1
|
Oka M, Birn J, Egedal J, Guo F, Ergun RE, Turner DL, Khotyaintsev Y, Hwang KJ, Cohen IJ, Drake JF. Particle Acceleration by Magnetic Reconnection in Geospace. SPACE SCIENCE REVIEWS 2023; 219:75. [PMID: 37969745 PMCID: PMC10630319 DOI: 10.1007/s11214-023-01011-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/05/2023] [Indexed: 11/17/2023]
Abstract
Particles are accelerated to very high, non-thermal energies during explosive energy-release phenomena in space, solar, and astrophysical plasma environments. While it has been established that magnetic reconnection plays an important role in the dynamics of Earth's magnetosphere, it remains unclear how magnetic reconnection can further explain particle acceleration to non-thermal energies. Here we review recent progress in our understanding of particle acceleration by magnetic reconnection in Earth's magnetosphere. With improved resolutions, recent spacecraft missions have enabled detailed studies of particle acceleration at various structures such as the diffusion region, separatrix, jets, magnetic islands (flux ropes), and dipolarization front. With the guiding-center approximation of particle motion, many studies have discussed the relative importance of the parallel electric field as well as the Fermi and betatron effects. However, in order to fully understand the particle acceleration mechanism and further compare with particle acceleration in solar and astrophysical plasma environments, there is a need for further investigation of, for example, energy partition and the precise role of turbulence.
Collapse
Affiliation(s)
- Mitsuo Oka
- Space Sciences Laboratory, University of California Berkeley, 7 Gauss Way, Berkeley, 94720 CA USA
| | - Joachim Birn
- Center for Space Plasma Physics, Space Science Institute, 4765 Walnut Street, Boulder, 80301 CO USA
- Los Alamos National Laboratory, Los Alamos, 87545 NM USA
| | - Jan Egedal
- Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, 53706 WI USA
| | - Fan Guo
- Los Alamos National Laboratory, Los Alamos, 87545 NM USA
| | - Robert E. Ergun
- Laboratory for Atmospheric and Space Physics, University of Colorado, 1234 Innovation Drive, Boulder, 80303 CO USA
- Department of Astrophysical and Planetary Sciences, University of Colorado, 2000 Colorado Avenue, Boulder, 80309 CO USA
| | - Drew L. Turner
- The Johns Hopkins Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, 20723 MD USA
| | | | - Kyoung-Joo Hwang
- Southwest Research Institute, 6220 Culebra Road, San Antonio, 78238 TX USA
| | - Ian J. Cohen
- The Johns Hopkins Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, 20723 MD USA
| | - James F. Drake
- Department of Physics, The Institute for Physical Science and Technology and The Joint Space Science Institute, University of Maryland, College Park, 20742 MD USA
| |
Collapse
|
2
|
Yoon YD, Wendel DE, Yun GS. Equilibrium selection via current sheet relaxation and guide field amplification. Nat Commun 2023; 14:139. [PMID: 36627282 PMCID: PMC9832116 DOI: 10.1038/s41467-023-35821-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
Although there is a continuous spectrum of current sheet equilibria, how a particular equilibrium is selected by a given system remains a mystery. Yet, only a limited number of equilibrium solutions are used for analyses of magnetized plasma phenomena. Here we present the exact process of equilibrium selection, by analyzing the relaxation process of a disequilibrated current sheet under a finite guide field. It is shown via phase-space analyses and particle-in-cell simulations that the current sheet relaxes in such a way that the guide field is locally amplified, yielding a mixed equilibrium from the spectrum. Comparisons to spacecraft observations and solar wind current sheet statistics demonstrate that such mixed equilibria are ubiquitous and exist as underlying local structures in various physical environments.
Collapse
Affiliation(s)
- Young Dae Yoon
- grid.482264.e0000 0000 8644 9730Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk 37673 Republic of Korea ,grid.49100.3c0000 0001 0742 4007Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Deirdre E. Wendel
- grid.133275.10000 0004 0637 6666NASA Goddard Space Flight Center, Greenbelt, MD 20771 USA
| | - Gunsu S. Yun
- grid.49100.3c0000 0001 0742 4007Department of Physics and Division of Advanced Nuclear Engineering, POSTECH, Pohang, Gyeongbuk 37673 Republic of Korea ,grid.495999.1Center for Attosecond Science, Max Planck POSTECH/Korea Research Initiative, Pohang, Gyeongbuk 37673 Republic of Korea
| |
Collapse
|
3
|
Kaptanoglu AA, Morgan KD, Hansen CJ, Brunton SL. Physics-constrained, low-dimensional models for magnetohydrodynamics: First-principles and data-driven approaches. Phys Rev E 2021; 104:015206. [PMID: 34412353 DOI: 10.1103/physreve.104.015206] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 06/10/2021] [Indexed: 11/07/2022]
Abstract
Plasmas are highly nonlinear and multiscale, motivating a hierarchy of models to understand and describe their behavior. However, there is a scarcity of plasma models of lower fidelity than magnetohydrodynamics (MHD), although these reduced models hold promise for understanding key physical mechanisms, efficient computation, and real-time optimization and control. Galerkin models, obtained by projection of the MHD equations onto a truncated modal basis, and data-driven models, obtained by modern machine learning and system identification, can furnish this gap in the lower levels of the model hierarchy. This work develops a reduced-order modeling framework for compressible plasmas, leveraging decades of progress in projection-based and data-driven modeling of fluids. We begin by formalizing projection-based model reduction for nonlinear MHD systems. To avoid separate modal decompositions for the magnetic, velocity, and pressure fields, we introduce an energy inner product to synthesize all of the fields into a dimensionally consistent, reduced-order basis. Next, we obtain an analytic model by Galerkin projection of the Hall-MHD equations onto these modes. We illustrate how global conservation laws constrain the model parameters, revealing symmetries that can be enforced in data-driven models, directly connecting these models to the underlying physics. We demonstrate the effectiveness of this approach on data from high-fidelity numerical simulations of a three-dimensional spheromak experiment. This manuscript builds a bridge to the extensive Galerkin literature in fluid mechanics and facilitates future principled development of projection-based and data-driven models for plasmas.
Collapse
Affiliation(s)
- Alan A Kaptanoglu
- Department of Physics, University of Washington, Seattle, Washington 98195, USA
| | - Kyle D Morgan
- Department of Aeronautics and Astronautics, University of Washington, Seattle, Washington 98195, USA
| | - Chris J Hansen
- Department of Aeronautics and Astronautics, University of Washington, Seattle, Washington 98195, USA and Department of Applied Physics & Applied Mathematics, Columbia University, New York, New York 10027, USA
| | - Steven L Brunton
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
5
|
Le A, Egedal J, Ohia O, Daughton W, Karimabadi H, Lukin VS. Regimes of the electron diffusion region in magnetic reconnection. PHYSICAL REVIEW LETTERS 2013; 110:135004. [PMID: 23581331 DOI: 10.1103/physrevlett.110.135004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Indexed: 06/02/2023]
Abstract
The electron diffusion region during magnetic reconnection lies in different regimes depending on the pressure anisotropy, which is regulated by the properties of thermal electron orbits. In kinetic simulations at the weakest guide fields, pitch angle mixing in velocity space causes the outflow electron pressure to become nearly isotropic. Above a threshold guide field that depends on a range of parameters, including the normalized electron pressure and the ion-to-electron mass ratio, electron pressure anisotropy develops in the exhaust and supports extended current layers. This new regime with electron current sheets extending to the system size is also reproduced by fluid simulations with an anisotropic closure for the electron pressure. It offers an explanation for recent spacecraft observations.
Collapse
Affiliation(s)
- A Le
- Department of Physics, Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | |
Collapse
|