Cao K, Guo GC, He L. Molecular-spin dynamics study of electromagnons in multiferroic RMn2O5.
JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2012;
24:206001. [PMID:
22510497 DOI:
10.1088/0953-8984/24/20/206001]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We investigate the electromagnon in magnetoferroelectrics RMn(2)O(5) using combined molecular-spin dynamics simulations. We confirm that the origin of the electromagnon modes observed in the optical spectra is due to the exchange-striction interaction between the magnons and the phonons, and the dielectric step at the magnetic phase transition is due to the appearance of the electromagnon in the low-temperature phase in these materials. The magnetic anisotropy breaks the rotational symmetry of the magnetic structures and, as a result, the electromagnon splits into three modes in RMn(2)O(5). We find that the electromagnon frequencies are very sensitive to the magnetic wavevector along the a direction q(x). Therefore, the electromagnon frequencies of TmMn(2)O(5) (q(x) ~ 0.467) are expected to be much higher than those of other materials of the family, such as R= Tb, Y, Ho, etc (q(x) ~ 0.48). We further calculate the electromagnons in the magnetic field, and find a new mode appearing in the magnetic field. Although the modes' frequencies change significantly under magnetic field, the total static dielectric constant contributed from the electromagnons does not change much in the magnetic field, suggesting that the colossal magnetodielectric effects in these materials may not be caused by the electromagnons.
Collapse