1
|
Shang R, Wu T, Meguid SA. Molecular dynamics simulations of the effect of static electric field on progressive ice formation. J Chem Phys 2024; 161:094504. [PMID: 39230380 DOI: 10.1063/5.0226624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
Ice accumulation under static electric fields presents a significant hazard to transmission lines and power grids. Contemporary computational studies of electrofreezing predominantly probed excessive electric fields (109 V/m) that are significantly higher than those typically encountered in proximity to transmission lines. To elucidate the influence of realistic electric fields (105 V/m) on ice crystallization, we run extensive molecular dynamics (MD) simulations across dual ice-water coexistence systems. Three aspects of work were accordingly examined. First, we investigated the influence of the effect of static electric fields, with a strength of 105 V/m, along three orthogonal axes on the phase transition during the encountered freezing and melting processes. Second, we established the mechanism of how the direction of an electric field, the initial ice crystallography, and the adjacent crystal planes influence the solidification process. Third, the results of our MD simulations were further post-processed to determine the dipole moment, radial distribution, and angle distribution resulting from the static electric field. Our results indicate that while weak electric fields do not cause complete polarization of liquid water molecules, they can induce a transition to a more structured ice-like geometry of the water molecules at the ice-water interphase region, particularly when applied perpendicular to the ice-water interphase. Notably, the interface adjacent to cubic ice exhibits a greater response to the electric fields than that adjacent to hexagonal ice. This is attributable to the intrinsic differences in their original hydrogen bonding networks.
Collapse
Affiliation(s)
- Ruiqi Shang
- Mechanics and Aerospace Design Laboratory, University of Toronto, Toronto, Ontario M5S 3G8, Canada
- The Institute of Advanced Technologies in Energy and Electrical Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, People's Republic of China
| | - Tongyu Wu
- Mechanics and Aerospace Design Laboratory, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| | - S A Meguid
- Mechanics and Aerospace Design Laboratory, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|
2
|
Urbic T. The Magnetic Field Freezes the Mercedes-Benz Water Model. ENTROPY (BASEL, SWITZERLAND) 2023; 25:1618. [PMID: 38136498 PMCID: PMC10742421 DOI: 10.3390/e25121618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
In this study, we investigate the impact of magnetic fields on the structural and thermodynamic properties of water. To accomplish this, we employed the Mercedes-Benz (MB) model, a two-dimensional representation of water using Lennard-Jones disks with angle-dependent interactions that closely mimic hydrogen bond formation. We extended the MB model by introducing two charges to enable interaction with the magnetic field. Employing molecular dynamics simulations, we thoroughly explored the thermodynamic properties concerning various magnetic flux intensities. As a result, we observed that under a weak magnetic flux, the property of water remained unaltered, while a stronger flux astonishingly led to the freezing of water molecules. Furthermore, our study revealed that once a specific flux magnitude was reached, the density anomaly disappeared, and an increase in flux caused the MB particles to form a glassy state.
Collapse
Affiliation(s)
- Tomaz Urbic
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
3
|
Fuhrman Javitt L, Kalita S, Dubey KD, Ehre D, Shaik S, Lahav M, Lubomirsky I. Electro-Freezing of Supercooled Water Is Induced by Hydrated Al 3+ and Mg 2+ Ions: Experimental and Theoretical Studies. J Am Chem Soc 2023; 145:18904-18911. [PMID: 37602827 PMCID: PMC10472506 DOI: 10.1021/jacs.3c05004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Indexed: 08/22/2023]
Abstract
This work reports that the octahedral hydrated Al3+ and Mg2+ ions operate within electrolytic cells as kosmotropic (long-range order-making) "ice makers" of supercooled water (SCW). 10-5 M solutions of hydrated Al3+ and Mg2+ ions each trigger, near the cathode (-20 ± 5 V), electro-freezing of SCW at -4 °C. The hydrated Al3+ ions do so with 100% efficiency, whereas the Mg2+ ions induce icing with 40% efficiency. In contrast, hydrated Na+ ions, under the same experimental conditions, do not induce icing differently than pure water. As such, our study shows that the role played by Al3+ and Mg2+ ions in water electro-freezing is impacted by two synchronous effects: (1) a geometric effect due to the octahedral packing of the coordinated water molecules around the metallic ions, and (2) the degree of polarization which these two ions induce and thereby acidify the coordinated water molecules, which in turn imparts them with an ice-like structure. Long-duration molecular dynamics (MD) simulations of the Al3+ and Mg2+ indeed reveal the formation of "ice-like" hexagons in the vicinity of these ions. Furthermore, the MD shows that these hexagons and the electric fields of the coordinate water molecules give rise to ultimate icing. As such, the MD simulations provide a rational explanation for the order-making properties of these ions during electro-freezing.
Collapse
Affiliation(s)
- Leah Fuhrman Javitt
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Surajit Kalita
- Institute
of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Kshatresh Dutta Dubey
- Department
of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence, Greater Noida, Uttar Pradesh 201314, India
| | - David Ehre
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sason Shaik
- Institute
of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Meir Lahav
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Igor Lubomirsky
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
4
|
Zhao T, Yao H, Ji X, Yang X, Wu S. Molecular dynamics simulation of water condensation with nucleus under electromagnetic wave irradiation. J Mol Graph Model 2023; 123:108513. [PMID: 37270895 DOI: 10.1016/j.jmgm.2023.108513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023]
Abstract
The condensation process of water with different nuclei under electromagnetic wave irradiation was studied by molecular dynamics simulation. It was found that there is a different electric-field effect when the condensation nucleus was a small (NH4)2SO4 cluster than a CaCO3 nucleus. Through the analysis of the hydrogen-bond number, energy change, and dynamic behavior, we found that the effect of external electric field on the condensation process mainly comes from the change of potential energy caused by the dielectric response and there is a competition effect between the dielectric response and the dissolution in the system with (NH4)2SO4.
Collapse
Affiliation(s)
- Tuan Zhao
- Shaanxi Applied Physics and Chemistry Research Institute, Xi'an, 710061, PR China
| | - Hongzhi Yao
- Shaanxi Applied Physics and Chemistry Research Institute, Xi'an, 710061, PR China
| | - Xiangfei Ji
- Shaanxi Applied Physics and Chemistry Research Institute, Xi'an, 710061, PR China
| | - Xiaoqing Yang
- College of Electronics and Information Engineering, Sichuan University, Chengdu, 610064, PR China
| | - Shiyue Wu
- Institute of Guizhou Aerospace Measuring and Testing Technology, Guiyang, 550009, PR China.
| |
Collapse
|
5
|
Conti Nibali V, Maiti S, Saija F, Heyden M, Cassone G. Electric-field induced entropic effects in liquid water. J Chem Phys 2023; 158:2889002. [PMID: 37154276 DOI: 10.1063/5.0139460] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/13/2023] [Indexed: 05/10/2023] Open
Abstract
Externally applied electric fields in liquid water can induce a plethora of effects with wide implications in electrochemistry and hydrogen-based technologies. Although some effort has been made to elucidate the thermodynamics associated with the application of electric fields in aqueous systems, to the best of our knowledge, field-induced effects on the total and local entropy of bulk water have never been presented so far. Here, we report on classical TIP4P/2005 and ab initio molecular dynamics simulations measuring entropic contributions carried by diverse field intensities in liquid water at room temperature. We find that strong fields are capable of aligning large fractions of molecular dipoles. Nevertheless, the order-maker action of the field leads to quite modest entropy reductions in classical simulations. Albeit more significant variations are recorded during first-principles simulations, the associated entropy modifications are small compared to the entropy change involved in the freezing phenomenon, even at intense fields slightly beneath the molecular dissociation threshold. This finding further corroborates the idea that electrofreezing (i.e., the electric-field-induced crystallization) cannot take place in bulk water at room temperature. In addition, here, we propose a molecular-dynamics-based analysis (3D-2PT) that spatially resolves the local entropy and the number density of bulk water under an electric field, which enables us to map their field-induced changes in the environment of reference H2O molecules. By returning detailed spatial maps of the local order, the proposed approach is capable of establishing a link between entropic and structural modifications with atomistic resolution.
Collapse
Affiliation(s)
- Valeria Conti Nibali
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, 98166 Messina, Italy
- Institute for Chemical-Physical Processes, National Research Council of Italy (IPCF-CNR), 98158 Messina, Italy
| | - Sthitadhi Maiti
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Franz Saija
- Institute for Chemical-Physical Processes, National Research Council of Italy (IPCF-CNR), 98158 Messina, Italy
| | - Matthias Heyden
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, USA
| | - Giuseppe Cassone
- Institute for Chemical-Physical Processes, National Research Council of Italy (IPCF-CNR), 98158 Messina, Italy
| |
Collapse
|
6
|
Ogrin P, Urbic T. Simple rose model of water in constant electric field. Phys Rev E 2023; 107:054801. [PMID: 37329104 DOI: 10.1103/physreve.107.054801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/12/2023] [Indexed: 06/18/2023]
Abstract
A simple two-dimensional statistical mechanical water model, called the rose model, was used in this work. We studied how a homogeneous constant electric field affects the properties of water. The rose model is a very simple model that helps explain the anomalous properties of water. Rose water molecules are represented as two-dimensional Lennard-Jones disks with potentials for orientation-dependent pairwise interactions mimicking formations of hydrogen bonds. The original model is modified by addition of charges for interaction with the electric field. We studied what kind of influence the electric field strength has on the model's properties. To determine the structure and thermodynamics of the rose model under the influence of the electric field we used Monte Carlo simulations. Under the influence of a weak electric field the anomalous properties and phase transitions of the water do not change. On the other hand, the strong fields shift the phase transition points as well as the position of the density maximum.
Collapse
Affiliation(s)
- Peter Ogrin
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna Pot 113, SI-1000 Ljubljana, Slovenia
| | - Tomaz Urbic
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna Pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Han B, Isborn CM, Shi L. Incorporating Polarization and Charge Transfer into a Point-Charge Model for Water Using Machine Learning. J Phys Chem Lett 2023; 14:3869-3877. [PMID: 37067482 DOI: 10.1021/acs.jpclett.3c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Rigid nonpolarizable water models with fixed point charges have been widely employed in molecular dynamics simulations due to their efficiency and reasonable accuracy for the potential energy surface. However, the dipole moment surface of water is not necessarily well-described by the same fixed charges, leading to failure in reproducing dipole-related properties. Here, we developed a machine-learning model trained against electronic structure data to assign point charges for water, and the resulting dipole moment surface significantly improved the predictions of the dielectric constant and the low-frequency IR spectrum of liquid water. Our analysis reveals that within our atom-centered point-charge description of the dipole moment surface, the intermolecular charge transfer is the major source of the peak intensity at 200 cm-1, whereas the intramolecular polarization controls the enhancement of the dielectric constant. The effects of exact Hartree-Fock exchange in the hybrid density functional on these properties are also discussed.
Collapse
Affiliation(s)
- Bowen Han
- Chemistry and Biochemistry, University of California, Merced, California 95343, United States
| | - Christine M Isborn
- Chemistry and Biochemistry, University of California, Merced, California 95343, United States
| | - Liang Shi
- Chemistry and Biochemistry, University of California, Merced, California 95343, United States
| |
Collapse
|
8
|
Urbic T. The electric field changes the anomalous properties of the Mercedes Benz water model. Phys Chem Chem Phys 2023; 25:4987-4996. [PMID: 36722865 PMCID: PMC9906975 DOI: 10.1039/d2cp05670d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The influence of a homogeneous constant electric field on water properties was assessed. We used a simple two-dimensional statistical mechanical model called the Mercedes-Benz (MB) model of water in the study. The MB water molecules are two-dimensional disks with Gaussian arms that mimic the formation of hydrogen bonds. The model is modified with added charges for interaction with the electric field. The influence of the strength of the electric field on the water's properties was studied using Monte Carlo simulations. The structure and thermodynamics of the water were determined as a function of the strength of the electric field. We observed that the properties and phase transitions of the water in the low strength electric field does not change. In contrast, the high strength electric field shifts boiling and melting points as well as the position of the density maxima. After further increasing the strength of the electric field the density anomaly disappears.
Collapse
Affiliation(s)
- Tomaz Urbic
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Askerceva 5, SI-1000, Slovenia.
| |
Collapse
|
9
|
Situ W, Zambrano HA, Walther JH. The effect of air solubility on the Kapitza resistance of the copper-water interface. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
10
|
Li X, Lin X, Li Y, Liu WT. Gate Alignment of Liquid Water Molecules in Electric Double Layer. Front Chem 2021; 9:717167. [PMID: 34485244 PMCID: PMC8416066 DOI: 10.3389/fchem.2021.717167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
The behavior of liquid water molecules near an electrified interface is important to many disciplines of science and engineering. In this study, we applied an external gate potential to the silica/water interface via an electrolyte-insulator-semiconductor (EIS) junction to control the surface charging state. Without varying the ionic composition in water, the electrical gating allowed an efficient tuning of the interfacial charge density and field. Using the sum-frequency vibrational spectroscopy, we found a drastic enhancement of interfacial OH vibrational signals at high potential in weakly acidic water, which exceeded that from conventional bulk-silica/water interfaces even in strong basic solutions. Analysis of the spectra indicated that it was due to the alignment of liquid water molecules through the electric double layer, where the screening was weak because of the low ion density. Such a combination of strong field and weak screening demonstrates the unique tuning capability of the EIS scheme, and would allow us to investigate a wealth of phenomena at charged oxide/water interfaces.
Collapse
Affiliation(s)
- Xiaoqun Li
- Physics Department, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures [Ministry of Education (MOE)], Fudan University, Shanghai, China
| | - Xin Lin
- Physics Department, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures [Ministry of Education (MOE)], Fudan University, Shanghai, China
| | - Ying Li
- Physics Department, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures [Ministry of Education (MOE)], Fudan University, Shanghai, China
| | - Wei-Tao Liu
- Physics Department, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures [Ministry of Education (MOE)], Fudan University, Shanghai, China
| |
Collapse
|
11
|
Zhang M, Han F, Li C, Wang P, Yang Y, Yu K. Combined effect of weak electric field and ions on critical water cluster: Insight from molecular dynamics simulation. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
A Constant Potential Molecular Dynamics Simulation Study of the Atomic‐Scale Structure of Water Surfaces Near Electrodes. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Elgabarty H, Kaliannan NK, Kühne TD. Enhancement of the local asymmetry in the hydrogen bond network of liquid water by an ultrafast electric field pulse. Sci Rep 2019; 9:10002. [PMID: 31292493 PMCID: PMC6620291 DOI: 10.1038/s41598-019-46449-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 06/27/2019] [Indexed: 11/18/2022] Open
Abstract
Condensed phase electron decomposition analysis based on density functional theory has recently revealed an asymmetry in the hydrogen-bond network in liquid water, in the sense that a significant population of water molecules are simultaneously donating and accepting one strong hydrogen-bond and another substantially weaker one. Here we investigate this asymmetry, as well as broader structural and energetic features of water's hydrogen-bond network, following the application of an intense electric field square pulse that invokes the ultrafast reorientation of water molecules. We find that the necessary field-strength required to invoke an ultrafast alignment in a picosecond time window is on the order of 108 Vm-1. The resulting orientational anisotropy imposes an experimentally measurable signature on the structure and dynamics of the hydrogen-bond network, including its asymmetry, which is strongly enhanced. The dependence of the molecular reorientation dynamics on the field-strength can be understood by relating the magnitude of the water dipole-field interaction to the rotational kinetic energy, as well as the hydrogen-bond energy.
Collapse
Affiliation(s)
- Hossam Elgabarty
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, Warburger Str. 100, D-33098, Paderborn, Germany
| | - Naveen Kumar Kaliannan
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, Warburger Str. 100, D-33098, Paderborn, Germany
| | - Thomas D Kühne
- Dynamics of Condensed Matter and Center for Sustainable Systems Design, Chair of Theoretical Chemistry, University of Paderborn, Warburger Str. 100, D-33098, Paderborn, Germany.
- Paderborn Center for Parallel Computing and Institute for Lightweight Design, University of Paderborn, Warburger Str. 100, D-33098, Paderborn, Germany.
| |
Collapse
|
14
|
Benet J, Llombart P, Sanz E, MacDowell LG. Structure and fluctuations of the premelted liquid film of ice at the triple point. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1583388] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Jorge Benet
- Departamento de Química-Física (Unidad Asociada de I+D+i al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Pablo Llombart
- Departamento de Química-Física (Unidad Asociada de I+D+i al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Química Física Rocasolano, CSIC, Madrid, Spain
| | - Eduardo Sanz
- Departamento de Química-Física (Unidad Asociada de I+D+i al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Luis G. MacDowell
- Departamento de Química-Física (Unidad Asociada de I+D+i al CSIC), Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
15
|
Shafiei M, von Domaros M, Bratko D, Luzar A. Anisotropic structure and dynamics of water under static electric fields. J Chem Phys 2019; 150:074505. [DOI: 10.1063/1.5079393] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Mahdi Shafiei
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA
| | - Michael von Domaros
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, USA
| | - Dusan Bratko
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA
| | - Alenka Luzar
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA
| |
Collapse
|
16
|
The Impact of the Electric Field on Surface Condensation of Water Vapor: Insight from Molecular Dynamics Simulation. NANOMATERIALS 2019; 9:nano9010064. [PMID: 30621199 PMCID: PMC6359217 DOI: 10.3390/nano9010064] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/18/2018] [Accepted: 12/27/2018] [Indexed: 11/26/2022]
Abstract
In this study, molecular dynamics simulations were carried out to study the coupling effect of electric field strength and surface wettability on the condensation process of water vapor. Our results show that an electric field can rotate water molecules upward and restrict condensation. Formed clusters are stretched to become columns above the threshold strength of the field, causing the condensation rate to drop quickly. The enhancement of surface attraction force boosts the rearrangement of water molecules adjacent to the surface and exaggerates the threshold value for shape transformation. In addition, the contact area between clusters and the surface increases with increasing amounts of surface attraction force, which raises the condensation efficiency. Thus, the condensation rate of water vapor on a surface under an electric field is determined by competition between intermolecular forces from the electric field and the surface.
Collapse
|
17
|
Kahk JM, Tan BH, Ohl CD, Loh ND. Viscous field-aligned water exhibits cubic-ice-like structural motifs. Phys Chem Chem Phys 2018; 20:19877-19884. [PMID: 29968884 DOI: 10.1039/c8cp02697a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Strong electric fields are known to greatly accelerate the freezing of water in molecular dynamics simulations, and have also been shown to affect the thermodynamics of the phase transition. In this work, a mechanistic explanation for field-induced crystallization of water is presented. Due to the coupling between the rotational and the translational degrees of freedom of individual water molecules, an applied field can directly drive the formation of cubic-ice like local motifs in water. Analysis of the angular distributions of water molecules in TIP4P-2005 water at field strengths between 0.0 and 0.32 V Å-1 demonstrates the existence of such motifs in the field-aligned liquid phase that is observed prior to the onset of the freezing transition. The dynamic properties of this field-aligned liquid phase are also studied, and its viscosity is shown to be within a factor of two of that of regular liquid water using the Green-Kubo method as well as mean squared displacements. The choice between the NPT and the NVT ensembles is shown to have a strong impact on the evolution of molecular dynamics trajectories at field strengths close to the threshold for the freezing transition, and the importance of properly accounting for the electric field terms in the pressure virial is emphasized.
Collapse
Affiliation(s)
- J Matthias Kahk
- Centre for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | | |
Collapse
|
18
|
Zaragoza A, Espinosa JR, Ramos R, Antonio Cobos J, Luis Aragones J, Vega C, Sanz E, Ramírez J, Valeriani C. Phase boundaries, nucleation rates and speed of crystal growth of the water-to-ice transition under an electric field: a simulation study. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:174002. [PMID: 29508769 DOI: 10.1088/1361-648x/aab464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We investigate with computer simulations the effect of applying an electric field on the water-to-ice transition. We use a combination of state-of-the-art simulation techniques to obtain phase boundaries and crystal growth rates (direct coexistence), nucleation rates (seeding) and interfacial free energies (seeding and mold integration). First, we consider ice Ih, the most stable polymorph in the absence of a field. Its normal melting temperature, speed of crystal growth and nucleation rate (for a given supercooling) diminish as the intensity of the field goes up. Then, we study polarised cubic ice, or ice Icf, the most stable solid phase under a strong electric field. Its normal melting point goes up with the field and, for a given supercooling, under the studied field (0.3 V nm-1) ice Icf nucleates and grows at a similar rate as Ih with no field. The net effect of the field would then be that ice nucleates at warmer temperatures, but in the form of ice Icf. The main conclusion of this work is that reasonable electric fields (not strong enough to break water molecules apart) are not relevant in the context of homogeneous ice nucleation at 1 bar.
Collapse
Affiliation(s)
- Alberto Zaragoza
- Departamento de Estructura de la Materia, Fisica Termica y Electronica, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, 28040 Madrid, Spain. Departamento de Ingenieria Fisica, Division de Ciencias e Ingenierias, Universidad de Guanajuato, Loma del Bosque 103, Col. Lomas del Campestre, CP 37150 Leon, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Youssef M, Van Vliet KJ, Yildiz B. Polarizing Oxygen Vacancies in Insulating Metal Oxides under a High Electric Field. PHYSICAL REVIEW LETTERS 2017; 119:126002. [PMID: 29341632 DOI: 10.1103/physrevlett.119.126002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Indexed: 06/07/2023]
Abstract
We demonstrate a thermodynamic formulation to quantify defect formation energetics in an insulator under a high electric field. As a model system, we analyzed neutral oxygen vacancies (color centers) in alkaline-earth-metal binary oxides using density functional theory, Berry phase calculations, and maximally localized Wannier functions. The work of polarization lowers the field-dependent electric Gibbs energy of formation of this defect. This is attributed mainly to the ease of polarizing the two electrons trapped in the vacant site, and secondarily to the defect induced reduction in bond stiffness and softening of phonon modes. The formulation and analysis have implications for understanding the behavior of insulating oxides in electronic, magnetic, catalytic, and electrocaloric devices under a high electric field.
Collapse
Affiliation(s)
- Mostafa Youssef
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Krystyn J Van Vliet
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Bilge Yildiz
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
- Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
20
|
Acosta Gutiérrez S, Bodrenko I, Scorciapino MA, Ceccarelli M. Macroscopic electric field inside water-filled biological nanopores. Phys Chem Chem Phys 2017; 18:8855-64. [PMID: 26931352 DOI: 10.1039/c5cp07902k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Multi-drug resistance bacteria are a challenging problem of contemporary medicine. This is particularly critical for Gram-negative bacteria, where antibiotics are hindered by the outer membrane to reach internal targets. Here more polar antibiotics make use of nanometric water-filled channels to permeate inside. We present in this work a computational all-atom approach, using water as a probe, for the calculation of the macroscopic electric field inside water-filled channels. The method allows one to compare not only different systems but also the same system under different conditions, such as pH and ion concentration. This provides a detailed picture of electrostatics in biological nanopores shedding more light on how the charged residues of proteins determine the electric field inside, and also how medium can tune it. These details are central to unveil the filtering mechanism behind the permeation of small polar molecules through nanometric water-filled channels.
Collapse
Affiliation(s)
- Silvia Acosta Gutiérrez
- Department of Physics, University of Cagliari, Cittadella universitaria di Monserrato, S.P.8 - km 0.700, 09042 Monserrato (CA), Italy.
| | - Igor Bodrenko
- Department of Physics, University of Cagliari, Cittadella universitaria di Monserrato, S.P.8 - km 0.700, 09042 Monserrato (CA), Italy.
| | - Mariano Andrea Scorciapino
- Department of Biomedical Sciences, Biochemistry Unit, University of Cagliari, Cittadella universitaria di Monserrato, S.P.8 - km 0.700, 09042 Monserrato (CA), Italy
| | - Matteo Ceccarelli
- Department of Physics, University of Cagliari, Cittadella universitaria di Monserrato, S.P.8 - km 0.700, 09042 Monserrato (CA), Italy.
| |
Collapse
|
21
|
Desgranges C, Delhommelle J. Evaluation of the grand-canonical partition function using expanded Wang-Landau simulations. V. Impact of an electric field on the thermodynamic properties and ideality contours of water. J Chem Phys 2016; 145:184504. [DOI: 10.1063/1.4967336] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Caroline Desgranges
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, North Dakota 58202, USA
| | - Jerome Delhommelle
- Department of Chemistry, University of North Dakota, 151 Cornell Street Stop 9024, Grand Forks, North Dakota 58202, USA
| |
Collapse
|
22
|
A Theoretical Study of the Hydration of Methane, from the Aqueous Solution to the sI Hydrate-Liquid Water-Gas Coexistence. Int J Mol Sci 2016; 17:ijms17060378. [PMID: 27240339 PMCID: PMC4926321 DOI: 10.3390/ijms17060378] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 11/30/2022] Open
Abstract
Monte Carlo and molecular dynamics simulations were done with three recent water models TIP4P/2005 (Transferable Intermolecular Potential with 4 Points/2005), TIP4P/Ice (Transferable Intermolecular Potential with 4 Points/ Ice) and TIP4Q (Transferable Intermolecular Potential with 4 charges) combined with two models for methane: an all-atom one OPLS-AA (Optimal Parametrization for the Liquid State) and a united-atom one (UA); a correction for the C–O interaction was applied to the latter and used in a third set of simulations. The models were validated by comparison to experimental values of the free energy of hydration at 280, 300, 330 and 370 K, all under a pressure of 1 bar, and to the experimental radial distribution functions at 277, 283 and 291 K, under a pressure of 145 bar. Regardless of the combination rules used for σC,O, good agreement was found, except when the correction to the UA model was applied. Thus, further simulations of the sI hydrate were performed with the united-atom model to compare the thermal expansivity to the experiment. A final set of simulations was done with the UA methane model and the three water models, to study the sI hydrate-liquid water-gas coexistence at 80, 230 and 400 bar. The melting temperatures were compared to the experimental values. The results show the need to perform simulations with various different models to attain a reliable and robust molecular image of the systems of interest.
Collapse
|
23
|
Luis D, López-Lemus J, Maspoch ML, Franco-Urquiza E, Saint-Martin H. Methane hydrate: shifting the coexistence temperature to higher temperatures with an external electric field. MOLECULAR SIMULATION 2016. [DOI: 10.1080/08927022.2016.1139704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- D.P. Luis
- CONACYT Research Fellow-Centro de Ingeniería y Desarrollo Industrial, Querétaro, México
| | - J. López-Lemus
- Facultad de ciencias, Universidad Autónoma del Estado de México, Toluca, México
| | - M. Ll. Maspoch
- Centre Català del Plàstic, Universitat Politècnica de Catalunya, Terrassa, Spain
| | - E.A. Franco-Urquiza
- CONACYT Research Fellow-Centro de Ingeniería y Desarrollo Industrial, Querétaro, México
| | - H. Saint-Martin
- Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México,
| |
Collapse
|
24
|
English NJ, Waldron CJ. Perspectives on external electric fields in molecular simulation: progress, prospects and challenges. Phys Chem Chem Phys 2016; 17:12407-40. [PMID: 25903011 DOI: 10.1039/c5cp00629e] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this review, the application of a wide variety of external electric fields in molecular simulation shall be discussed, including time-varying and electromagnetic, as well as the utility and potential impact and prospects for exploitation of such simulations for real-world and industrial end use. In particular, non-equilibrium molecular dynamics will be discussed, as well as challenges in addressing adequate thermostatting and scaling field amplitudes to more experimentally relevant levels. Attention shall be devoted to recent progress and advances in external fields in ab initio molecular simulation and dynamics, as well as elusive challenges thereof (and, to some extent, for molecular dynamics from empirical potentials), such as timescales required to observe low-frequency and intensity field effects. The challenge of deterministic molecular dynamics in external fields in sampling phase space shall be discussed, along with prospects for application of fields in enhanced-sampling simulations. Finally, the application of external electric fields to a wide variety of aqueous, nanoscale and biological systems will be discussed, often motivated by the possibility of exploitation in real-world applications, which serve to underpin our molecular-level understanding of field effects in terms of microscopic mechanisms, and possibly with a view to control thereof.
Collapse
Affiliation(s)
- Niall J English
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | | |
Collapse
|
25
|
|
26
|
Sega M, Kantorovich SS, Holm C, Arnold A. Communication: Kinetic and pairing contributions in the dielectric spectra of electrolyte solutions. J Chem Phys 2015; 140:211101. [PMID: 24907981 DOI: 10.1063/1.4880237] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the late 1970s, Hubbard and Onsager predicted that adding salt to a polar solution would result in a reduced dielectric permittivity that arises from the unexpected tendency of solvent dipoles to align opposite to the applied field. Here we develop a novel non-equilibrium molecular dynamics simulation approach to determine this decrement accurately. Using a thermodynamic consistent all-atom force field we show that for an aqueous solution containing sodium chloride around 4.8 mol/l, this effect accounts for 12% of the total dielectric permittivity. The dielectric decrement can be strikingly different if a less accurate force field for the ions is used. Using the widespread GROMOS parameters, we observe in fact an increment of the dielectric permittivity rather than a decrement, caused by ion pairing and introduced by a too low dispersion force.
Collapse
Affiliation(s)
- M Sega
- Institut für Computergestützte Biologische Chemie, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
| | - S S Kantorovich
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna, Austria and Ural Federal University, Lenin av. 51, 620083 Ekaterinburg, Russia
| | - C Holm
- Institut für Computerphysik, Universität Stuttgart, Allmandring 3, 70569 Stuttgart, Germany
| | - A Arnold
- Institut für Computerphysik, Universität Stuttgart, Allmandring 3, 70569 Stuttgart, Germany
| |
Collapse
|
27
|
|
28
|
Driskill J, Vanzo D, Bratko D, Luzar A. Wetting transparency of graphene in water. J Chem Phys 2014; 141:18C517. [DOI: 10.1063/1.4895541] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
- Joshua Driskill
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA
| | - Davide Vanzo
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA
| | - Dusan Bratko
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA
| | - Alenka Luzar
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, USA
| |
Collapse
|
29
|
González MA, Menzl G, Aragones JL, Geiger P, Caupin F, Abascal JLF, Dellago C, Valeriani C. Detecting vapour bubbles in simulations of metastable water. J Chem Phys 2014; 141:18C511. [DOI: 10.1063/1.4896216] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Vanzo D, Bratko D, Luzar A. Dynamic Control of Nanopore Wetting in Water and Saline Solutions under an Electric Field. J Phys Chem B 2014; 119:8890-9. [DOI: 10.1021/jp506389p] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Davide Vanzo
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Dusan Bratko
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| | - Alenka Luzar
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284-2006, United States
| |
Collapse
|
31
|
Abstract
Water anomalies still defy explanation. In the supercooled liquid, many quantities, for example heat capacity and isothermal compressibility κT, show a large increase. The question arises if these quantities diverge, or if they go through a maximum. The answer is key to our understanding of water anomalies. However, it has remained elusive in experiments because crystallization always occurred before any extremum is reached. Here we report measurements of the sound velocity of water in a scarcely explored region of the phase diagram, where water is both supercooled and at negative pressure. We find several anomalies: maxima in the adiabatic compressibility and nonmonotonic density dependence of the sound velocity, in contrast with a standard extrapolation of the equation of state. This is reminiscent of the behavior of supercritical fluids. To support this interpretation, we have performed simulations with the 2005 revision of the transferable interaction potential with four points. Simulations and experiments are in near-quantitative agreement, suggesting the existence of a line of maxima in κT (LMκT). This LMκT could either be the thermodynamic consequence of the line of density maxima of water [Sastry S, Debenedetti PG, Sciortino F, Stanley HE (1996) Phys Rev E 53:6144-6154], or emanate from a critical point terminating a liquid-liquid transition [Sciortino F, Poole PH, Essmann U, Stanley HE (1997) Phys Rev E 55:727-737]. At positive pressure, the LMκT has escaped observation because it lies in the "no man's land" beyond the homogeneous crystallization line. We propose that the LMκT emerges from the no man's land at negative pressure.
Collapse
|
32
|
Kolafa J, Viererblová L. Static Dielectric Constant from Simulations Revisited: Fluctuations or External Field? J Chem Theory Comput 2014; 10:1468-76. [DOI: 10.1021/ct500025m] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Jiří Kolafa
- Department of Physical
Chemistry, Institute of Chemical Technology, Prague, Technická
5, 166 28 Praha 6, Czech Republic
| | - Linda Viererblová
- Department of Physical
Chemistry, Institute of Chemical Technology, Prague, Technická
5, 166 28 Praha 6, Czech Republic
| |
Collapse
|
33
|
Vanzo D, Bratko D, Luzar A. Nanoconfined water under electric field at constant chemical potential undergoes electrostriction. J Chem Phys 2014; 140:074710. [DOI: 10.1063/1.4865126] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
34
|
Khusnutdinoff RM. Dynamics of a network of hydrogen bonds upon water electrocrystallization. COLLOID JOURNAL 2013. [DOI: 10.1134/s1061933x13060069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
35
|
Danielewicz-Ferchmin I, Banachowicz E, Ferchmin A. Dielectric saturation in water as quantitative measure of formation of well-defined hydration shells of ions at various temperatures and pressures. Vapor–liquid equilibrium case. J Mol Liq 2013. [DOI: 10.1016/j.molliq.2013.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Conde MM, Gonzalez MA, Abascal JLF, Vega C. Determining the phase diagram of water from direct coexistence simulations: The phase diagram of the TIP4P/2005 model revisited. J Chem Phys 2013; 139:154505. [DOI: 10.1063/1.4824627] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
37
|
Suzuki Y, Mishima O. Sudden switchover between the polyamorphic phase separation and the glass-to-liquid transition in glassy LiCl aqueous solutions. J Chem Phys 2013; 138:084507. [PMID: 23464160 DOI: 10.1063/1.4792498] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Lithium chloride aqueous solutions (LiClaq solutions) below 10 mol.% are vitrified by cooling from room temperature to 77 K at 0.3 GPa. We examine the solvent state of the glassy sample and its transformation by heating at 1 atm using low-temperature differential scanning calorimetry and Raman spectroscopy. This experimental study suggests strongly that the solvent state of the glassy LiClaq solution closely relates to the state of high-density amorphous ice. Moreover, we reconfirm that the separation into the low-density amorphous ice and the glassy highly concentrated LiClaq solution occurs in the glassy dilute LiClaq solution at ∼130 K, not the glass-to-liquid transition which is commonly observed in the glassy LiClaq solution above ∼10 mol.%. In order to interpret the sudden switchover between the glass-to-liquid transition and the phase separation at ∼10 mol.%, we propose a state diagram of LiClaq solution which connects with a polyamorphic state diagram of pure water and discuss a possibility that the electric field induces a polyamorphic transition of water.
Collapse
Affiliation(s)
- Yoshiharu Suzuki
- National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan.
| | | |
Collapse
|
38
|
Qiu H, Guo W. Electromelting of confined monolayer ice. PHYSICAL REVIEW LETTERS 2013; 110:195701. [PMID: 23705718 DOI: 10.1103/physrevlett.110.195701] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 12/18/2012] [Indexed: 06/02/2023]
Abstract
In sharp contrast to the prevailing view that electric fields promote water freezing, here we show by molecular dynamics simulations that monolayer ice confined between two parallel plates can melt into liquid water under a perpendicularly applied electric field. The melting temperature of the monolayer ice decreases with the increasing strength of the external field due to the field-induced disruption of the water-wall interaction induced well-ordered network of the hydrogen bond. This electromelting process should add an important new ingredient to the physics of water.
Collapse
Affiliation(s)
- Hu Qiu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Institute of Nano Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | | |
Collapse
|
39
|
Shevchuk R, Prada-Gracia D, Rao F. Water Structure-Forming Capabilities Are Temperature Shifted for Different Models. J Phys Chem B 2012; 116:7538-43. [DOI: 10.1021/jp303583f] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Roman Shevchuk
- Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
| | - Diego Prada-Gracia
- Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
| | - Francesco Rao
- Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
40
|
Saitta AM, Saija F, Giaquinta PV. Ab initio molecular dynamics study of dissociation of water under an electric field. PHYSICAL REVIEW LETTERS 2012; 108:207801. [PMID: 23003187 DOI: 10.1103/physrevlett.108.207801] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Indexed: 05/24/2023]
Abstract
The behavior of liquid water under an electric field is a crucial phenomenon in science and engineering. However, its detailed description at a microscopic level is difficult to achieve experimentally. Here we report on the first ab initio molecular-dynamics study on water under an electric field. We observe that the hydrogen-bond length and the molecular orientation are significantly modified at low-to-moderate field intensities. Fields beyond a threshold of about 0.35 V/Å are able to dissociate molecules and sustain an ionic current via a series of correlated proton jumps. Upon applying even more intense fields (∼1.0 V/Å), a 15%-20% fraction of molecules are instantaneously dissociated and the resulting ionic flow yields a conductance of about 7.8 Ω-1 cm-1, in good agreement with experimental values. This result paves the way to quantum-accurate microscopic studies of the effect of electric fields on aqueous solutions and, thus, to massive applications of ab initio molecular dynamics in neurobiology, electrochemistry, and hydrogen economy.
Collapse
Affiliation(s)
- A Marco Saitta
- IMPMC, CNRS-UMR 7590, Université P & M Curie, 75252 Paris, France.
| | | | | |
Collapse
|
41
|
McBride C, Noya EG, Aragones JL, Conde MM, Vega C. The phase diagram of water from quantum simulations. Phys Chem Chem Phys 2012; 14:10140-6. [DOI: 10.1039/c2cp40962c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|