own spiral wave chimera and two spiral wave chimeras coexist with each other. We find that there exist three heterogeneity regimes: the synchronous regime at weak heterogeneity, the asynchronous regime at strong heterogeneity, and the transition regime in between. In the synchronous regime, spiral wave chimeras supported by different groups are synchronized with each other by sharing a same rotating frequency and a same incoherent core. In the asynchronous regime, the two spiral wave chimeras rotate at different frequencies and their incoherent cores are far away from each other. These phenomena are also observed in a nonrandom distribution of the two group oscillators and the continuum limit of infinitely many phase oscillators. The transition from synchronous to asynchronous spiral wave chimeras depends on the component oscillators. Specifically, it is a discontinuous transition for phase oscillators but a continuous one for FitzHugh-Nagumo oscillators. We also find that, in the asynchronous regime, increasing heterogeneity leads irregularly meandering spiral wave chimeras to rigidly rotating ones.
Collapse
Affiliation(s)
- Yang Li
- School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Haihong Li
- School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Yirui Chen
- School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Shun Gao
- School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Qionglin Dai
- School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| | - Junzhong Yang
- School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, People's Republic of China
| |
Collapse
|
6
|
Kumar P, Gangopadhyay G. Nonequilibrium thermodynamic signatures of collective dynamical states around chimera in a chemical reaction network. Phys Rev E 2023; 108:044218. [PMID: 37978606 DOI: 10.1103/physreve.108.044218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/03/2023] [Indexed: 11/19/2023]
Abstract
Different dynamical states ranging from coherent, incoherent to chimera, multichimera, and related transitions are addressed in a globally coupled nonlinear continuum chemical oscillator system by implementing a modified complex Ginzburg-Landau equation. Besides dynamical identifications of observed states using standard qualitative metrics, we systematically acquire nonequilibrium thermodynamic characterizations of these states obtained via coupling parameters. The nonconservative work profiles in collective dynamics qualitatively reflect the time-integrated concentration of the activator, and the majority of the nonconservative work contributes to the entropy production over the spatial dimension. It is illustrated that the evolution of spatial entropy production and semigrand Gibbs free-energy profiles associated with each state are connected yet completely out of phase, and these thermodynamic signatures are extensively elaborated to shed light on the exclusiveness and similarities of these states. Moreover, a relationship between the proper nonequilibrium thermodynamic potential and the variance of activator concentration is established by exhibiting both quantitative and qualitative similarities between a Fano factor like entity, derived from the activator concentration, and the Kullback-Leibler divergence associated with the transition from a nonequilibrium homogeneous state to an inhomogeneous state. Quantifying the thermodynamic costs for collective dynamical states would aid in efficiently controlling, manipulating, and sustaining such states to explore the real-world relevance and applications of these states.
Collapse
Affiliation(s)
- Premashis Kumar
- S. N. Bose National Centre For Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| | - Gautam Gangopadhyay
- S. N. Bose National Centre For Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700106, India
| |
Collapse
|
7
|
Mishra A, Saha S, Dana SK. Chimeras in globally coupled oscillators: A review. CHAOS (WOODBURY, N.Y.) 2023; 33:092101. [PMID: 37703474 DOI: 10.1063/5.0143872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 08/21/2023] [Indexed: 09/15/2023]
Abstract
The surprising phenomenon of chimera in an ensemble of identical oscillators is no more strange behavior of network dynamics and reality. By this time, this symmetry breaking self-organized collective dynamics has been established in many networks, a ring of non-locally coupled oscillators, globally coupled networks, a three-dimensional network, and multi-layer networks. A variety of coupling and dynamical models in addition to the phase oscillators has been used for a successful observation of chimera patterns. Experimental verification has also been done using metronomes, pendula, chemical, and opto-electronic systems. The phenomenon has also been shown to appear in small networks, and hence, it is not size-dependent. We present here a brief review of the origin of chimera patterns restricting our discussions to networks of globally coupled identical oscillators only. The history of chimeras in globally coupled oscillators is older than what has been reported in nonlocally coupled phase oscillators much later. We elaborate the story of the origin of chimeras in globally coupled oscillators in a chronological order, within our limitations, and with brief descriptions of the significant contributions, including our personal experiences. We first introduce chimeras in non-locally coupled and other network configurations, in general, and then discuss about globally coupled networks in more detail.
Collapse
Affiliation(s)
- Arindam Mishra
- Department of Physics, National University of Singapore, Singapore 117551
| | - Suman Saha
- Cognitive Brain Dynamics Laboratory, National Brain Research Centre, Gurugram 122051, India
| | - Syamal K Dana
- Centre for Mathematical Biology and Ecology, Department of Mathematics, Jadavpur University, Kolkata 700032, India
- Division of Dynamics, Lodz University of Technology, 90-924 Lodz, Poland
| |
Collapse
|
8
|
Rybalova E, Nechaev V, Schöll E, Strelkova G. Chimera resonance in networks of chaotic maps. CHAOS (WOODBURY, N.Y.) 2023; 33:093138. [PMID: 37748485 DOI: 10.1063/5.0164008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/05/2023] [Indexed: 09/27/2023]
Abstract
We explore numerically the impact of additive Gaussian noise on the spatiotemporal dynamics of ring networks of nonlocally coupled chaotic maps. The local dynamics of network nodes is described by the logistic map, the Ricker map, and the Henon map. 2D distributions of the probability of observing chimera states are constructed in terms of the coupling strength and the noise intensity and for several choices of the local dynamics parameters. It is shown that the coupling strength range can be the widest at a certain optimum noise level at which chimera states are observed with a high probability for a large number of different realizations of randomly distributed initial conditions and noise sources. This phenomenon demonstrates a constructive role of noise in analogy with the effects of stochastic and coherence resonance and may be referred to as chimera resonance.
Collapse
Affiliation(s)
- Elena Rybalova
- Institute of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - Vasilii Nechaev
- Institute of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, 10623 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
- Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany
| | - Galina Strelkova
- Institute of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| |
Collapse
|
9
|
Medeiros ES, Omel'chenko O, Feudel U. Transient chimera states emerging from dynamical trapping in chaotic saddles. CHAOS (WOODBURY, N.Y.) 2023; 33:093130. [PMID: 37729099 DOI: 10.1063/5.0155857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/30/2023] [Indexed: 09/22/2023]
Abstract
Nonlinear systems possessing nonattracting chaotic sets, such as chaotic saddles, embedded in their state space may oscillate chaotically for a transient time before eventually transitioning into some stable attractor. We show that these systems, when networked with nonlocal coupling in a ring, are capable of forming chimera states, in which one subset of the units oscillates periodically in a synchronized state forming the coherent domain, while the complementary subset oscillates chaotically in the neighborhood of the chaotic saddle constituting the incoherent domain. We find two distinct transient chimera states distinguished by their abrupt or gradual termination. We analyze the lifetime of both chimera states, unraveling their dependence on coupling range and size. We find an optimal value for the coupling range yielding the longest lifetime for the chimera states. Moreover, we implement transversal stability analysis to demonstrate that the synchronized state is asymptotically stable for network configurations studied here.
Collapse
Affiliation(s)
- Everton S Medeiros
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| | - Oleh Omel'chenko
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Potsdam, Germany
| | - Ulrike Feudel
- Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany
| |
Collapse
|
10
|
Gu S, Fang Q, Zhou P, Li N. Chimera states in a large laterally coupled laser array with four different waveguide structures. CHAOS (WOODBURY, N.Y.) 2023; 33:073152. [PMID: 37499249 DOI: 10.1063/5.0151330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023]
Abstract
Chimera states are rich and fascinating phenomena existing in many networks, where the identical oscillators self-organize into spatially separated coexisting domains of coherent and incoherent oscillations. Here, we report these states in the large laterally coupled laser array with four different waveguiding structures, with which a variety of chimera patterns can be revealed. We present the bifurcation diagrams giving birth to them and find that the chimeras exist in the boundary of the steady state and multi-period oscillation solutions, which applies to all the prevalent waveguiding structures considered. We also find that the waveguiding structures play an important role in the chimera states, e.g., the array composed of the index antiguiding with gain-guiding has a wider chimera region compared to other waveguides considered. Additionally, the effects of the crucial parameters including the laser separation ratio, pump rate, frequency detuning, and linewidth enhancement factor on the observed phenomena are discussed. Our analysis shows that the frequency detuning between lasers and the linewidth enhancement factor affects the lifetime and pattern of chimeras. The results could guide the design of laser arrays or introduce more insight into a new understanding of the dynamical behaviors of networks.
Collapse
Affiliation(s)
- Shuangquan Gu
- School of Optoelectronic Science and Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Qi Fang
- School of Optoelectronic Science and Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Pei Zhou
- School of Optoelectronic Science and Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| | - Nianqiang Li
- School of Optoelectronic Science and Engineering and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
| |
Collapse
|
11
|
Kong LW, Lai YC. Short-lived chimera states. CHAOS (WOODBURY, N.Y.) 2023; 33:2894496. [PMID: 37276573 DOI: 10.1063/5.0145573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/21/2023] [Indexed: 06/07/2023]
Abstract
In the classic Kuramoto system of coupled two-dimensional rotators, chimera states characterized by the coexistence of synchronous and asynchronous groups of oscillators are long-lived because the average lifetime of these states increases exponentially with the system size. Recently, it was discovered that, when the rotators in the Kuramoto model are three-dimensional, the chimera states become short-lived in the sense that their lifetime scales with only the logarithm of the dimension-augmenting perturbation. We introduce transverse-stability analysis to understand the short-lived chimera states. In particular, on the unit sphere representing three-dimensional (3D) rotations, the long-lived chimera states in the classic Kuramoto system occur on the equator, to which latitudinal perturbations that make the rotations 3D are transverse. We demonstrate that the largest transverse Lyapunov exponent calculated with respect to these long-lived chimera states is typically positive, making them short-lived. The transverse-stability analysis turns the previous numerical scaling law of the transient lifetime into an exact formula: the "free" proportional constant in the original scaling law can now be precisely determined in terms of the largest transverse Lyapunov exponent. Our analysis reinforces the speculation that in physical systems, chimera states can be short-lived as they are vulnerable to any perturbations that have a component transverse to the invariant subspace in which they live.
Collapse
Affiliation(s)
- Ling-Wei Kong
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Ying-Cheng Lai
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
12
|
Mbouna SGN, Banerjee T, Schöll E. Chimera patterns with spatial random swings between periodic attractors in a network of FitzHugh-Nagumo oscillators. Phys Rev E 2023; 107:054204. [PMID: 37329071 DOI: 10.1103/physreve.107.054204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 04/21/2023] [Indexed: 06/18/2023]
Abstract
For the study of symmetry-breaking phenomena in neuronal networks, simplified versions of the FitzHugh-Nagumo model are widely used. In this paper, these phenomena are investigated in a network of FitzHugh-Nagumo oscillators taken in the form of the original model and it is found that it exhibits diverse partial synchronization patterns that are unobserved in the networks with simplified models. Apart from the classical chimera, we report a new type of chimera pattern whose incoherent clusters are characterized by spatial random swings among a few fixed periodic attractors. Another peculiar hybrid state is found that combines the features of this chimera state and a solitary state such that the main coherent cluster is interspersed with some nodes with identical solitary dynamics. In addition, oscillation death including chimera death emerges in this network. A reduced model of the network is derived to study oscillation death, which helps explaining the transition from spatial chaos to oscillation death via the chimera state with a solitary state. This study deepens our understanding of chimera patterns in neuronal networks.
Collapse
Affiliation(s)
- S G Ngueuteu Mbouna
- Laboratory of Modeling and Simulation in Engineering, Biomimetics and Prototypes, Faculty of Science, University of Yaoundé I, P. O. Box 812, Yaoundé, Cameroon
| | - Tanmoy Banerjee
- Chaos and Complex Systems Research Laboratory, Department of Physics, University of Burdwan, Burdwan 713 104, India
| | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, 10623 Berlin, Germany; Potsdam Institute for Climate Impact Research, 14473 Potsdam, Germany; and Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität, 10115 Berlin, Germany
| |
Collapse
|
13
|
Rybalova E, Muni S, Strelkova G. Transition from chimera/solitary states to traveling waves. CHAOS (WOODBURY, N.Y.) 2023; 33:033104. [PMID: 37003811 DOI: 10.1063/5.0138207] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/08/2023] [Indexed: 06/19/2023]
Abstract
We study numerically the spatiotemporal dynamics in a ring network of nonlocally coupled nonlinear oscillators, each represented by a two-dimensional discrete-time model of the classical van der Pol oscillator. It is shown that the discretized oscillator exhibits richer behavior, combining the peculiarities of both the original system and its own dynamics. Moreover, a large variety of spatiotemporal structures is observed in the network of discrete van der Pol oscillators when the discretization parameter and the coupling strength are varied. Regimes, such as the coexistence of a multichimera state/a traveling wave and a solitary state are revealed for the first time and are studied in detail. It is established that the majority of the observed chimera/solitary states, including the newly found ones, are transient toward a purely traveling wave mode. The peculiarities of the transition process and the lifetime (transient duration) of the chimera structures and the solitary state are analyzed depending on the system parameters, the observation time, initial conditions, and the influence of external noise.
Collapse
Affiliation(s)
- E Rybalova
- Institute of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - S Muni
- Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Campus Road, Mohanpur, West Bengal 741246, India
| | - G Strelkova
- Institute of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| |
Collapse
|
14
|
Kong LW, Weng Y, Glaz B, Haile M, Lai YC. Reservoir computing as digital twins for nonlinear dynamical systems. CHAOS (WOODBURY, N.Y.) 2023; 33:033111. [PMID: 37003826 DOI: 10.1063/5.0138661] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/13/2023] [Indexed: 06/19/2023]
Abstract
We articulate the design imperatives for machine learning based digital twins for nonlinear dynamical systems, which can be used to monitor the "health" of the system and anticipate future collapse. The fundamental requirement for digital twins of nonlinear dynamical systems is dynamical evolution: the digital twin must be able to evolve its dynamical state at the present time to the next time step without further state input-a requirement that reservoir computing naturally meets. We conduct extensive tests using prototypical systems from optics, ecology, and climate, where the respective specific examples are a chaotic CO2 laser system, a model of phytoplankton subject to seasonality, and the Lorenz-96 climate network. We demonstrate that, with a single or parallel reservoir computer, the digital twins are capable of a variety of challenging forecasting and monitoring tasks. Our digital twin has the following capabilities: (1) extrapolating the dynamics of the target system to predict how it may respond to a changing dynamical environment, e.g., a driving signal that it has never experienced before, (2) making continual forecasting and monitoring with sparse real-time updates under non-stationary external driving, (3) inferring hidden variables in the target system and accurately reproducing/predicting their dynamical evolution, (4) adapting to external driving of different waveform, and (5) extrapolating the global bifurcation behaviors to network systems of different sizes. These features make our digital twins appealing in applications, such as monitoring the health of critical systems and forecasting their potential collapse induced by environmental changes or perturbations. Such systems can be an infrastructure, an ecosystem, or a regional climate system.
Collapse
Affiliation(s)
- Ling-Wei Kong
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Yang Weng
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| | - Bryan Glaz
- Vehicle Technology Directorate, CCDC Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783-1138, USA
| | - Mulugeta Haile
- Vehicle Technology Directorate, CCDC Army Research Laboratory, 2800 Powder Mill Road, Adelphi, Maryland 20783-1138, USA
| | - Ying-Cheng Lai
- School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
15
|
Khatun T, Bandyopadhyay B, Banerjee T. Diverse coherence-resonance chimeras in coupled type-I excitable systems. Phys Rev E 2022; 106:054208. [PMID: 36559485 DOI: 10.1103/physreve.106.054208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
Coherence-resonance chimera was discovered in [Phys. Rev. Lett. 117, 014102 (2016)10.1103/PhysRevLett.117.014102], which combines the effect of coherence-resonance and classical chimeras in the presence of noise in a network of type-II excitable systems. However, the same in a network of type-I excitable units has not been observed yet. In this paper we report the occurrence of coherence-resonance chimera in coupled type-I excitable systems. We consider a paradigmatic model of type-I excitability, namely, the saddle-node infinite period model, and show that the coherence-resonance chimera appears over an optimum range of noise intensity. Moreover, we discover a unique chimera pattern that is a mixture of classical chimera and the coherence-resonance chimera. We support our results using quantitative measures and map them in parameter space. This study reveals that the coherence-resonance chimera is a general chimera pattern and thus it deepens our understanding of role of noise in coupled excitable systems.
Collapse
Affiliation(s)
- Taniya Khatun
- Chaos and Complex Systems Research Laboratory, Department of Physics, University of Burdwan, Burdwan 713 104, West Bengal, India
| | - Biswabibek Bandyopadhyay
- Chaos and Complex Systems Research Laboratory, Department of Physics, University of Burdwan, Burdwan 713 104, West Bengal, India
| | - Tanmoy Banerjee
- Chaos and Complex Systems Research Laboratory, Department of Physics, University of Burdwan, Burdwan 713 104, West Bengal, India
| |
Collapse
|
16
|
Ebrahimzadeh P, Schiek M, Maistrenko Y. Mixed-mode chimera states in pendula networks. CHAOS (WOODBURY, N.Y.) 2022; 32:103118. [PMID: 36319296 DOI: 10.1063/5.0103071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
We report the emergence of peculiar chimera states in networks of identical pendula with global phase-lagged coupling. The states reported include both rotating and quiescent modes, i.e., with non-zero and zero average frequencies. This kind of mixed-mode chimeras may be interpreted as images of bump states known in neuroscience in the context of modeling the working memory. We illustrate this striking phenomenon for a network of N = 100 coupled pendula, followed by a detailed description of the minimal non-trivial case of N = 3. Parameter regions for five characteristic types of the system behavior are identified, which consist of two mixed-mode chimeras with one and two rotating pendula, classical weak chimera with all three pendula rotating, synchronous rotation, and quiescent state. The network dynamics is multistable: up to four of the states can coexist in the system phase state as demonstrated through the basins of attraction. The analysis suggests that the robust mixed-mode chimera states can generically describe the complex dynamics of diverse pendula-like systems widespread in nature.
Collapse
Affiliation(s)
- P Ebrahimzadeh
- ZEA-2: Electronics Systems, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - M Schiek
- ZEA-2: Electronics Systems, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Y Maistrenko
- ZEA-2: Electronics Systems, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| |
Collapse
|
17
|
Franović I, Eydam S. Patched patterns and emergence of chaotic interfaces in arrays of nonlocally coupled excitable systems. CHAOS (WOODBURY, N.Y.) 2022; 32:091102. [PMID: 36182388 DOI: 10.1063/5.0111507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
We disclose a new class of patterns, called patched patterns, in arrays of non-locally coupled excitable units with attractive and repulsive interactions. The self-organization process involves the formation of two types of patches, majority and minority ones, characterized by uniform average spiking frequencies. Patched patterns may be temporally periodic, quasiperiodic, or chaotic, whereby chaotic patterns may further develop interfaces comprised of units with average frequencies in between those of majority and minority patches. Using chaos and bifurcation theory, we demonstrate that chaos typically emerges via a torus breakup and identify the secondary bifurcation that gives rise to chaotic interfaces. It is shown that the maximal Lyapunov exponent of chaotic patched patterns does not decay, but rather converges to a finite value with system size. Patched patterns with a smaller wavenumber may exhibit diffusive motion of chaotic interfaces, similar to that of the incoherent part of chimeras.
Collapse
Affiliation(s)
- Igor Franović
- Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Sebastian Eydam
- Neural Circuits and Computations Unit, RIKEN Center for Brain Science, 2-1 Hirosawa, 351-0198 Wako, Japan
| |
Collapse
|
18
|
Bi H, Fukai T. Amplitude-mediated chimera states in nonlocally coupled Stuart-Landau oscillators. CHAOS (WOODBURY, N.Y.) 2022; 32:083125. [PMID: 36049944 DOI: 10.1063/5.0096284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Chimera states achieve the coexistence of coherent and incoherent subgroups through symmetry breaking and emerge in physical, chemical, and biological systems. We show the presence of amplitude-mediated multicluster chimera states in nonlocally coupled Stuart-Landau oscillators. We clarify the prerequisites for having different types of chimera states by analytically and numerically studying how phase transitions occur between these states. Our results demonstrate how the oscillation amplitudes interact with the phase degrees of freedom in chimera states and significantly advance our understanding of the generation mechanisms of such states in coupled oscillator systems.
Collapse
Affiliation(s)
- Hongjie Bi
- Okinawa Institute of Science and Technology, Onna-son, Okinawa 904-0495, Japan
| | - Tomoki Fukai
- Okinawa Institute of Science and Technology, Onna-son, Okinawa 904-0495, Japan
| |
Collapse
|
19
|
Emelianova AA, Maslennikov OV, Nekorkin VI. Disordered quenching in arrays of coupled Bautin oscillators. CHAOS (WOODBURY, N.Y.) 2022; 32:063126. [PMID: 35778140 DOI: 10.1063/5.0093947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
In this work, we study the phenomenon of disordered quenching in arrays of coupled Bautin oscillators, which are the normal form for bifurcation in the vicinity of the equilibrium point when the first Lyapunov coefficient vanishes and the second one is nonzero. For particular parameter values, the Bautin oscillator is in a bistable regime with two attractors-the equilibrium and the limit cycle-whose basins are separated by the unstable limit cycle. We consider arrays of coupled Bautin oscillators and study how they become quenched with increasing coupling strength. We analytically show the existence and stability of the dynamical regimes with amplitude disorder in a ring of coupled Bautin oscillators with identical natural frequencies. Next, we numerically provide evidence that disordered oscillation quenching holds for rings as well as chains with nonidentical natural frequencies and study the characteristics of this effect.
Collapse
Affiliation(s)
- Anastasiia A Emelianova
- Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod 603950, Russia
| | - Oleg V Maslennikov
- Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod 603950, Russia
| | - Vladimir I Nekorkin
- Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod 603950, Russia
| |
Collapse
|
20
|
Majhi S, Rakshit S, Ghosh D. Oscillation suppression and chimera states in time-varying networks. CHAOS (WOODBURY, N.Y.) 2022; 32:042101. [PMID: 35489845 DOI: 10.1063/5.0087291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Complex network theory has offered a powerful platform for the study of several natural dynamic scenarios, based on the synergy between the interaction topology and the dynamics of its constituents. With research in network theory being developed so fast, it has become extremely necessary to move from simple network topologies to more sophisticated and realistic descriptions of the connectivity patterns. In this context, there is a significant amount of recent works that have emerged with enormous evidence establishing the time-varying nature of the connections among the constituents in a large number of physical, biological, and social systems. The recent review article by Ghosh et al. [Phys. Rep. 949, 1-63 (2022)] demonstrates the significance of the analysis of collective dynamics arising in temporal networks. Specifically, the authors put forward a detailed excerpt of results on the origin and stability of synchronization in time-varying networked systems. However, among the complex collective dynamical behaviors, the study of the phenomenon of oscillation suppression and that of other diverse aspects of synchronization are also considered to be central to our perception of the dynamical processes over networks. Through this review, we discuss the principal findings from the research studies dedicated to the exploration of the two collective states, namely, oscillation suppression and chimera on top of time-varying networks of both static and mobile nodes. We delineate how temporality in interactions can suppress oscillation and induce chimeric patterns in networked dynamical systems, from effective analytical approaches to computational aspects, which is described while addressing these two phenomena. We further sketch promising directions for future research on these emerging collective behaviors in time-varying networks.
Collapse
Affiliation(s)
- Soumen Majhi
- Department of Mathematics, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Sarbendu Rakshit
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| |
Collapse
|
21
|
Rybalova E, Strelkova G. Response of solitary states to noise-modulated parameters in nonlocally coupled networks of Lozi maps. CHAOS (WOODBURY, N.Y.) 2022; 32:021101. [PMID: 35232034 DOI: 10.1063/5.0082431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
We study numerically the impact of heterogeneity in parameters on the dynamics of nonlocally coupled discrete-time systems, which exhibit solitary states along the transition from coherence to incoherence. These partial synchronization patterns are described as states when single or several elements demonstrate different dynamics compared with the behavior of other elements in a network. Using as an example a ring network of nonlocally coupled Lozi maps, we explore the robustness of solitary states to heterogeneity in parameters of local dynamics or coupling strength. It is found that if these network parameters are continuously modulated by noise, solitary states are suppressed as the noise intensity increases. However, these states may persist in the case of static randomly distributed system parameters for a wide range of the distribution width. Domains of solitary state existence are constructed in the parameter plane of coupling strength and noise intensity using a cross-correlation coefficient.
Collapse
Affiliation(s)
- Elena Rybalova
- Institute of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - Galina Strelkova
- Institute of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| |
Collapse
|
22
|
Chimera states and cluster solutions in Hindmarsh-Rose neural networks with state resetting process. Cogn Neurodyn 2022; 16:215-228. [PMID: 35126779 PMCID: PMC8807783 DOI: 10.1007/s11571-021-09691-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 05/24/2021] [Accepted: 06/11/2021] [Indexed: 02/03/2023] Open
Abstract
The neuronal state resetting model is a hybrid system, which combines neuronal system with state resetting process. As the membrane potential reaches a certain threshold, the membrane potential and recovery current are reset. Through the resetting process, the neuronal system can produce abundant new firing patterns. By integrating with the state resetting process, the neuronal system can generate irregular limit cycles (limit cycles with impulsive breakpoints), resulting in repetitive spiking or bursting with firing peaks which can not exceed a presetting threshold. Although some studies have discussed the state resetting process in neurons, it has not been addressed in neural networks so far. In this paper, we consider chimera states and cluster solutions in Hindmarsh-Rose neural networks with state resetting process. The network structures are based on regular ring structures and the connections among neurons are assumed to be bidirectional. Chimera and cluster states are two types of phenomena related to synchronization. For neural networks, the chimera state is a self-organization phenomenon in which some neuronal nodes are synchronous while the others are asynchronous. Cluster synchronization divides the system into several subgroups based on their synchronization characteristics, with neuronal nodes in each subgroup being synchronous. By improving previous chimera measures, we detect the spike inspire time instead of the state variable and calculate the time between two adjacent spikes. We then discuss the incoherence, chimera state, and coherence of the constructed neural networks using phase diagrams, time series diagrams, and probability density histograms. Besides, we further contrast the cluster solutions of the system under local and global coupling, respectively. The subordinate state resetting process enriches the firing mode of the proposed Hindmarsh-Rose neural networks.
Collapse
|
23
|
Franović I, Eydam S, Semenova N, Zakharova A. Unbalanced clustering and solitary states in coupled excitable systems. CHAOS (WOODBURY, N.Y.) 2022; 32:011104. [PMID: 35105111 DOI: 10.1063/5.0077022] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
We discover the mechanisms of emergence and the link between two types of symmetry-broken states, the unbalanced periodic two-cluster states and solitary states, in coupled excitable systems with attractive and repulsive interactions. The prevalent solitary states in non-locally coupled arrays, whose self-organization is based on successive (order preserving) spiking of units, derive their dynamical features from the corresponding unbalanced cluster states in globally coupled networks. Apart from the states with successive spiking, we also find cluster and solitary states where the interplay of excitability and local multiscale dynamics gives rise to so-called leap-frog activity patterns with an alternating order of spiking between the units. We show that the noise affects the system dynamics by suppressing the multistability of cluster states and by inducing pattern homogenization, transforming solitary states into patterns of patched synchrony.
Collapse
Affiliation(s)
- Igor Franović
- Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Sebastian Eydam
- Neural Circuits and Computations Unit, RIKEN Center for Brain Science, 2-1 Hirosawa, 351-0106 Wako, Japan
| | - Nadezhda Semenova
- Institute of Physics and Department of Fundamental Medicine and Medical Technology, Saratov State University, Astrakhanskaya str. 83, Saratov 410012, Russia
| | - Anna Zakharova
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| |
Collapse
|
24
|
Anesiadis K, Provata A. Synchronization in Multiplex Leaky Integrate-and-Fire Networks With Nonlocal Interactions. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:910862. [PMID: 36926067 PMCID: PMC10013047 DOI: 10.3389/fnetp.2022.910862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022]
Abstract
We study synchronization phenomena in a multiplex network composed of two rings with identical Leaky Integrate-and-Fire (LIF) oscillators located on the nodes of the rings. Within each ring the LIF oscillators interact nonlocally, while between rings there are one-to-one inter-ring interactions. This structure is motivated by the observed connectivity between the two hemispheres of the brain: within each hemisphere the various brain regions interact with neighboring regions, while across hemispheres each region interacts, primarily, with the functionally homologous region. We consider both positive (excitatory) and negative (inhibitory) linking. We identify numerically various parameter regimes where the multiplex network develops coexistence of active and subthreshold domains, chimera states, solitary states, full coherence or incoherence. In particular, for weak inter-ring coupling (weak multiplexing) different synchronization patterns on the two rings are supported. These are stable and are obtained when the intra-ring coupling values are near the critical points separating qualitatively distinct synchronization regimes, e.g., between the travelling fronts regime and the chimera state one.
Collapse
Affiliation(s)
- K Anesiadis
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Athens, Greece.,School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - A Provata
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Athens, Greece
| |
Collapse
|
25
|
Kaper TJ, Vo T. A new class of chimeras in locally coupled oscillators with small-amplitude, high-frequency asynchrony and large-amplitude, low-frequency synchrony. CHAOS (WOODBURY, N.Y.) 2021; 31:123111. [PMID: 34972325 DOI: 10.1063/5.0067421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Chimeras are surprising yet important states in which domains of decoherent (asynchronous) and coherent (synchronous) oscillations co-exist. In this article, we report on the discovery of a new class of chimeras, called mixed-amplitude chimera states, in which the structures, amplitudes, and frequencies of the oscillations differ substantially in the decoherent and coherent regions. These mixed-amplitude chimeras exhibit domains of decoherent small-amplitude oscillations (phase waves) coexisting with domains of stable and coherent large-amplitude or mixed-mode oscillations (MMOs). They are observed in a prototypical bistable partial differential equation with oscillatory dynamics, spatially homogeneous kinetics, and purely local, isotropic diffusion. They are observed in parameter regimes immediately adjacent to regimes in which common large-amplitude solutions exist, such as trigger waves, spatially homogeneous MMOs, and sharp-interface solutions. Also, key singularities, folded nodes, and folded saddles arising commonly in multi-scale, bistable systems play important roles, and these have not previously been studied in systems with chimeras. The discovery of these mixed-amplitude chimeras is an important advance for understanding some processes in neuroscience, pattern formation, and physics, which involve both small-amplitude and large-amplitude oscillations. It may also be of use for understanding some aspects of electroencephalogram recordings from animals that exhibit unihemispheric slow-wave sleep.
Collapse
Affiliation(s)
- Tasso J Kaper
- Department of Mathematics and Statistics, Boston University, Boston, Massachusetts 02215, USA
| | - Theodore Vo
- School of Mathematics, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
26
|
Yang Y, Liu L, Xiang C, Qin W. Chimera and cluster collective states in a dispersal ecological network under state-dependent feedback control and complex habitat structure. JOURNAL OF BIOLOGICAL DYNAMICS 2021; 15:563-579. [PMID: 34705598 DOI: 10.1080/17513758.2021.1992518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Pest control based on an economic threshold (ET) can effectively prevent excessive pest control measures such as pesticide abuse and overharvesting. The instinctive dispersal of pest populations in biological network patches for better survival poses challenges for pest management. As long as the pest density is controlled below the economic threshold and no pest outbreak occurs, the aim of pest management can be achieved and it is not necessary to completely remove the pests. This study focuses on the issues of chimera states and cluster solutions in regular bidirectional biological networks with state-dependent impulsive pest management. We consider the influence of two different control modes on the system states, namely global control and local control. Local control is found to be more likely to induce the chimera state. In addition, in the local coupling mode, a higher coupling strength is more likely to generate a coherent state, whereas a lower coupling strength is more likely to generate chimera and incoherent states. Furthermore, the cluster size is inversely related to the coupling strength under local coupling and global control.
Collapse
Affiliation(s)
- Yi Yang
- College of Computer Science and Engineering, Chongqing Three Gorges University, Wanzhou, People's Republic of China
- Key Laboratory of Intelligent Information Processing and Control of Chongqing Municipal Institutions of Higher education, Chongqing Three Gorges University, Wanzhou, People's Republic of China
| | - Lirong Liu
- School of Mathematics and Statistics, Hubei Minzu University, Enshi, People's Republic of China
| | - Changcheng Xiang
- School of Mathematics and Statistics, Hubei Minzu University, Enshi, People's Republic of China
| | - Wenjie Qin
- School of Mathematics and Computer Science, Yunnan Minzu University, Kunming, People's Republic of China
| |
Collapse
|
27
|
Cenk Eser M, Medeiros ES, Riza M, Zakharova A. Edges of inter-layer synchronization in multilayer networks with time-switching links. CHAOS (WOODBURY, N.Y.) 2021; 31:103119. [PMID: 34717318 DOI: 10.1063/5.0065310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
We investigate the transition to synchronization in a two-layer network of oscillators with time-switching inter-layer links. We focus on the role of the number of inter-layer links and the timescale of topological changes. Initially, we observe a smooth transition to complete synchronization for the static inter-layer topology by increasing the number of inter-layer links. Next, for a dynamic topology with the existent inter-layer links randomly changing among identical oscillators in the layers, we observe a significant improvement in the system synchronizability; i.e., the layers synchronize with lower inter-layer connectivity. More interestingly, we find that, for a critical switching time, the transition from the network state of low inter-layer synchronization to high inter-layer synchronization occurs abruptly as the number of inter-layer links increases. We interpret this phenomenon as shrinking and ultimately the disappearance of the basin of attraction of a desynchronized network state.
Collapse
Affiliation(s)
- Muhittin Cenk Eser
- Department of Physics, Eastern Mediterranean University, 99628 Famagusta, North Cyprus, via Mersin 10, Turkey
| | - Everton S Medeiros
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| | - Mustafa Riza
- Department of Physics, Eastern Mediterranean University, 99628 Famagusta, North Cyprus, via Mersin 10, Turkey
| | - Anna Zakharova
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany
| |
Collapse
|
28
|
Kadhim KL, Hermundstad AM, Brown KS. Structured patterns of activity in pulse-coupled oscillator networks with varied connectivity. PLoS One 2021; 16:e0256034. [PMID: 34379694 PMCID: PMC8357159 DOI: 10.1371/journal.pone.0256034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/28/2021] [Indexed: 11/25/2022] Open
Abstract
Identifying coordinated activity within complex systems is essential to linking their structure and function. We study collective activity in networks of pulse-coupled oscillators that have variable network connectivity and integrate-and-fire dynamics. Starting from random initial conditions, we see the emergence of three broad classes of behaviors that differ in their collective spiking statistics. In the first class (“temporally-irregular”), all nodes have variable inter-spike intervals, and the resulting firing patterns are irregular. In the second (“temporally-regular”), the network generates a coherent, repeating pattern of activity in which all nodes fire with the same constant inter-spike interval. In the third (“chimeric”), subgroups of coherently-firing nodes coexist with temporally-irregular nodes. Chimera states have previously been observed in networks of oscillators; here, we find that the notions of temporally-regular and chimeric states encompass a much richer set of dynamical patterns than has yet been described. We also find that degree heterogeneity and connection density have a strong effect on the resulting state: in binomial random networks, high degree variance and intermediate connection density tend to produce temporally-irregular dynamics, while low degree variance and high connection density tend to produce temporally-regular dynamics. Chimera states arise with more frequency in networks with intermediate degree variance and either high or low connection densities. Finally, we demonstrate that a normalized compression distance, computed via the Lempel-Ziv complexity of nodal spike trains, can be used to distinguish these three classes of behavior even when the phase relationship between nodes is arbitrary.
Collapse
Affiliation(s)
- Kyra L. Kadhim
- Department of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, United States of America
| | - Ann M. Hermundstad
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, United States of America
| | - Kevin S. Brown
- Department of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR, United States of America
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States of America
- * E-mail:
| |
Collapse
|
29
|
Tsigkri-DeSmedt ND, Sarlis NV, Provata A. Shooting solitaries due to small-world connectivity in leaky integrate-and-fire networks. CHAOS (WOODBURY, N.Y.) 2021; 31:083129. [PMID: 34470234 DOI: 10.1063/5.0055163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
We study the synchronization properties in a network of leaky integrate-and-fire oscillators with nonlocal connectivity under probabilistic small-world rewiring. We demonstrate that the random links lead to the emergence of chimera-like states where the coherent regions are interrupted by scattered, short-lived solitaries; these are termed "shooting solitaries." Moreover, we provide evidence that random links enhance the appearance of chimera-like states for values of the parameter space that otherwise support synchronization. This last effect is counter-intuitive because by adding random links to the synchronous state, the system locally organizes into coherent and incoherent domains.
Collapse
Affiliation(s)
- N D Tsigkri-DeSmedt
- Section of Condensed Matter Physics, Physics Department, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, 157 84 Athens, Greece
| | - N V Sarlis
- Section of Condensed Matter Physics, Physics Department, National and Kapodistrian University of Athens, Panepistimiopolis, Zografos, 157 84 Athens, Greece
| | - A Provata
- Institute of Nanoscience and Nanotechnology, National Center for Scientific Research "Demokritos", Agia Paraskevi, 153 10 Athens, Greece
| |
Collapse
|
30
|
Kundu S, Muruganandam P, Ghosh D, Lakshmanan M. Amplitude-mediated spiral chimera pattern in a nonlinear reaction-diffusion system. Phys Rev E 2021; 103:062209. [PMID: 34271612 DOI: 10.1103/physreve.103.062209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/21/2021] [Indexed: 11/07/2022]
Abstract
Formation of diverse patterns in spatially extended reaction-diffusion systems is an important aspect of study that is pertinent to many chemical and biological processes. Of special interest is the peculiar phenomenon of chimera state having spatial coexistence of coherent and incoherent dynamics in a system of identically interacting individuals. In the present article, we report the emergence of various collective dynamical patterns while considering a system of prey-predator dynamics in the presence of a two-dimensional diffusive environment. Particularly, we explore the observance of four distinct categories of spatial arrangements among the species, namely, spiral wave, spiral chimera, completely synchronized oscillations, and oscillation death states in a broad region of the diffusion-driven parameter space. Emergence of amplitude-mediated spiral chimera states displaying drifted amplitudes and phases in the incoherent subpopulation is detected for parameter values beyond both Turing and Hopf bifurcations. Transition scenarios among all these distinguishable patterns are numerically demonstrated for a wide range of the diffusion coefficients which reveal that the chimera states arise during the transition from oscillatory to steady-state dynamics. Furthermore, we characterize the occurrence of each of the recognizable patterns by estimating the strength of incoherent subpopulations in the two-dimensional space.
Collapse
Affiliation(s)
- Srilena Kundu
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata-700108, India
| | | | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata-700108, India
| | - M Lakshmanan
- Department of Nonlinear Dynamics, School of Physics, Bharathidasan University, Tiruchirapalli-620024, India
| |
Collapse
|
31
|
Sawicki J, Koulen JM, Schöll E. Synchronization scenarios in three-layer networks with a hub. CHAOS (WOODBURY, N.Y.) 2021; 31:073131. [PMID: 34340334 DOI: 10.1063/5.0055835] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
We study various relay synchronization scenarios in a three-layer network, where the middle (relay) layer is a single node, i.e., a hub. The two remote layers consist of non-locally coupled rings of FitzHugh-Nagumo oscillators modeling neuronal dynamics. All nodes of the remote layers are connected to the hub. The role of the hub and its importance for the existence of chimera states are investigated in dependence on the inter-layer coupling strength and inter-layer time delay. Tongue-like regions in the parameter plane exhibiting double chimeras, i.e., chimera states in the remote layers whose coherent cores are synchronized with each other, and salt-and-pepper states are found. At very low intra-layer coupling strength, when chimera states do not exist in single layers, these may be induced by the hub. Also, the influence of the dilution of links between the remote layers and the hub upon the dynamics is investigated. The greatest effect of dilution is observed when links to the coherent domain of the chimeras are removed.
Collapse
Affiliation(s)
- Jakub Sawicki
- Potsdam Institute for Climate Impact Research, Telegrafenberg A, 31, 14473 Potsdam, Germany
| | - Julia M Koulen
- Potsdam Institute for Climate Impact Research, Telegrafenberg A, 31, 14473 Potsdam, Germany
| | - Eckehard Schöll
- Potsdam Institute for Climate Impact Research, Telegrafenberg A, 31, 14473 Potsdam, Germany
| |
Collapse
|
32
|
Khatun AA, Jafri HH, Punetha N. Controlling chimera states in chaotic oscillator ensembles through linear augmentation. Phys Rev E 2021; 103:042202. [PMID: 34005985 DOI: 10.1103/physreve.103.042202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/07/2021] [Indexed: 11/07/2022]
Abstract
In this work, we show how "chimera states," namely, the dynamical situation when synchronized and desynchronized domains coexist in an oscillator ensemble, can be controlled through a linear augmentation (LA) technique. Specifically, in the networks of coupled chaotic oscillators, we obtain chimera states through induced multistability and demonstrate how LA can be used to control the size and spatial location of the incoherent and coherent populations in the ensemble. We examine basins of attraction of the system to analyze the effects of LA on its multistable behavior and thus on chimera states. Stability of the synchronized dynamics is analyzed through a master stability function. We find that these results are independent of a system's initial conditions and the strategy is applicable to the networks of globally, locally as well as nonlocally coupled oscillators. Our results suggest that LA control can be an effective method to control chimera states and to realize a desired collective dynamics in such ensembles.
Collapse
Affiliation(s)
- Anjuman Ara Khatun
- Department of Physics, Aligarh Muslim University, Aligarh 202 002, India
| | - Haider Hasan Jafri
- Department of Physics, Aligarh Muslim University, Aligarh 202 002, India
| | - Nirmal Punetha
- Department of Physics and Astrophysics, University of Delhi, Delhi 110007, India
| |
Collapse
|
33
|
Byrne Á, Ross J, Nicks R, Coombes S. Mean-Field Models for EEG/MEG: From Oscillations to Waves. Brain Topogr 2021; 35:36-53. [PMID: 33993357 PMCID: PMC8813727 DOI: 10.1007/s10548-021-00842-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/21/2021] [Indexed: 11/24/2022]
Abstract
Neural mass models have been used since the 1970s to model the coarse-grained activity of large populations of neurons. They have proven especially fruitful for understanding brain rhythms. However, although motivated by neurobiological considerations they are phenomenological in nature, and cannot hope to recreate some of the rich repertoire of responses seen in real neuronal tissue. Here we consider a simple spiking neuron network model that has recently been shown to admit an exact mean-field description for both synaptic and gap-junction interactions. The mean-field model takes a similar form to a standard neural mass model, with an additional dynamical equation to describe the evolution of within-population synchrony. As well as reviewing the origins of this next generation mass model we discuss its extension to describe an idealised spatially extended planar cortex. To emphasise the usefulness of this model for EEG/MEG modelling we show how it can be used to uncover the role of local gap-junction coupling in shaping large scale synaptic waves.
Collapse
Affiliation(s)
- Áine Byrne
- School of Mathematics and Statistics, Science Centre, University College Dublin, South Belfield, Dublin 4, Ireland.
| | - James Ross
- School of Mathematical Sciences, Centre for Mathematical Medicine and Biology, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Rachel Nicks
- School of Mathematical Sciences, Centre for Mathematical Medicine and Biology, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Stephen Coombes
- School of Mathematical Sciences, Centre for Mathematical Medicine and Biology, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
34
|
Andrzejak RG. Chimeras confined by fractal boundaries in the complex plane. CHAOS (WOODBURY, N.Y.) 2021; 31:053104. [PMID: 34240923 DOI: 10.1063/5.0049631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 04/16/2021] [Indexed: 06/13/2023]
Abstract
Complex-valued quadratic maps either converge to fixed points, enter into periodic cycles, show aperiodic behavior, or diverge to infinity. Which of these scenarios takes place depends on the map's complex-valued parameter c and the initial conditions. The Mandelbrot set is defined by the set of c values for which the map remains bounded when initiated at the origin of the complex plane. In this study, we analyze the dynamics of a coupled network of two pairs of two quadratic maps in dependence on the parameter c. Across the four maps, c is kept the same whereby the maps are identical. In analogy to the behavior of individual maps, the network iterates either diverge to infinity or remain bounded. The bounded solutions settle into different stable states, including full synchronization and desynchronization of all maps. Furthermore, symmetric partially synchronized states of within-pair synchronization and across-pair synchronization as well as a symmetry broken chimera state are found. The boundaries between bounded and divergent solutions in the domain of c are fractals showing a rich variety of intriguingly esthetic patterns. Moreover, the set of bounded solutions is divided into countless subsets throughout all length scales in the complex plane. Each individual subset contains only one state of synchronization and is enclosed within fractal boundaries by c values leading to divergence.
Collapse
Affiliation(s)
- Ralph G Andrzejak
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, 08018 Barcelona, Catalonia, Spain
| |
Collapse
|
35
|
Brezetsky S, Jaros P, Levchenko R, Kapitaniak T, Maistrenko Y. Chimera complexity. Phys Rev E 2021; 103:L050204. [PMID: 34134258 DOI: 10.1103/physreve.103.l050204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
We show an amazing complexity of the chimeras in small networks of coupled phase oscillators with inertia. The network behavior is characterized by heteroclinic switching between multiple saddle chimera states and riddling basins of attractions, causing an extreme sensitivity to initial conditions and parameters. Additional uncertainty is induced by the presumable coexistence of stable phase-locked states or other stable chimeras as the switching trajectories can eventually tend to them. The system dynamics becomes hardly predictable, while its complexity represents a challenge in the network sciences.
Collapse
Affiliation(s)
- Serhiy Brezetsky
- Division of Dynamics, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
| | - Patrycja Jaros
- Division of Dynamics, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
| | - Roman Levchenko
- Faculty of Radiophysics, Electronics and Computer Systems, Taras Shevchenko National University of Kyiv, Volodymyrska St. 60, 01030 Kyiv, Ukraine
- Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Tomasz Kapitaniak
- Division of Dynamics, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
| | - Yuri Maistrenko
- Division of Dynamics, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
- Forschungszentrum Jülich, 52428 Jülich, Germany
- Institute of Mathematics and Centre for Medical and Biotechnical Research, NAS of Ukraine, Tereshchenkivska St. 3, 01030 Kyiv, Ukraine
| |
Collapse
|
36
|
Shepelev IA, Muni SS, Vadivasova TE. Spatiotemporal patterns in a 2D lattice with linear repulsive and nonlinear attractive coupling. CHAOS (WOODBURY, N.Y.) 2021; 31:043136. [PMID: 34251249 DOI: 10.1063/5.0048324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/07/2021] [Indexed: 06/13/2023]
Abstract
We explore the emergence of a variety of different spatiotemporal patterns in a 2D lattice of self-sustained oscillators, which interact nonlocally through an active nonlinear element. A basic element is a van der Pol oscillator in a regime of relaxation oscillations. The active nonlinear coupling can be implemented by a radiophysical element with negative resistance in its current-voltage curve taking into account nonlinear characteristics (for example, a tunnel diode). We show that such coupling consists of two parts, namely, a repulsive linear term and an attractive nonlinear term. This interaction leads to the emergence of only standing waves with periodic dynamics in time and absence of any propagating wave processes. At the same time, many different spatiotemporal patterns occur when the coupling parameters are varied, namely, regular and complex cluster structures, such as chimera states. This effect is associated with the appearance of new periodic states of individual oscillators by the repulsive part of coupling, while the attractive term attenuates this effect. We also show influence of the coupling nonlinearity on the spatiotemporal dynamics.
Collapse
Affiliation(s)
- I A Shepelev
- Institute of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - S S Muni
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - T E Vadivasova
- Institute of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| |
Collapse
|
37
|
Zhang Y, Motter AE. Mechanism for Strong Chimeras. PHYSICAL REVIEW LETTERS 2021; 126:094101. [PMID: 33750176 DOI: 10.1103/physrevlett.126.094101] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/23/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Chimera states have attracted significant attention as symmetry-broken states exhibiting the unexpected coexistence of coherence and incoherence. Despite the valuable insights gained from analyzing specific systems, an understanding of the general physical mechanism underlying the emergence of chimeras is still lacking. Here, we show that many stable chimeras arise because coherence in part of the system is sustained by incoherence in the rest of the system. This mechanism may be regarded as a deterministic analog of noise-induced synchronization and is shown to underlie the emergence of strong chimeras. These are chimera states whose coherent domain is formed by identically synchronized oscillators. Recognizing this mechanism offers a new meaning to the interpretation that chimeras are a natural link between coherence and incoherence.
Collapse
Affiliation(s)
- Yuanzhao Zhang
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
| | - Adilson E Motter
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, USA
- Northwestern Institute on Complex Systems, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
38
|
Itabashi K, Tran QH, Hasegawa Y. Evaluating the phase dynamics of coupled oscillators via time-variant topological features. Phys Rev E 2021; 103:032207. [PMID: 33862823 DOI: 10.1103/physreve.103.032207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
By characterizing the phase dynamics in coupled oscillators, we gain insights into the fundamental phenomena of complex systems. The collective dynamics in oscillatory systems are often described by order parameters, which are insufficient for identifying more specific behaviors. To improve this situation, we propose a topological approach that constructs the quantitative features describing the phase evolution of oscillators. Here, the phase data are mapped into a high-dimensional space at each time, and the topological features describing the shape of the data are subsequently extracted from the mapped points. These features are extended to time-variant topological features by adding the evolution time as an extra dimension in the topological feature space. The time-variant features provide crucial insights into the evolution of phase dynamics. Combining these features with the kernel method, we characterize the multiclustered synchronized dynamics during the early evolution stages. Finally, we demonstrate that our method can qualitatively explain chimera states. The experimental results confirmed the superiority of our method over those based on order parameters, especially when the available data are limited to the early-stage dynamics.
Collapse
Affiliation(s)
- Kazuha Itabashi
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Quoc Hoan Tran
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yoshihiko Hasegawa
- Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
39
|
Dudkowski D, Czołczyński K, Kapitaniak T. Multi-headed loop chimera states in coupled oscillators. CHAOS (WOODBURY, N.Y.) 2021; 31:013135. [PMID: 33754776 DOI: 10.1063/5.0033519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
In this paper, we introduce a novel type of chimera state, characterized by the geometrical distortion of the coherent ring topology of coupled oscillators. The multi-headed loop chimeras are examined for a simple network of locally coupled pendulum clocks, suspended on the vertical platform. We determine the regions of the occurrence of the observed patterns, their structure, and possible co-existence. The representative examples of behaviors are shown, exhibiting the variety of configurations that can be observed. The statistical analysis of the solutions indicates the geometrical regions of the system with the highest probability of the chimeras' occurrence. We investigate the mechanism of the creation of the observed states, showing that the manipulation of the initial positions of chosen pendula may induce the desired patterns. Apart from the study of the isolated network, we also discuss the scenario of the movable platform, showing a possible influence of the global coupling structure on the stability of the observed states. The stability of loop chimeras is examined for varying both the amplitude and the frequency of the oscillations of the platform. We indicate the excitation parameters for which the solutions can survive as well as be destroyed. The bifurcation analysis included in the paper allows us to discuss the transitions between possible behaviors. The appearance of multi-headed loop chimeras is generalized into large networks of oscillators, showing the universal character of the observed patterns. One should expect to observe similar results also in other types of coupled oscillators, especially the mechanical ones.
Collapse
Affiliation(s)
- Dawid Dudkowski
- Division of Dynamics, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
| | - Krzysztof Czołczyński
- Division of Dynamics, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
| | - Tomasz Kapitaniak
- Division of Dynamics, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Lodz, Poland
| |
Collapse
|
40
|
|
41
|
Vadivasova TE, Slepnev AV, Zakharova A. Control of inter-layer synchronization by multiplexing noise. CHAOS (WOODBURY, N.Y.) 2020; 30:091101. [PMID: 33003909 DOI: 10.1063/5.0023071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
We study the synchronization of spatio-temporal patterns in a two-layer network of coupled chaotic maps, where each layer is represented by a nonlocally coupled ring. In particular, we focus on noisy inter-layer communication that we call multiplexing noise. We show that noisy modulation of inter-layer coupling strength has a significant impact on the dynamics of the network and specifically on the degree of synchronization of spatio-temporal patterns of interacting layers initially (in the absence of interaction) exhibiting chimera states. Our goal is to develop control strategies based on multiplexing noise for both identical and non-identical layers. We find that for the appropriate choice of intensity and frequency characteristics of parametric noise, complete or partial synchronization of the layers can be observed. Interestingly, for achieving inter-layer synchronization through multiplexing noise, it is crucial to have colored noise with intermediate spectral width. In the limit of white noise, the synchronization is destroyed. These results are the first step toward understanding the role of noisy inter-layer communication for the dynamics of multilayer networks.
Collapse
Affiliation(s)
- T E Vadivasova
- Department of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - A V Slepnev
- Department of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - A Zakharova
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| |
Collapse
|
42
|
Dos Santos V, Borges FS, Iarosz KC, Caldas IL, Szezech JD, Viana RL, Baptista MS, Batista AM. Basin of attraction for chimera states in a network of Rössler oscillators. CHAOS (WOODBURY, N.Y.) 2020; 30:083115. [PMID: 32872816 DOI: 10.1063/5.0014013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Chimera states are spatiotemporal patterns in which coherent and incoherent dynamics coexist simultaneously. These patterns were observed in both locally and nonlocally coupled oscillators. We study the existence of chimera states in networks of coupled Rössler oscillators. The Rössler oscillator can exhibit periodic or chaotic behavior depending on the control parameters. In this work, we show that the existence of coherent, incoherent, and chimera states depends not only on the coupling strength, but also on the initial state of the network. The initial states can belong to complex basins of attraction that are not homogeneously distributed. Due to this fact, we characterize the basins by means of the uncertainty exponent and basin stability. In our simulations, we find basin boundaries with smooth, fractal, and riddled structures.
Collapse
Affiliation(s)
- Vagner Dos Santos
- Program of Post-graduation in Science, State University of Ponta Grossa, Ponta Grossa, Paraná 84030-900, Brazil
| | - Fernando S Borges
- Center for Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, São Paulo 09606-045, Brazil
| | - Kelly C Iarosz
- Institute of Physics, University of São Paulo, São Paulo 05508-900, Brazil
| | - Iberê L Caldas
- Institute of Physics, University of São Paulo, São Paulo 05508-900, Brazil
| | - J D Szezech
- Program of Post-graduation in Science, State University of Ponta Grossa, Ponta Grossa, Paraná 84030-900, Brazil
| | - Ricardo L Viana
- Department of Physics, Federal University of Paraná, Curitiba, Paraná 80060-000, Brazil
| | - Murilo S Baptista
- Institute for Complex Systems and Mathematical Biology, University of Aberdeen, AB24 3UE Aberdeen, Scotland, United Kingdom
| | - Antonio M Batista
- Program of Post-graduation in Science, State University of Ponta Grossa, Ponta Grossa, Paraná 84030-900, Brazil
| |
Collapse
|
43
|
Frolov N, Maksimenko V, Majhi S, Rakshit S, Ghosh D, Hramov A. Chimera-like behavior in a heterogeneous Kuramoto model: The interplay between attractive and repulsive coupling. CHAOS (WOODBURY, N.Y.) 2020; 30:081102. [PMID: 32872824 DOI: 10.1063/5.0019200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Interaction within an ensemble of coupled nonlinear oscillators induces a variety of collective behaviors. One of the most fascinating is a chimera state that manifests the coexistence of spatially distinct populations of coherent and incoherent elements. Understanding of the emergent chimera behavior in controlled experiments or real systems requires a focus on the consideration of heterogeneous network models. In this study, we explore the transitions in a heterogeneous Kuramoto model under the monotonical increase of the coupling strength and specifically find that this system exhibits a frequency-modulated chimera-like pattern during the explosive transition to synchronization. We demonstrate that this specific dynamical regime originates from the interplay between (the evolved) attractively and repulsively coupled subpopulations. We also show that the above-mentioned chimera-like state is induced under weakly non-local, small-world, and sparse scale-free coupling and suppressed in globally coupled, strongly rewired, and dense scale-free networks due to the emergence of the large-scale connections.
Collapse
Affiliation(s)
- Nikita Frolov
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, 420500 Innopolis, The Republic of Tatarstan, Russia
| | - Vladimir Maksimenko
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, 420500 Innopolis, The Republic of Tatarstan, Russia
| | - Soumen Majhi
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Sarbendu Rakshit
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Dibakar Ghosh
- Physics and Applied Mathematics Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata 700108, India
| | - Alexander Hramov
- Neuroscience and Cognitive Technology Laboratory, Center for Technologies in Robotics and Mechatronics Components, Innopolis University, 420500 Innopolis, The Republic of Tatarstan, Russia
| |
Collapse
|
44
|
Chandran P, Gopal R, Chandrasekar VK, Athavan N. Chimera-like states induced by additional dynamic nonlocal wirings. CHAOS (WOODBURY, N.Y.) 2020; 30:063106. [PMID: 32611102 DOI: 10.1063/1.5144929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
We investigate the existence of chimera-like states in a small-world network of chaotically oscillating identical Rössler systems with an addition of randomly switching nonlocal links. By varying the small-world coupling strength, we observe no chimera-like state either in the absence of nonlocal wirings or with static nonlocal wirings. When we give an additional nonlocal wiring to randomly selected nodes and if we allow the random selection of nodes to change with time, we observe the onset of chimera-like states. Upon increasing the number of randomly selected nodes gradually, we find that the incoherent window keeps on shrinking, whereas the chimera-like window widens up. Moreover, the system attains a completely synchronized state comparatively sooner for a lower coupling strength. Also, we show that one can induce chimera-like states by a suitable choice of switching times, coupling strengths, and a number of nonlocal links. We extend the above-mentioned randomized injection of nonlocal wirings for the cases of globally coupled Rössler oscillators and a small-world network of coupled FitzHugh-Nagumo oscillators and obtain similar results.
Collapse
Affiliation(s)
- P Chandran
- Department of Physics, H. H. The Rajah's College (affiliated to Bharathidasan University), Pudukkottai 622 001, Tamil Nadu, India
| | - R Gopal
- Centre for Nonlinear Science & Engineering, School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - V K Chandrasekar
- Centre for Nonlinear Science & Engineering, School of Electrical & Electronics Engineering, SASTRA Deemed University, Thanjavur 613 401, Tamil Nadu, India
| | - N Athavan
- Department of Physics, H. H. The Rajah's College (affiliated to Bharathidasan University), Pudukkottai 622 001, Tamil Nadu, India
| |
Collapse
|
45
|
Ganaie MA, Ghosh S, Mendola N, Tanveer M, Jalan S. Identification of chimera using machine learning. CHAOS (WOODBURY, N.Y.) 2020; 30:063128. [PMID: 32611090 DOI: 10.1063/1.5143285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Chimera state refers to the coexistence of coherent and non-coherent phases in identically coupled dynamical units found in various complex dynamical systems. Identification of chimera, on one hand, is essential due to its applicability in various areas including neuroscience and, on the other hand, is challenging due to its widely varied appearance in different systems and the peculiar nature of its profile. Therefore, a simple yet universal method for its identification remains an open problem. Here, we present a very distinctive approach using machine learning techniques to characterize different dynamical phases and identify the chimera state from given spatial profiles generated using various different models. The experimental results show that the performance of the classification algorithms varies for different dynamical models. The machine learning algorithms, namely, random forest, oblique random forest based on Tikhonov, axis-parallel split, and null space regularization achieved more than 96% accuracy for the Kuramoto model. For the logistic maps, random forest and Tikhonov regularization based oblique random forest showed more than 90% accuracy, and for the Hénon map model, random forest, null space, and axis-parallel split regularization based oblique random forest achieved more than 80% accuracy. The oblique random forest with null space regularization achieved consistent performance (more than 83% accuracy) across different dynamical models while the auto-encoder based random vector functional link neural network showed relatively lower performance. This work provides a direction for employing machine learning techniques to identify dynamical patterns arising in coupled non-linear units on large-scale and for characterizing complex spatiotemporal patterns in real-world systems for various applications.
Collapse
Affiliation(s)
- M A Ganaie
- Discipline of Mathematics, Indian Institute of Technology Indore, Khandwa Road, Simrol, 453552 Indore, India
| | - Saptarshi Ghosh
- Complex Systems Lab, Discipline of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, 453552 Indore, India
| | - Naveen Mendola
- Complex Systems Lab, Discipline of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, 453552 Indore, India
| | - M Tanveer
- Discipline of Mathematics, Indian Institute of Technology Indore, Khandwa Road, Simrol, 453552 Indore, India
| | - Sarika Jalan
- Complex Systems Lab, Discipline of Physics, Indian Institute of Technology Indore, Khandwa Road, Simrol, 453552 Indore, India
| |
Collapse
|
46
|
Suda Y, Okuda K. Emergence of second coherent regions for breathing chimera states. Phys Rev E 2020; 101:062203. [PMID: 32688598 DOI: 10.1103/physreve.101.062203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
Chimera states in one-dimensional nonlocally coupled phase oscillators are mostly assumed to be stationary, but breathing chimeras can occasionally appear, branching from the stationary chimeras via Hopf bifurcation. In this paper, we demonstrate two types of breathing chimeras: The type I breathing chimera looks the same as the stationary chimera at a glance, while the type II consists of multiple coherent regions with different average frequencies. Moreover, it is shown that the type I changes to the type II by increasing the breathing amplitude. Furthermore, we develop a self-consistent analysis of the local order parameter, which can be applied to breathing chimeras, and numerically demonstrate this analysis in the present system.
Collapse
Affiliation(s)
- Yusuke Suda
- Division of Physics, Hokkaido University, Sapporo 060-0810, Japan
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo 060-0817, Japan
| | - Koji Okuda
- Division of Physics, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
47
|
Rybalova E, Strelkova G, Schöll E, Anishchenko V. Relay and complete synchronization in heterogeneous multiplex networks of chaotic maps. CHAOS (WOODBURY, N.Y.) 2020; 30:061104. [PMID: 32611120 DOI: 10.1063/5.0008902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
We study relay and complete synchronization in a heterogeneous triplex network of discrete-time chaotic oscillators. A relay layer and two outer layers, which are not directly coupled but interact via the relay layer, represent rings of nonlocally coupled two-dimensional maps. We consider for the first time the case when the spatiotemporal dynamics of the relay layer is completely different from that of the outer layers. Two different configurations of the triplex network are explored: when the relay layer consists of Lozi maps while the outer layers are given by Henon maps and vice versa. Phase and amplitude chimera states are observed in the uncoupled Henon map ring, while solitary state regimes are typical for the isolated Lozi map ring. We show for the first time relay synchronization of amplitude and phase chimeras, a solitary state chimera, and solitary state regimes in the outer layers. We reveal regimes of complete synchronization for the chimera structures and solitary state modes in all the three layers. We also analyze how the synchronization effects depend on the spatiotemporal dynamics of the relay layer and construct phase diagrams in the parameter plane of inter-layer vs intra-layer coupling strength of the relay layer.
Collapse
Affiliation(s)
- E Rybalova
- Department of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - G Strelkova
- Department of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| | - E Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - V Anishchenko
- Department of Physics, Saratov State University, 83 Astrakhanskaya Street, Saratov 410012, Russia
| |
Collapse
|
48
|
Awal NM, Epstein IR. Post-canard symmetry breaking and other exotic dynamic behaviors in identical coupled chemical oscillators. Phys Rev E 2020; 101:042222. [PMID: 32422823 DOI: 10.1103/physreve.101.042222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/07/2020] [Indexed: 11/07/2022]
Abstract
We analyze a model of two identical chemical oscillators coupled through diffusion of the slow variable. As a parameter is varied, a single oscillator undergoes a canard explosion-a transition from small amplitude, nearly harmonic oscillations to large-amplitude, relaxation oscillations over a very small parameter interval. In the coupled system, if the two oscillators have the same initial conditions, then the oscillators remain synchronized and exhibit the same canard behavior observed for the single oscillator. If the oscillators are separated initially, then in the region of the canard they display a variety of complex behaviors, including intermittent spiking, mixed-mode oscillation, and quasiperiodicity. Further variation of the parameter leads to a return to synchronized large-amplitude oscillation followed by a post-canard symmetry-breaking, in which one oscillator shows small-amplitude, complex behavior (mixed-mode oscillation, quasiperiodicity, chaos,...) while the other undergoes essentially periodic large amplitude behavior, resembling a master-slave scenario. We analyze the origins of this behavior by looking at several modified coupling schemes.
Collapse
Affiliation(s)
- Naziru M Awal
- Department of Chemistry, MS 015, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Irving R Epstein
- Department of Chemistry, MS 015, Brandeis University, Waltham, Massachusetts 02453, USA
| |
Collapse
|
49
|
Verma UK, Ambika G. Amplitude chimera and chimera death induced by external agents in two-layer networks. CHAOS (WOODBURY, N.Y.) 2020; 30:043104. [PMID: 32357668 DOI: 10.1063/5.0002457] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/17/2020] [Indexed: 06/11/2023]
Abstract
We report the emergence of stable amplitude chimeras and chimera death in a two-layer network where one layer has an ensemble of identical nonlinear oscillators interacting directly through local coupling and indirectly through dynamic agents that form the second layer. The nonlocality in the interaction among the dynamic agents in the second layer induces different types of chimera-related dynamical states in the first layer. The amplitude chimeras developed in them are found to be extremely stable, while chimera death states are prevalent for increased coupling strengths. The results presented are for a system of coupled Stuart-Landau oscillators and can, in general, represent systems with short-range interactions coupled to another set of systems with long-range interactions. In this case, by tuning the range of interactions among the oscillators or the coupling strength between two types of systems, we can control the nature of chimera states and the system can also be restored to homogeneous steady states. The dynamic agents interacting nonlocally with long-range interactions can be considered as a dynamic environment or a medium interacting with the system. We indicate how the second layer can act as a reinforcement mechanism on the first layer under various possible interactions for desirable effects.
Collapse
Affiliation(s)
- Umesh Kumar Verma
- Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| | - G Ambika
- Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
| |
Collapse
|
50
|
Andrzejak RG, Ruzzene G, Schöll E, Omelchenko I. Two populations of coupled quadratic maps exhibit a plentitude of symmetric and symmetry broken dynamics. CHAOS (WOODBURY, N.Y.) 2020; 30:033125. [PMID: 32237754 DOI: 10.1063/5.0002272] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 02/28/2020] [Indexed: 06/11/2023]
Abstract
We numerically study a network of two identical populations of identical real-valued quadratic maps. Upon variation of the coupling strengths within and across populations, the network exhibits a rich variety of distinct dynamics. The maps in individual populations can be synchronized or desynchronized. Their temporal evolution can be periodic or aperiodic. Furthermore, one can find blends of synchronized with desynchronized states and periodic with aperiodic motions. We show symmetric patterns for which both populations have the same type of dynamics as well as chimera states of a broken symmetry. The network can furthermore show multistability by settling to distinct dynamics for different realizations of random initial conditions or by switching intermittently between distinct dynamics for the same realization. We conclude that our system of two populations of a particularly simple map is the most simple system that can show this highly diverse and complex behavior, which includes but is not limited to chimera states. As an outlook to future studies, we explore the stability of two populations of quadratic maps with a complex-valued control parameter. We show that bounded and diverging dynamics are separated by fractal boundaries in the complex plane of this control parameter.
Collapse
Affiliation(s)
- Ralph G Andrzejak
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, 08018 Barcelona, Catalonia, Spain
| | - Giulia Ruzzene
- Department of Information and Communication Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, 08018 Barcelona, Catalonia, Spain
| | - Eckehard Schöll
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| | - Iryna Omelchenko
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin, Germany
| |
Collapse
|