1
|
Sajjan M, Hemmatiyan S, Mazziotti DA. Conductance Switching in an Organometallic Single-Electron Transistor Using Current-Constrained Reduced-Density Matrix Theory. J Phys Chem A 2021; 125:5448-5455. [PMID: 34105977 DOI: 10.1021/acs.jpca.1c02267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report switching of molecular conductance at finite bias in a binuclear organometallic complex and its cation which were previously experimentally analyzed at low voltages to see the signature of Kondo resonance. The variational reduced density matrix theory is applied to show that the system is strongly multireferenced especially in its charged form. We also study the molecular conductance of both forms using recently developed current-constrained two-electron reduced density matrix theory which is capable of handling strong electronic correlation. We compare the results against an uncorrelated 1-electron reduced density matrix version of conductance calculations using Hartree-Fock molecular orbitals. We observe that despite quantitative disagreements, the qualitative trend in the conductance is correctly predicted to be favorable for the cationic partner by both methods. We explain the results using the inherently high density of states for the low-lying excited states in the cationic partner which is also replicable from uncorrelated electronic structure methods. Our results not only indicate that the low-bias conductance trend is maintained even beyond the Kondo regime and produces quantitative agreement with that of the experiment but also identifies important physical markers that are responsible for the high conductance of the charged species.
Collapse
Affiliation(s)
- Manas Sajjan
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Shayan Hemmatiyan
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - David A Mazziotti
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
2
|
Nan N, Li W, Wang PC, Hu YJ, Tan GL, Xiong YC. Kondo effect and RKKY interaction assisted by magnetic anisotropy in a frustrated magnetic molecular device at zero and finite temperature. Phys Chem Chem Phys 2021; 23:5878-5887. [PMID: 33659975 DOI: 10.1039/d0cp05915c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Molecular magnetic compounds, which combine the advantages of nanoscale behaviors with the properties of bulk magnetic materials, are particularly attractive in the fields of high-density information storage and quantum computing. Before molecular electronic devices can be fabricated, a crucial task is the measurement and understanding of the transport behaviors. Herein, we consider a magnetic molecular trimer sandwiched between two metal electrodes, and, with the aid of the sophisticated full density matrix numerical renormalization group (FDM-NRG) technique, we study the effect of magnetic anisotropy on the charge transport properties, illustrated by the local density of states (LDOS, which is proportional to the differential conductance), the Kondo effect, and the temperature and inter-monomer hopping robustness. Three kinds of energy peaks are clarified in the LDOS: the Coulomb, the Kondo and the Ruderman-Kittel-Kasuya-Yosida (RKKY) peaks. The local magnetic moment and entropy go through four different regimes as the temperature decreases. The Kondo temperature TK could be described by a generalized Haldane's formula, revealing in detail the process where the local moment is partially screened by the itinerant electrons. A relationship between the width of the Kondo resonant peak WK and TK is built, ensuring the extraction of TK from WK in an efficient way. As the inter-monomer hopping integral varies, the ground state of the trimer changes from a spin quadruplet to a magnetically frustrated phase, then to an orbital spin singlet through two first order quantum phase transitions. In the first two phases, the Kondo peak in the transmission coefficient reaches its unitary limit, while in the orbital spin singlet, it is totally suppressed. We demonstrate that magnetic anisotropy may also induce the Kondo effect, even without Coulomb repulsion, hence it is replaceable in the many-body behaviours at low temperature.
Collapse
Affiliation(s)
- Nan Nan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China. and School of Science, and Advanced Functional Material and Photoelectric Technology Research Institution, Hubei University of Automotive Technology, Shiyan, 442002, People's Republic of China.
| | - Wei Li
- School of Science, and Advanced Functional Material and Photoelectric Technology Research Institution, Hubei University of Automotive Technology, Shiyan, 442002, People's Republic of China.
| | - Peng-Chao Wang
- School of Science, and Advanced Functional Material and Photoelectric Technology Research Institution, Hubei University of Automotive Technology, Shiyan, 442002, People's Republic of China.
| | - Yong-Jin Hu
- School of Science, and Advanced Functional Material and Photoelectric Technology Research Institution, Hubei University of Automotive Technology, Shiyan, 442002, People's Republic of China.
| | - Guo-Long Tan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, People's Republic of China.
| | - Yong-Chen Xiong
- School of Science, and Advanced Functional Material and Photoelectric Technology Research Institution, Hubei University of Automotive Technology, Shiyan, 442002, People's Republic of China.
| |
Collapse
|
3
|
Kügel J, Hsu PJ, Böhme M, Schneider K, Senkpiel J, Serrate D, Bode M, Lorente N. Jahn-Teller Splitting in Single Adsorbed Molecules Revealed by Isospin-Flip Excitations. PHYSICAL REVIEW LETTERS 2018; 121:226402. [PMID: 30547609 DOI: 10.1103/physrevlett.121.226402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/11/2018] [Indexed: 06/09/2023]
Abstract
Scanning tunneling spectroscopy measurements of Mn phthalocyanine (MnPc) molecules adsorbed on (sqrt[3]×sqrt[3]) surface alloys show single inelastic steps at exclusively positive or negative bias strongly depending on the tip position. This is in contrast to conventional molecular excitation thresholds, which are independent of the current direction and therefore always occur at both positive and negative bias. This polarity selectivity is found to coincide with the spatial distribution of occupied and empty orbitals. Because of the interaction with the substrate, charge transfer into the doubly degenerate d_{π} orbitals of MnPc takes place. The resulting Jahn-Teller effect lifts the degeneracy and leads to an isospin- or pseudospin-flip excitation, the inelastic analogue of an orbital Kondo resonance.
Collapse
Affiliation(s)
- Jens Kügel
- Physikalisches Institut, Experimentelle Physik II, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Pin-Jui Hsu
- Physikalisches Institut, Experimentelle Physik II, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Markus Böhme
- Physikalisches Institut, Experimentelle Physik II, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Kathrin Schneider
- Physikalisches Institut, Experimentelle Physik II, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jacob Senkpiel
- Physikalisches Institut, Experimentelle Physik II, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - David Serrate
- Instituto de Nanociencia de Aragón, Laboratorio de Microscopias Avanzadas, University of Zaragoza, E-50018 Zaragoza, Spain
- Departamento Física Materia Condensada, University of Zaragoza, E-50018 Zaragoza, Spain
| | - Matthias Bode
- Physikalisches Institut, Experimentelle Physik II, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Wilhelm Conrad Röntgen-Center for Complex Material Systems (RCCM), Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Nicolás Lorente
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastián, Spain
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
| |
Collapse
|
4
|
Appelt WH, Droghetti A, Chioncel L, Radonjić MM, Muñoz E, Kirchner S, Vollhardt D, Rungger I. Predicting the conductance of strongly correlated molecules: the Kondo effect in perchlorotriphenylmethyl/Au junctions. NANOSCALE 2018; 10:17738-17750. [PMID: 30211420 DOI: 10.1039/c8nr03991g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stable organic radicals integrated into molecular junctions represent a practical realization of the single-orbital Anderson impurity model. Motivated by recent experiments for perchlorotriphenylmethyl (PTM) molecules contacted to gold electrodes, we develop a method that combines density functional theory (DFT), quantum transport theory, numerical renormalization group (NRG) calculations and renormalized super-perturbation theory (rSPT) to compute both equilibrium and non-equilibrium properties of strongly correlated nanoscale systems at low temperatures effectively from first principles. We determine the possible atomic structures of the interfaces between the molecule and the electrodes, which allow us to estimate the Kondo temperature and the characteristic transport properties, which compare well with experiments. By using the non-equilibrium rSPT results we assess the range of validity of equilibrium DFT + NRG-based transmission calculations for the evaluation of the finite voltage conductance. The results demonstrate that our method can provide qualitative insights into the properties of molecular junctions when the molecule-metal contacts are amorphous or generally ill-defined, and that it can further give a fully quantitative description when the experimental contact structures are well characterized.
Collapse
Affiliation(s)
- W H Appelt
- Theoretical Physics II, Institute of Physics, University of Augsburg, D-86135 Augsburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Jacob D. Simulation of inelastic spin flip excitations and Kondo effect in STM spectroscopy of magnetic molecules on metal substrates. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:354003. [PMID: 30035748 DOI: 10.1088/1361-648x/aad523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Single-ion magnetic anisotropy in molecular magnets leads to spin flip excitations that can be measured by inelastic scanning tunneling microscope (STM) spectroscopy. Here I present a semi ab initio scheme to compute the spectral features associated with inelastic spin flip excitations and Kondo effect of single molecular magnets. To this end density functional theory calculations of the molecule on the substrate are combined with more sophisticated many-body techniques for solving the Anderson impurity problem of the spin-carrying orbitals of the magnetic molecule coupled to the rest of the system, containing a phenomenological magnetic anisotropy term. For calculating the STM spectra an exact expression for the [Formula: see text] in the ideal STM limit, when the coupling to the STM tip becomes negligibly small, is derived. In this limit the [Formula: see text] is simply related to the spectral function of the molecule-substrate system. For the case of an Fe porphyrin molecule on the Au(1 1 1) substrate, the calculated STM spectra are in good agreement with recently measured STM spectra, showing the typical step features at finite bias associated with spin flip excitation of a spin-1 quantum magnet. For the case of Kondo effect in Mn porphyrin on Au(1 1 1), the agreement with the experimental spectra is not as good due to the neglect of quantum interference in the tunneling.
Collapse
Affiliation(s)
- David Jacob
- Nano-Bio Spectroscopy Group, Dpto. de Física de Materiales, Universidad del País Vasco UPV/EHU, Avenida Tolosa 72, E-20018 San Sebastián, Spain. IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, E-48013 Bilbao, Spain
| |
Collapse
|
6
|
Current-constrained density-matrix theory to calculate molecular conductivity with increased accuracy. Commun Chem 2018. [DOI: 10.1038/s42004-018-0030-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
7
|
Akin ST, Zamudio-Bayer V, Duanmu K, Leistner G, Hirsch K, Bülow C, Ławicki A, Terasaki A, Issendorff BV, Truhlar DG, Lau JT, Duncan MA. Size-Dependent Ligand Quenching of Ferromagnetism in Co 3(benzene) n+ Clusters Studied with X-ray Magnetic Circular Dichroism Spectroscopy. J Phys Chem Lett 2016; 7:4568-4575. [PMID: 27779876 DOI: 10.1021/acs.jpclett.6b01839] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cobalt-benzene cluster ions of the form Co3(bz)n+ (n = 0-3) were produced in the gas phase, mass-selected, and cooled in a cryogenic ion trap held at 3-4 K. To explore ligand effects on cluster magnetic moments, these species were investigated with X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) spectroscopy. XMCD spectra yield both the spin and orbital angular momenta of these clusters. Co3+ has a spin magnetic moment of μS = 6 μB and an orbital magnetic moment of μL = 3 μB. Co3(bz)+ and Co3(bz)2+ complexes were found to have spin and orbital magnetic moments identical to the values for ligand-free Co3+. However, coordination of the third benzene to form Co3(bz)3+ completely quenches the high spin state of the system. Density functional theory calculations elucidate the spin states of the Co3(bz)n+ species as a function of the number of attached benzene ligands, explaining the transition from septet to singlet for n = 0 → 3.
Collapse
Affiliation(s)
- Scott T Akin
- Department of Chemistry, University of Georgia , Athens, Georgia 30602, United States
| | - Vicente Zamudio-Bayer
- Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489 Berlin, Germany
- Physikalisches Institut, Universität Freiburg , Stefan-Meier-Straße 21, 79104 Freiburg, Germany
| | - Kaining Duanmu
- Department of Chemistry, Chemical Theory Center, and the Supercomputing Institute, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - Georg Leistner
- Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489 Berlin, Germany
- Institut für Optik und Atomare Physik, Technische Universität Berlin , Hardenbergstraße 36, 10623 Berlin, Germany
| | - Konstantin Hirsch
- Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489 Berlin, Germany
- Institut für Optik und Atomare Physik, Technische Universität Berlin , Hardenbergstraße 36, 10623 Berlin, Germany
| | - Christine Bülow
- Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489 Berlin, Germany
- Institut für Optik und Atomare Physik, Technische Universität Berlin , Hardenbergstraße 36, 10623 Berlin, Germany
| | - Arkadiusz Ławicki
- Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Akira Terasaki
- East Tokyo Laboratory, Genesis Research Institute, Inc. , 717-86 Futamata, Ichikawa, Chiba 272-0001, Japan
- Department of Chemistry, Faculty of Science, Kyushu University , 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Bernd von Issendorff
- Physikalisches Institut, Universität Freiburg , Stefan-Meier-Straße 21, 79104 Freiburg, Germany
| | - Donald G Truhlar
- Department of Chemistry, Chemical Theory Center, and the Supercomputing Institute, University of Minnesota , Minneapolis, Minnesota 55455, United States
| | - J Tobias Lau
- Institut für Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489 Berlin, Germany
| | - Michael A Duncan
- Department of Chemistry, University of Georgia , Athens, Georgia 30602, United States
| |
Collapse
|
8
|
Karolak M, Jacob D. Effects of valence, geometry and electronic correlations on transport in transition metal benzene sandwich molecules. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:445301. [PMID: 27605217 DOI: 10.1088/0953-8984/28/44/445301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We study the impact of the valence and the geometry on the electronic structure and transport properties of different transition metal-benzene sandwich molecules bridging the tips of a Cu nanocontact. Our density-functional calculations show that the electronic transport properties of the molecules depend strongly on the molecular geometry which can be controlled by the nanocontact tips. Depending on the valence of the transition metal center certain molecules can be tuned in and out of half-metallic behaviour facilitating potential spintronics applications. We also discuss our results in the framework of an Anderson impurity model, indicating cases where the inclusion of local correlations alters the ground state qualitatively. For Co and V centered molecules we find indications of an orbital Kondo effect.
Collapse
Affiliation(s)
- M Karolak
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | | |
Collapse
|
9
|
Wang X, Hou D, Zheng X, Yan Y. Anisotropy induced Kondo splitting in a mechanically stretched molecular junction: A first-principles based study. J Chem Phys 2016; 144:034101. [DOI: 10.1063/1.4939843] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Xiaoli Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dong Hou
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Guizhou Provincial Key Laboratory of Computational Nano-Material Science, Institute of Applied Physics, Guizhou Normal College, Guiyang, Guizhou 550018, China
| | - YiJing Yan
- Hefei National Laboratory for Physical Sciences at the Microscale, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Chemistry, Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
10
|
Li J, Li B, Wang Y, Zhao A, Wang B. Identifying site-dependent effects of an extra Co atom on electronic states of single Co-phthalocyanine molecule. J Chem Phys 2015. [DOI: 10.1063/1.4926832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Jingcheng Li
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bin Li
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yu Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Aidi Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bing Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
11
|
Karan S, Jacob D, Karolak M, Hamann C, Wang Y, Weismann A, Lichtenstein AI, Berndt R. Shifting the Voltage Drop in Electron Transport Through a Single Molecule. PHYSICAL REVIEW LETTERS 2015; 115:016802. [PMID: 26182113 DOI: 10.1103/physrevlett.115.016802] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Indexed: 06/04/2023]
Abstract
A Mn-porphyrin was contacted on Au(111) in a low-temperature scanning tunneling microscope (STM). Differential conductance spectra show a zero-bias resonance that is due to an underscreened Kondo effect according to many-body calculations. When the Mn center is contacted by the STM tip, the spectrum appears to invert along the voltage axis. A drastic change in the electrostatic potential of the molecule involving a small geometric relaxation is found to cause this observation.
Collapse
Affiliation(s)
- Sujoy Karan
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - David Jacob
- Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle, Germany
| | - Michael Karolak
- Institut für Theoretische Physik und Astrophysik, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Christian Hamann
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Yongfeng Wang
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - Alexander Weismann
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | | | - Richard Berndt
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| |
Collapse
|
12
|
Jacob D. Towards a full ab initio theory of strong electronic correlations in nanoscale devices. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:245606. [PMID: 26037313 DOI: 10.1088/0953-8984/27/24/245606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
In this paper I give a detailed account of an ab initio methodology for describing strong electronic correlations in nanoscale devices hosting transition metal atoms with open d- or f-shells. The method combines Kohn-Sham density functional theory for treating the weakly interacting electrons on a static mean-field level with non-perturbative many-body methods for the strongly interacting electrons in the open d- and f-shells. An effective description of the strongly interacting electrons in terms of a multi-orbital Anderson impurity model is obtained by projection onto the strongly correlated subspace properly taking into account the non-orthogonality of the atomic basis set. A special focus lies on the ab initio calculation of the effective screened interaction matrix U for the Anderson model. Solution of the effective Anderson model with the one-crossing approximation or other impurity solver techniques yields the dynamic correlations within the strongly correlated subspace giving rise e.g. to the Kondo effect. As an example the method is applied to the case of a Co adatom on the Cu(0 0 1) surface. The calculated low-bias tunnel spectra show Fano-Kondo lineshapes similar to those measured in experiments. The exact shape of the Fano-Kondo feature as well as its width depend quite strongly on the filling of the Co 3d-shell. Although this somewhat hampers accurate quantitative predictions regarding lineshapes and Kondo temperatures, the overall physical situation can be predicted quite reliably.
Collapse
Affiliation(s)
- David Jacob
- Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle, Germany
| |
Collapse
|
13
|
Wang Y, Zheng X, Li B, Yang J. Understanding the Kondo resonance in the d-CoPc/Au(111) adsorption system. J Chem Phys 2014; 141:084713. [DOI: 10.1063/1.4893953] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Stróżecka A, Soriano M, Pascual JI, Palacios JJ. Reversible change of the spin state in a manganese phthalocyanine by coordination of CO molecule. PHYSICAL REVIEW LETTERS 2012; 109:147202. [PMID: 23083274 DOI: 10.1103/physrevlett.109.147202] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Indexed: 06/01/2023]
Abstract
We show that the magnetic state of individual manganese phthalocyanine (MnPc) molecules on a Bi(110) surface is modified when the Mn2+ center coordinates to CO molecules adsorbed on top. Using scanning tunneling spectroscopy we identified this change in magnetic properties from the broadening of a Kondo-related zero-bias anomaly when the CO-MnPc complex is formed. The original magnetic state can be recovered by selective desorption of individual CO molecules. First principles calculations show that the CO molecule reduces the spin of the adsorbed MnPc from S=1 to S=1/2 and strongly modifies the respective screening channels, driving a transition from an underscreened Kondo state to a state of mixed valence.
Collapse
Affiliation(s)
- A Stróżecka
- Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | | | | | | |
Collapse
|