1
|
Jiang H, Tao X, Kammler M, Ding F, Wodtke AM, Kandratsenka A, Miller TF, Bünermann O. Small Nuclear Quantum Effects in Scattering of H and D from Graphene. J Phys Chem Lett 2021; 12:1991-1996. [PMID: 33596383 DOI: 10.1021/acs.jpclett.0c02933] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We study nuclear quantum effects in H/D sticking to graphene, comparing scattering experiments at near-zero coverage with classical, quantized, and transition-state calculations. The experiment shows H/D sticking probabilities that are indistinguishable from one another and markedly smaller than those expected from a consideration of zero-point energy shifts of the chemisorption transition state. Inclusion of dynamical effects and vibrational anharmonicity via ring-polymer molecular dynamics (RPMD) yields results that are in good agreement with the experimental results. RPMD also reveals that nuclear quantum effects, while modest, arise primarily from carbon and not from H/D motion, confirming the importance of a C atom rehybridization mechanism associated with H/D sticking on graphene.
Collapse
Affiliation(s)
- Hongyan Jiang
- Department of Dynamics at Surfaces, Max-Planck-Institute for Biophysical Chemistry, Am Faßerg 11, 37077 Göttingen, Germany
| | - Xuecheng Tao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Marvin Kammler
- Department of Dynamics at Surfaces, Max-Planck-Institute for Biophysical Chemistry, Am Faßerg 11, 37077 Göttingen, Germany
| | - Feizhi Ding
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Alec M Wodtke
- Department of Dynamics at Surfaces, Max-Planck-Institute for Biophysical Chemistry, Am Faßerg 11, 37077 Göttingen, Germany
- Institut für Physikalische Chemie, Georg-Georg-August-Universität Göttingen, Tammanstraße 6, 37077 Göttingen, Germany
- International Center for Advanced Studies of Energy Conversion, Georg-August University of Göttingen, Tammanstraße 6, 37077 Göttingen, Germany
| | - Alexander Kandratsenka
- Department of Dynamics at Surfaces, Max-Planck-Institute for Biophysical Chemistry, Am Faßerg 11, 37077 Göttingen, Germany
| | - Thomas F Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Oliver Bünermann
- Department of Dynamics at Surfaces, Max-Planck-Institute for Biophysical Chemistry, Am Faßerg 11, 37077 Göttingen, Germany
- Institut für Physikalische Chemie, Georg-Georg-August-Universität Göttingen, Tammanstraße 6, 37077 Göttingen, Germany
- International Center for Advanced Studies of Energy Conversion, Georg-August University of Göttingen, Tammanstraße 6, 37077 Göttingen, Germany
| |
Collapse
|
2
|
Bonfanti M, Achilli S, Martinazzo R. Sticking of atomic hydrogen on graphene. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:283002. [PMID: 29845971 DOI: 10.1088/1361-648x/aac89f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recent years have witnessed an ever growing interest in the interactions between hydrogen atoms and a graphene sheet. Largely motivated by the possibility of modulating the electric, optical and magnetic properties of graphene, a huge number of studies have appeared recently that added to and enlarged earlier investigations on graphite and other carbon materials. In this review we give a glimpse of the many facets of this adsorption process, as they emerged from these studies. The focus is on those issues that have been addressed in detail, under carefully controlled conditions, with an emphasis on the interplay between the adatom structures, their formation dynamics and the electric, magnetic and chemical properties of the carbon sheet.
Collapse
Affiliation(s)
- Matteo Bonfanti
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt, Germany
| | | | | |
Collapse
|
3
|
Tuček J, Błoński P, Ugolotti J, Swain AK, Enoki T, Zbořil R. Emerging chemical strategies for imprinting magnetism in graphene and related 2D materials for spintronic and biomedical applications. Chem Soc Rev 2018; 47:3899-3990. [PMID: 29578212 DOI: 10.1039/c7cs00288b] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Graphene, a single two-dimensional sheet of carbon atoms with an arrangement mimicking the honeycomb hexagonal architecture, has captured immense interest of the scientific community since its isolation in 2004. Besides its extraordinarily high electrical conductivity and surface area, graphene shows a long spin lifetime and limited hyperfine interactions, which favors its potential exploitation in spintronic and biomedical applications, provided it can be made magnetic. However, pristine graphene is diamagnetic in nature due to solely sp2 hybridization. Thus, various attempts have been proposed to imprint magnetic features into graphene. The present review focuses on a systematic classification and physicochemical description of approaches leading to equip graphene with magnetic properties. These include introduction of point and line defects into graphene lattices, spatial confinement and edge engineering, doping of graphene lattice with foreign atoms, and sp3 functionalization. Each magnetism-imprinting strategy is discussed in detail including identification of roles of various internal and external parameters in the induced magnetic regimes, with assessment of their robustness. Moreover, emergence of magnetism in graphene analogues and related 2D materials such as transition metal dichalcogenides, metal halides, metal dinitrides, MXenes, hexagonal boron nitride, and other organic compounds is also reviewed. Since the magnetic features of graphene can be readily masked by the presence of magnetic residues from synthesis itself or sample handling, the issue of magnetic impurities and correct data interpretations is also addressed. Finally, current problems and challenges in magnetism of graphene and related 2D materials and future potential applications are also highlighted.
Collapse
Affiliation(s)
- Jiří Tuček
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| | | | | | | | | | | |
Collapse
|
4
|
Pasquini M, Bonfanti M, Martinazzo R. Full quantum dynamical investigation of the Eley-Rideal reaction forming H 2 on a movable graphitic substrate at T = 0 K. Phys Chem Chem Phys 2018; 20:977-988. [PMID: 29231946 DOI: 10.1039/c7cp07080b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The dynamics of the Eley-Rideal abstraction reaction of hydrogen atoms on a movable graphitic surface is investigated for the first time in a numerically exact fully quantum setting. A system-bath strategy was applied where the two recombining H atoms and a substrate C atom form a relevant subsystem, while the rest of the lattice takes the form of an independent oscillator bath. High-dimensional wavepacket simulations were performed in the collision energy range 0.2-1.0 eV with the help of the multi-layer multi-configuration time-dependent Hartree method, focusing on the collinear reaction on a zero-temperature surface. Results show that the dynamics is close to a sudden limit in which the reaction is much faster than the substrate motion. Unpuckering of the surface is fast (some tens of fs) but starts only after the formation of H2 is completed, thereby determining a considerable substrate heating (∼0.8 eV per reactive event). Energy partitioning in the product molecule favors translational over vibrational energy, and H2 molecules are vibrationally hot (∼1.5 eV) though to a lesser extent than previously predicted.
Collapse
Affiliation(s)
- Marta Pasquini
- Università degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, 20133 Milano, Italy.
| | | | | |
Collapse
|
5
|
Wakelam V, Bron E, Cazaux S, Dulieu F, Gry C, Guillard P, Habart E, Hornekær L, Morisset S, Nyman G, Pirronello V, Price SD, Valdivia V, Vidali G, Watanabe N. H 2 formation on interstellar dust grains: The viewpoints of theory, experiments, models and observations. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.molap.2017.11.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Pasquini M, Bonfanti M, Martinazzo R. Quantum dynamical investigation of the isotope effect in H2 formation on graphite at cold collision energies. Phys Chem Chem Phys 2016; 18:6607-17. [PMID: 26868899 DOI: 10.1039/c5cp07272g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Eley-Rideal abstraction of hydrogen atoms on graphitic surfaces at cold collision energies was investigated using a time-dependent wave packet method within the rigid-flat surface approximation, with a focus on hydrogen-deuterium isotopic substitutions. It is found that the marked isotope effect of collinear collisions disappears when the full dimensionality of the problem is taken into account, thereby suggesting that abstraction is less direct than commonly believed and proceeds through glancing rather than head-on collisions. In contrast, a clear isotope effect is observed for "hot-atom" formation, which appears to be strongly favored for heavy projectiles because of their higher density of physisorbed states. Overall, the dynamics is essentially classical and reasonably well described by quasi-classical trajectory methods at all but the lowest energies (≲10 meV). A comparison of the results obtained in the (substrate) adiabatic and diabatic limits suggests that the reaction is only marginally affected by the lattice dynamics, but highlights the importance of including energy dissipation processes in order to accurately describe the internal excitation of the product molecules.
Collapse
Affiliation(s)
- Marta Pasquini
- Universitá degli Studi di Milano, Dipartimento di Chimica, via Golgi 19, 20133 Milano, Italy.
| | | | | |
Collapse
|
7
|
Pykal M, Jurečka P, Karlický F, Otyepka M. Modelling of graphene functionalization. Phys Chem Chem Phys 2016; 18:6351-72. [DOI: 10.1039/c5cp03599f] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This perspective describes the available theoretical methods and models for simulating graphene functionalization based on quantum and classical mechanics.
Collapse
Affiliation(s)
- Martin Pykal
- Regional Centre of Advanced Technologies and Materials
- Department of Physical Chemistry
- Faculty of Science
- Palacký University Olomouc
- 771 46 Olomouc
| | - Petr Jurečka
- Regional Centre of Advanced Technologies and Materials
- Department of Physical Chemistry
- Faculty of Science
- Palacký University Olomouc
- 771 46 Olomouc
| | - František Karlický
- Regional Centre of Advanced Technologies and Materials
- Department of Physical Chemistry
- Faculty of Science
- Palacký University Olomouc
- 771 46 Olomouc
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials
- Department of Physical Chemistry
- Faculty of Science
- Palacký University Olomouc
- 771 46 Olomouc
| |
Collapse
|
8
|
Bonfanti M, Jackson B, Hughes KH, Burghardt I, Martinazzo R. Quantum dynamics of hydrogen atoms on graphene. I. System-bath modeling. J Chem Phys 2015; 143:124703. [DOI: 10.1063/1.4931116] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Matteo Bonfanti
- Dipartimento di Chimica, Università degli Studi di Milano, v. Golgi 19, 20133 Milano, Italy
| | - Bret Jackson
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Keith H. Hughes
- School of Chemistry, Bangor University, Bangor, Gwynedd LL57 2UW, United Kingdom
| | - Irene Burghardt
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
| | - Rocco Martinazzo
- Dipartimento di Chimica, Università degli Studi di Milano, v. Golgi 19, 20133 Milano, Italy
- Istituto di Scienze e Tecnologie Molecolari, Consiglio Nazionale delle Richerche, v. Golgi 19, 20133 Milano, Italy
| |
Collapse
|
9
|
Lepetit B, Jackson B. Lepetit and Jackson reply:. PHYSICAL REVIEW LETTERS 2014; 113:069602. [PMID: 25148358 DOI: 10.1103/physrevlett.113.069602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Indexed: 06/03/2023]
Affiliation(s)
- B Lepetit
- Université de Toulouse, UPS, Laboratoire Collisions Agrégats Réactivité, IRSAMC, F-31062 Toulouse, France and CNRS, UMR 5589, F-31062 Toulouse, France
| | - B Jackson
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
10
|
Clougherty DP. Comment on "Sticking of hydrogen on supported and suspended graphene at low temperature". PHYSICAL REVIEW LETTERS 2014; 113:069601. [PMID: 25148357 DOI: 10.1103/physrevlett.113.069601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Indexed: 06/03/2023]
Affiliation(s)
- D P Clougherty
- Department of Physics, University of Vermont, Burlington, Vermont 05405-0125, USA
| |
Collapse
|
11
|
Karlický F, Lepetit B, Lemoine D. Quantum modelling of hydrogen chemisorption on graphene and graphite. J Chem Phys 2014; 140:124702. [DOI: 10.1063/1.4867995] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
12
|
|