1
|
Xue K, Guo RT, Wan F, Shaisultanov R, Chen YY, Xu ZF, Ren XG, Hatsagortsyan KZ, Keitel CH, Li JX. Generation of arbitrarily polarized GeV lepton beams via nonlinear Breit-Wheeler process. FUNDAMENTAL RESEARCH 2021. [DOI: 10.1016/j.fmre.2021.11.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
2
|
Gong Z, Shou Y, Tang Y, Hu R, Yu J, Ma W, Lin C, Yan X. Proton sheet crossing in thin relativistic plasma irradiated by a femtosecond petawatt laser pulse. Phys Rev E 2020; 102:013207. [PMID: 32795002 DOI: 10.1103/physreve.102.013207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/09/2020] [Indexed: 11/07/2022]
Abstract
Leveraging on analyses of Hamiltonian dynamics to examine the ion motion, we explicitly demonstrate that the proton sheet crossing and plateau-type energy spectrum are two intrinsic features of the effectively accelerated proton beams driven by a drift quasistatic longitudinal electric field. Via two-dimensional particle-in-cell simulations, we show the emergence of proton sheet crossing in a relativistically transparent plasma foil irradiated by a linearly polarized short pulse with the power of one petawatt. Instead of successively blowing the whole foil forward, the incident laser pulse readily penetrates through the plasma bulk, where the proton sheet crossing takes place and the merged self-generated longitudinal electric field traps and reflects the protons to yield a group of protons with plateau-type energy spectrum.
Collapse
Affiliation(s)
- Zheng Gong
- State Key Laboratory of Nuclear Physics and Technology, KLHEDP, and CAPT, School of Physics, Peking University, Beijing 100871, China
| | - Yinren Shou
- State Key Laboratory of Nuclear Physics and Technology, KLHEDP, and CAPT, School of Physics, Peking University, Beijing 100871, China
| | - Yuhui Tang
- State Key Laboratory of Nuclear Physics and Technology, KLHEDP, and CAPT, School of Physics, Peking University, Beijing 100871, China
| | - Ronghao Hu
- College of Physics, Sichuan University, Chengdu 610065, China
| | - Jinqing Yu
- School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Wenjun Ma
- State Key Laboratory of Nuclear Physics and Technology, KLHEDP, and CAPT, School of Physics, Peking University, Beijing 100871, China
| | - Chen Lin
- State Key Laboratory of Nuclear Physics and Technology, KLHEDP, and CAPT, School of Physics, Peking University, Beijing 100871, China
| | - Xueqing Yan
- State Key Laboratory of Nuclear Physics and Technology, KLHEDP, and CAPT, School of Physics, Peking University, Beijing 100871, China.,Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
3
|
Mackenroth F, Gonoskov A, Marklund M. Chirped-Standing-Wave Acceleration of Ions with Intense Lasers. PHYSICAL REVIEW LETTERS 2016; 117:104801. [PMID: 27636480 DOI: 10.1103/physrevlett.117.104801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 06/06/2023]
Abstract
We propose a novel mechanism for ion acceleration based on the guided motion of electrons from a thin layer. The electron motion is locked to the moving nodes of a standing wave formed by a chirped laser pulse reflected from a mirror behind the layer. This provides a stable longitudinal field of charge separation, thus giving rise to chirped-standing-wave acceleration of the residual ions of the layer. We demonstrate, both analytically and numerically, that stable proton beams, with energy spectra peaked around 100 MeV, are feasible for pulse energies at the level of 10 J. Moreover, a scaling law for higher laser intensities and layer densities is presented, indicating stable GeV-level energy gains of dense ion bunches, for soon-to-be-available laser intensities.
Collapse
Affiliation(s)
- F Mackenroth
- Department of Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - A Gonoskov
- Department of Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950, Russia
- Lobachevsky State University of Nizhni Novgorod, Nizhny Novgorod 603950, Russia
| | - M Marklund
- Department of Physics, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| |
Collapse
|
4
|
Chen ZY, Pukhov A. Polarization-tunable terahertz radiation in the high-field regime. OPTICS LETTERS 2016; 41:2660-2663. [PMID: 27244439 DOI: 10.1364/ol.41.002660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Polarization control of terahertz (THz) pulses in the high-field regime is a challenging subject. Here we propose and numerically demonstrate an all-optical scheme to generate a polarization-tunable high-field THz source based on relativistic laser plasma interactions. By adjusting the polarization state of the driving laser, collective oscillation of the plasmas can be steered. Phase difference between the laser field components is inherited in the plasma dynamics, as well as in the resulting THz generation process. Single-cycle extremely intense THz pulses with field strength ∼ GV/cm can be generated. The THz polarization state can be tuned from linear through elliptical to circular by changing the polarization state of the driving laser.
Collapse
|
6
|
Korzhimanov AV, Efimenko ES, Golubev SV, Kim AV. Generating high-energy highly charged ion beams from petawatt-class laser interactions with compound targets. PHYSICAL REVIEW LETTERS 2012; 109:245008. [PMID: 23368338 DOI: 10.1103/physrevlett.109.245008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Indexed: 06/01/2023]
Abstract
A new method of generation of high-energy highly charged ion beams is proposed. The method is based on the interaction of petawatt circularly polarized laser pulses with high-Z compound targets consisting of two species of different charge-to-mass ratio. It is shown that highly charged ions produced by field ionization can be accelerated up to tens of MeV/u with ion (actually with Z ≤ 25) beam parameters like density and total charge inaccessible in conventional accelerators. A possibility of further ionization of the accelerated ion bunches in foil is also discussed.
Collapse
Affiliation(s)
- A V Korzhimanov
- Institute of Applied Physics, Russian Academy of Sciences, 603950 Nizhny Novgorod, Russia
| | | | | | | |
Collapse
|