1
|
Bobowski K, Zheng X, Frietsch B, Lawrenz D, Bronsch W, Gahl C, Andres B, Strüber C, Carley R, Teichmann M, Scherz A, Molodtsov S, Cacho C, Chapman RT, Springate E, Weinelt M. Ultrafast spin transfer and its impact on the electronic structure. SCIENCE ADVANCES 2024; 10:eadn4613. [PMID: 39018415 PMCID: PMC466954 DOI: 10.1126/sciadv.adn4613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/12/2024] [Indexed: 07/19/2024]
Abstract
Optically induced intersite spin transfer (OISTR) promises manipulation of spin systems within the ultimate time limit of laser excitation. Following its prediction, signatures of ultrafast spin transfer between oppositely aligned spin sublattices have been observed in magnetic alloys and multilayers. However, it is known neither from theory nor from experiment whether the band structure immediately follows the ultrafast change in spin polarization or whether the exchange split bands remain rigid. We show that ultrafast spin transfer occurs even in ferromagnetic gadolinium metal. Charge transfer between localized surface and extended valence-band states leads to a decrease of the surface spin polarization. This synchronously alters the exchange splitting of the bulk valence bands during laser excitation. Moreover, the onset of demagnetization can be tuned by over 200 fs by changing the temperature-dependent spin mixing. Our results show a promising route to ultrafast control of the magnetization, widening the impact and applicability of OISTR.
Collapse
Affiliation(s)
- Kamil Bobowski
- Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany
| | - Xinwei Zheng
- Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany
| | - Björn Frietsch
- Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany
| | - Dominic Lawrenz
- Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany
| | - Wibke Bronsch
- Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14 - km 163.5 in AREA Science Park, 34149 Basovizza, Trieste, Italy
| | - Cornelius Gahl
- Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany
| | - Beatrice Andres
- Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany
| | - Christian Strüber
- Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany
| | - Robert Carley
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Andreas Scherz
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Serguei Molodtsov
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
- Institute of Experimental Physics, TU Bergakademie Freiberg, Leipziger Str. 23, 09599 Freiberg, Germany
| | | | | | | | - Martin Weinelt
- Freie Universität Berlin, Fachbereich Physik, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
2
|
Chen Z, Luo JW, Wang LW. Light-induced ultrafast spin transport in multilayer metallic films originates from sp- d spin exchange coupling. SCIENCE ADVANCES 2023; 9:eadi1618. [PMID: 38100591 PMCID: PMC10848703 DOI: 10.1126/sciadv.adi1618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 11/15/2023] [Indexed: 12/17/2023]
Abstract
Ultrafast interaction between the femtosecond laser pulse and the magnetic metal provides an efficient way to manipulate the magnetic states of matter. Numerous experimental advancements have been made on multilayer metallic films in the last two decades. However, the underlying physics remains unclear. Here, relying on an efficient ab initio spin dynamics simulation algorithm, we revealed the physics that can unify the progress in different experiments. We found that light-induced ultrafast spin transport in multilayer metallic films originates from the sp-d spin-exchange interaction, which can induce an ultrafast, large, and pure spin current from ferromagnetic metal to nonmagnetic metal without charge carrier transport. The resulting trends of spin demagnetization and spin flow are consistent with most experiments. It can explain a variety of ultrafast light-spin manipulation experiments with different systems and different pump-probe technologies, covering a wide range of work in this field.
Collapse
Affiliation(s)
- Zhanghui Chen
- Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, China
- Materials Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Mail Stop 50F, Berkeley, CA 94720, USA
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Jun-Wei Luo
- Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Lin-Wang Wang
- Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, China
- Materials Sciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Mail Stop 50F, Berkeley, CA 94720, USA
| |
Collapse
|
3
|
Liu B, Xiao H, Weinelt M. Microscopic insights to spin transport-driven ultrafast magnetization dynamics in a Gd/Fe bilayer. SCIENCE ADVANCES 2023; 9:eade0286. [PMID: 37196076 DOI: 10.1126/sciadv.ade0286] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 04/13/2023] [Indexed: 05/19/2023]
Abstract
Laser-induced spin transport is a key ingredient in ultrafast spin dynamics. However, it remains debated to what extent ultrafast magnetization dynamics generates spin currents and vice versa. We use time- and spin-resolved photoemission spectroscopy to study an antiferromagnetically coupled Gd/Fe bilayer, a prototype system for all-optical switching. Spin transport leads to an ultrafast drop of the spin polarization at the Gd surface, demonstrating angular-momentum transfer over several nanometers. Thereby, Fe acts as spin filter, absorbing spin majority but reflecting spin minority electrons. Spin transport from Gd to Fe was corroborated by an ultrafast increase of the Fe spin polarization in a reversed Fe/Gd bilayer. In contrast, for a pure Gd film, spin transport into the tungsten substrate can be neglected, as spin polarization stays constant. Our results suggest that ultrafast spin transport drives the magnetization dynamics in Gd/Fe and reveal microscopic insights into ultrafast spin dynamics.
Collapse
Affiliation(s)
- Bo Liu
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Huijuan Xiao
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Martin Weinelt
- Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
4
|
Eschenlohr A. Spin dynamics at interfaces on femtosecond timescales. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:013001. [PMID: 33034305 DOI: 10.1088/1361-648x/abb519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The excitation of magnetically ordered materials with ultrashort laser pulses results in magnetization dynamics on femto- to picosecond timescales. These non-equilibrium spin dynamics have emerged as a rapidly developing research field in recent years. Unraveling the fundamental microscopic processes in the interaction of ultrashort optical pulses with the charge, spin, orbital, and lattice degrees of freedom in magnetic materials shows the potential for controlling spin dynamics on their intrinsic timescales and thereby bring spintronics applications into the femtosecond range. In particular, femtosecond spin currents offer fascinating new possibilities to manipulate magnetization in an ultrafast and non-local manner, via spin injection and spin transfer torque at the interfaces of ferromagnetic layered structures. This topical review covers recent progress on spin dynamics at interfaces on femtosecond time scales. The development of the field of ultrafast spin dynamics in ferromagnetic heterostructures will be reviewed, starting from spin currents propagating on nanometer length scales through layered structures before focusing on femtosecond spin transfer at interfaces. The properties of these ultrafast spin-dependent charge currents will be discussed, as well as the materials dependence of femtosecond spin injection, the role of the interface properties, and competing microscopic processes leading to a loss of spin polarization on sub-picosecond timescales.
Collapse
Affiliation(s)
- A Eschenlohr
- Faculty of Physics and Center for Nanointegration Duisburg-Essen (CENIDE), University Duisburg-Essen, Lotharstr. 1, 47057 Duisburg, Germany
| |
Collapse
|
5
|
Weder D, von Korff Schmising C, Günther CM, Schneider M, Engel D, Hessing P, Strüber C, Weigand M, Vodungbo B, Jal E, Liu X, Merhe A, Pedersoli E, Capotondi F, Lüning J, Pfau B, Eisebitt S. Transient magnetic gratings on the nanometer scale. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:054501. [PMID: 32923511 PMCID: PMC7481012 DOI: 10.1063/4.0000017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Laser-driven non-local electron dynamics in ultrathin magnetic samples on a sub-10 nm length scale is a key process in ultrafast magnetism. However, the experimental access has been challenging due to the nanoscopic and femtosecond nature of such transport processes. Here, we present a scattering-based experiment relying on a laser-induced electro- and magneto-optical grating in a Co/Pd ferromagnetic multilayer as a new technique to investigate non-local magnetization dynamics on nanometer length and femtosecond timescales. We induce a spatially modulated excitation pattern using tailored Al near-field masks with varying periodicities on a nanometer length scale and measure the first four diffraction orders in an x-ray scattering experiment with magnetic circular dichroism contrast at the free-electron laser facility FERMI, Trieste. The design of the periodic excitation mask leads to a strongly enhanced and characteristic transient scattering response allowing for sub-wavelength in-plane sensitivity for magnetic structures. In conjunction with scattering simulations, the experiment allows us to infer that a potential ultrafast lateral expansion of the initially excited regions of the magnetic film mediated by hot-electron transport and spin transport remains confined to below three nanometers.
Collapse
Affiliation(s)
- D. Weder
- Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - C. von Korff Schmising
- Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - C. M. Günther
- Zentraleinrichtung Elektronenmikroskopie (ZELMI), Technische Universität Berlin, 10623 Berlin, Germany
| | - M. Schneider
- Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - D. Engel
- Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - P. Hessing
- Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - C. Strüber
- Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | - M. Weigand
- Helmholtz-Zentrum Berlin für Materialien und Energie, 12489 Berlin, Germany
| | - B. Vodungbo
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique–Matière et Rayonnement, LCPMR, 75005 Paris, France
| | - E. Jal
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique–Matière et Rayonnement, LCPMR, 75005 Paris, France
| | - X. Liu
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique–Matière et Rayonnement, LCPMR, 75005 Paris, France
| | - A. Merhe
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique–Matière et Rayonnement, LCPMR, 75005 Paris, France
| | - E. Pedersoli
- Elettra-Sincrotrone Trieste, Basovizza, 34149 Trieste, Italy
| | - F. Capotondi
- Elettra-Sincrotrone Trieste, Basovizza, 34149 Trieste, Italy
| | - J. Lüning
- Helmholtz-Zentrum Berlin für Materialien und Energie, 12489 Berlin, Germany
| | - B. Pfau
- Max-Born-Institute for Nonlinear Optics and Short Pulse Spectroscopy, 12489 Berlin, Germany
| | | |
Collapse
|
6
|
Sant T, Ksenzov D, Capotondi F, Pedersoli E, Manfredda M, Kiskinova M, Zabel H, Kläui M, Lüning J, Pietsch U, Gutt C. Measurements of ultrafast spin-profiles and spin-diffusion properties in the domain wall area at a metal/ferromagnetic film interface. Sci Rep 2017; 7:15064. [PMID: 29118451 PMCID: PMC5678147 DOI: 10.1038/s41598-017-15234-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/23/2017] [Indexed: 11/25/2022] Open
Abstract
Exciting a ferromagnetic material with an ultrashort IR laser pulse is known to induce spin dynamics by heating the spin system and by ultrafast spin diffusion processes. Here, we report on measurements of spin-profiles and spin diffusion properties in the vicinity of domain walls in the interface region between a metallic Al layer and a ferromagnetic Co/Pd thin film upon IR excitation. We followed the ultrafast temporal evolution by means of an ultrafast resonant magnetic scattering experiment in surface scattering geometry, which enables us to exploit the evolution of the domain network within a 1/e distance of 3 nm to 5 nm from the Al/FM film interface. We observe a magnetization-reversal close to the domain wall boundaries that becomes more pronounced closer to the Al/FM film interface. This magnetization-reversal is driven by the different transport properties of majority and minority carriers through a magnetically disordered domain network. Its finite lateral extension has allowed us to measure the ultrafast spin-diffusion coefficients and ultrafast spin velocities for majority and minority carriers upon IR excitation.
Collapse
Affiliation(s)
- T Sant
- Department Physik, Universität Siegen, Walter-Flex-Strasse 3, D-57072, Siegen, Germany
| | - D Ksenzov
- Department Physik, Universität Siegen, Walter-Flex-Strasse 3, D-57072, Siegen, Germany
| | - F Capotondi
- FERMI, Elettra-Sincrotrone Trieste, 34149, Basovizza, Trieste, Italy
| | - E Pedersoli
- FERMI, Elettra-Sincrotrone Trieste, 34149, Basovizza, Trieste, Italy
| | - M Manfredda
- FERMI, Elettra-Sincrotrone Trieste, 34149, Basovizza, Trieste, Italy
| | - M Kiskinova
- FERMI, Elettra-Sincrotrone Trieste, 34149, Basovizza, Trieste, Italy
| | - H Zabel
- Institut für Physik, Johannes Gutenberg Universität Mainz, D-55099, Mainz, Germany
| | - M Kläui
- Institut für Physik, Johannes Gutenberg Universität Mainz, D-55099, Mainz, Germany
| | - J Lüning
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Chimie Physique - Matière et Rayonnement, 75005, Paris, France
| | - U Pietsch
- Department Physik, Universität Siegen, Walter-Flex-Strasse 3, D-57072, Siegen, Germany
| | - C Gutt
- Department Physik, Universität Siegen, Walter-Flex-Strasse 3, D-57072, Siegen, Germany.
| |
Collapse
|
7
|
Carva K, Baláž P, Radu I. Laser-Induced Ultrafast Magnetic Phenomena. HANDBOOK OF MAGNETIC MATERIALS 2017. [DOI: 10.1016/bs.hmm.2017.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Crystal-momentum dispersion of ultrafast spin change in fcc Co. Sci Rep 2014; 4:5010. [PMID: 24852331 PMCID: PMC4031477 DOI: 10.1038/srep05010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 04/29/2014] [Indexed: 11/30/2022] Open
Abstract
Nearly twenty years ago, Beaurepaire and coworkers showed that when an ultrafast laser impinges on a ferromagnet, its spin moment undergoes a dramatic change, but how it works remains a mystery. While the current experiment is still unable to resolve the minute details of the spin change, crystal momentum-resolved techniques have long been used to analyze the charge dynamics in superconductors and strongly correlated materials. Here we extend it to probe spin moment change in the entire three-dimensional Brillouin zone for fcc Co. Our results indeed show a strong spin activity along the Δ line, supporting a prior experimental finding. The spin active pockets coalesce into a series of spin surfaces that follow the Fermi surfaces. We predict two largest spin change pockets which have been elusive to experiments: one pocket is slightly below the Δ line and the other is along the Λ line and close to the L point. Our theory presents an opportunity for the time-, spin- and momentum-resolve photoemission technique.
Collapse
|
9
|
Investigating the role of superdiffusive currents in laser induced demagnetization of ferromagnets with nanoscale magnetic domains. Sci Rep 2014; 4:4658. [PMID: 24722395 PMCID: PMC3983600 DOI: 10.1038/srep04658] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/18/2014] [Indexed: 11/09/2022] Open
Abstract
Understanding the loss of magnetic order and the microscopic mechanisms involved in laser induced magnetization dynamics is one of the most challenging topics in today's magnetism research. While scattering between spins, phonons, magnons and electrons have been proposed as sources for dissipation of spin angular momentum, ultrafast spin dependent transport of hot electrons has been pointed out as a potential candidate to explain ultrafast demagnetization without resorting to any spin dissipation channel. Here we use time resolved magneto-optical Kerr measurements to extract the influence of spin dependent transport on the demagnetization dynamics taking place in magnetic samples with alternating domains with opposite magnetization directions. We unambiguously show that whatever the sample magnetic configuration, the demagnetization takes place during the same time, demonstrating that hot electrons spin dependent transfer between neighboring domains does not alter the ultrafast magnetization dynamics in our systems with perpendicular anisotropy and 140 nm domain sizes.
Collapse
|
10
|
Gotlieb K, Hussain Z, Bostwick A, Lanzara A, Jozwiak C. Rapid high-resolution spin- and angle-resolved photoemission spectroscopy with pulsed laser source and time-of-flight spectrometer. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2013; 84:093904. [PMID: 24089838 DOI: 10.1063/1.4821247] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-E(F) spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements.
Collapse
Affiliation(s)
- K Gotlieb
- Graduate Group in Applied Science and Technology, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
11
|
Pfau B, Schaffert S, Müller L, Gutt C, Al-Shemmary A, Büttner F, Delaunay R, Düsterer S, Flewett S, Frömter R, Geilhufe J, Guehrs E, Günther CM, Hawaldar R, Hille M, Jaouen N, Kobs A, Li K, Mohanty J, Redlin H, Schlotter WF, Stickler D, Treusch R, Vodungbo B, Kläui M, Oepen HP, Lüning J, Grübel G, Eisebitt S. Ultrafast optical demagnetization manipulates nanoscale spin structure in domain walls. Nat Commun 2013; 3:1100. [PMID: 23033076 PMCID: PMC3493637 DOI: 10.1038/ncomms2108] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 09/03/2012] [Indexed: 11/09/2022] Open
Abstract
During ultrafast demagnetization of a magnetically ordered solid, angular momentum has to be transferred between the spins, electrons, and phonons in the system on femto- and picosecond timescales. Although the intrinsic spin-transfer mechanisms are intensely debated, additional extrinsic mechanisms arising due to nanoscale heterogeneity have only recently entered the discussion. Here we use femtosecond X-ray pulses from a free-electron laser to study thin film samples with magnetic domain patterns. We observe an infrared-pump-induced change of the spin structure within the domain walls on the sub-picosecond timescale. This domain-topography-dependent contribution connects the intrinsic demagnetization process in each domain with spin-transport processes across the domain walls, demonstrating the importance of spin-dependent electron transport between differently magnetized regions as an ultrafast demagnetization channel. This pathway exists independent from structural inhomogeneities such as chemical interfaces, and gives rise to an ultrafast spatially varying response to optical pump pulses.
Collapse
Affiliation(s)
- B Pfau
- TU Berlin, Institut für Optik und Atomare Physik, 10623 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Carley R, Döbrich K, Frietsch B, Gahl C, Teichmann M, Schwarzkopf O, Wernet P, Weinelt M. Femtosecond laser excitation drives ferromagnetic gadolinium out of magnetic equilibrium. PHYSICAL REVIEW LETTERS 2012; 109:057401. [PMID: 23006205 DOI: 10.1103/physrevlett.109.057401] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Indexed: 06/01/2023]
Abstract
The temporal evolution of the exchange-split Δ(2)-like Σ valence bands of the 4f-ferromagnet gadolinium after femtosecond laser excitation has been studied using angle-resolved photoelectron spectroscopy based on high-order harmonic generation. The ultrafast drop of the exchange splitting reflects the magnetic response seen in femtosecond magnetic dichroism experiments. However, while the minority valence band reacts immediately, the response of the majority counterpart is delayed by 1 picosecond and is only half as fast. These findings demonstrate that laser excitation drives the valence band structure out of magnetic equilibrium.
Collapse
|