1
|
Roy U, Bongiorno A. Nonlinear Elasticity of Amorphous Silicon and Silica from Density Functional Theory. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:21220-21227. [PMID: 39691901 PMCID: PMC11648081 DOI: 10.1021/acs.jpcc.4c06550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 12/19/2024]
Abstract
Density functional theory calculations and a finite deformation method are used to calculate second- and, most notably, third-order elastic constants of amorphous silicon and amorphous silicon dioxide, as represented by model structures generated via melt-quench force-field molecular dynamics simulations. Linear and nonlinear elastic constants are used to deduce macroscopic elastic moduli, such as the bulk and shear moduli, their pressure derivatives, and the elastic Grüneisen parameter. Our calculations show that the elastic properties of amorphous silicon reach the isotropic elastic limit within the nanometer length scale, attaining characteristics, both linear and nonlinear, comparable to those of crystalline silicon. In contrast, the nonlinear elastic properties of silica retain an anisotropic character over the nanometer length scales, yielding nonetheless the expected pressure-induced softening of the elastic moduli. This atypical elastic behavior is correlated to the occurrence of long-wavelength acoustic modes with negative Grüneisen parameters.
Collapse
Affiliation(s)
- Umesh
C. Roy
- Department
of Chemistry, College of Staten Island, Staten Island, New York 10314, United States
| | - Angelo Bongiorno
- Department
of Chemistry, College of Staten Island, Staten Island, New York 10314, United States
- The
Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
2
|
Ma S, Hester BR, Lloyd AJ, dos Santos AM, Molaison JJ, Wilkinson AP. Synthesis and Properties of the Helium Clathrate and Defect Perovskite [He 2-x □ x ][CaNb]F 6. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:11006-11013. [PMID: 38983596 PMCID: PMC11229063 DOI: 10.1021/acs.jpcc.4c02174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024]
Abstract
The defect double perovskite [He2-x □ x ][CaNb]F6, with helium on its A-site, can be prepared by the insertion of helium into ReO3-type CaNbF6 at high pressure. Upon cooling from 300 to 100 K under 0.4 GPa helium, ∼60% of the A-sites become occupied. Helium uptake was quantified by both neutron powder diffraction and gas insertion and release measurements. After the conversion of gauge pressure to fugacity, the uptake of helium by CaNbF6 can be described by a Langmuir isotherm. The enthalpy of absorption for helium in [He2-x □ x ][CaNb]F6 is estimated to be ∼+3(1) kJ mol-1, implying that its formation is entropically favored. Helium is able to diffuse through the material on a time scale of minutes at temperatures down to ∼150 K but is trapped at 100 K and below. The insertion of helium into CaNbF6 reduces the magnitude of its negative thermal expansion, increases the bulk modulus, and modifies its phase behavior. On compressing pristine CaNbF6, at 50 and 100 K, a cubic (Fm3̅m) to rhombohedral (R3̅) phase transition was observed at <0.20 GPa. However, a helium-containing sample remained cubic at 0.4 GPa and 50 K. CaNbF6, compressed in helium at room temperature, remained cubic to >3.7 GPa, the limit of our X-ray diffraction measurements, in contrast to prior reports that upon compression in a nonpenetrating medium, a phase transition is detected at ∼0.4 GPa.
Collapse
Affiliation(s)
- Shangye Ma
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
| | - Brett R. Hester
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
| | - Anthony J. Lloyd
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
| | - Antonio M. dos Santos
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jamie J. Molaison
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Angus P. Wilkinson
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332-0400, United States
- School
of Materials Science and Engineering, Georgia
Institute of Technology, Atlanta, Georgia 30332-0245, United States
| |
Collapse
|
3
|
Mijit E, Elias F S Rodrigues J, Tchoudinov G, Paparoni F, Shinmei T, Irifune T, Mathon O, Dorothea Rosa A, Di Cicco A. EXAFS investigations on the pressure induced local structural changes of GeSe 2glass under different hydrostatic conditions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:264001. [PMID: 36990102 DOI: 10.1088/1361-648x/acc8b1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Pressure-induced transformations in glassy GeSe2have been studied using the x-ray absorption spectroscopy. Experiments have been carried out at the scanning-energy beamline BM23 (European Synchrotron Radiation Facility) providing a micrometric x-ray focal spot up to pressures of about 45 GPa in a diamond anvil cell. Both Se and Ge K-edge experiments were performed under different hydrostatic conditions identifying the metallization onsets by accurate determinations of the edge shifts. The semiconductor-metal transition was observed to be completed around 20 GPa when neon was used as a pressure transmitting medium (PTM), while this transition was slightly shifted to lower pressures when no PTM was used. Accurate double-edge extended x-ray absorption fine structure (EXAFS) refinements were carried out using advanced data-analysis methods. EXAFS data-analysis confirmed the trend shown by the edge shifts for this disordered material, showing that the transition from tetrahedral to octahedral coordination for Ge sites is not fully achieved at 45 GPa. Results of present high pressure EXAFS experiments have shown the absence of significant neon incorporation into the glass within the pressure range up to 45 GPa.
Collapse
Affiliation(s)
- Emin Mijit
- Physics Division, School of Science and Technology, Università di Camerino, Via Madonna delle Carceri 9, I-62032 Camerino, (MC), Italy
| | - João Elias F S Rodrigues
- European Synchrotron Radiation Facility, 71, Avenue des Martyrs, CS 40220, 38043 Grenoble, Cedex 9, France
| | - Georghii Tchoudinov
- Physics Division, School of Science and Technology, Università di Camerino, Via Madonna delle Carceri 9, I-62032 Camerino, (MC), Italy
| | - Francesco Paparoni
- Physics Division, School of Science and Technology, Università di Camerino, Via Madonna delle Carceri 9, I-62032 Camerino, (MC), Italy
| | - Toru Shinmei
- Geodynamics Research Center, Ehime University, Matsuyama 790-8577, Japan
| | - Tetsuo Irifune
- Geodynamics Research Center, Ehime University, Matsuyama 790-8577, Japan
| | - Olivier Mathon
- European Synchrotron Radiation Facility, 71, Avenue des Martyrs, CS 40220, 38043 Grenoble, Cedex 9, France
| | - Angelika Dorothea Rosa
- European Synchrotron Radiation Facility, 71, Avenue des Martyrs, CS 40220, 38043 Grenoble, Cedex 9, France
| | - Andrea Di Cicco
- Physics Division, School of Science and Technology, Università di Camerino, Via Madonna delle Carceri 9, I-62032 Camerino, (MC), Italy
| |
Collapse
|
4
|
Micoulaut M, Laurent O. Noble gas in densified liquid and amorphous silica and thermodynamic conditions for the emergence of bubbles. J Chem Phys 2021; 155:054504. [PMID: 34364356 DOI: 10.1063/5.0056362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Different noble gases (He, Ne, and Ar) containing densified silica liquids and glasses are investigated from molecular dynamics simulations at different system densities using a dedicated force field. The results for pure silica are first compared to reference potentials prior to an investigation of the thermodynamic diagram, the diffusivity, and the structure under different (T, P) conditions. It is found that the equation of state and the diffusivity are weakly sensitive to the nature of the incorporated noble gas, leading to a similar trend with density for all systems. The network structure is weakly altered by the presence of the gas, and pressure induced structural changes are those usually found for amorphous and liquid silica, i.e., Si coordination increase, tetrahedral to octahedral conversion of the base geometry, and collapse of large rings under pressure. Ne- and Ar-based systems display an increased structuration, however, as preferential distances appear in gas-gas correlations at large densities in both the liquid and amorphous states. Finally, we focus on the conditions of heterogeneity that are driven by the formation of noble gas bubbles, and these appear for a threshold density ρc that is observed for all systems.
Collapse
Affiliation(s)
- M Micoulaut
- Sorbonne Université, Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600, 4 Place Jussieu, 75252 Paris Cedex 05, France
| | - O Laurent
- Sorbonne Université, Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600, 4 Place Jussieu, 75252 Paris Cedex 05, France
| |
Collapse
|
5
|
Jaroń T, Starobrat A, Struzhkin VV, Grochala W. Inclusion of Neon into an Yttrium Borohydride Structure at Elevated Pressure – An Experimental and Theoretical Study. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Tomasz Jaroń
- Centre of New Technologies University of Warsaw Banacha 2c 02‐097 Warsaw Poland
- Geophysical Laboratory Carnegie Institution of Washington 5251 Broad Branch Road NW 20015 Washington DC United States
| | - Agnieszka Starobrat
- Centre of New Technologies University of Warsaw Banacha 2c 02‐097 Warsaw Poland
- College of Inter‐Faculty Individual Studies in Mathematics and Natural Sciences (MISMaP) University of Warsaw Banacha 2c 02‐097 Warsaw Poland
| | - Viktor V. Struzhkin
- Center for High Pressure Science and Technology Advanced Research Shanghai China
| | - Wojciech Grochala
- Centre of New Technologies University of Warsaw Banacha 2c 02‐097 Warsaw Poland
| |
Collapse
|
6
|
Seryotkin YV, Bakakin VV. Structure of K,Na-Exchanged Stellerite Zeolite and its Evolution under High Pressures. J STRUCT CHEM+ 2019. [DOI: 10.1134/s0022476619100068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
Ishii Y, Komatsu K, Nakano S, Machida S, Hattori T, Sano-Furukawa A, Kagi H. Pressure-induced stacking disorder in boehmite. Phys Chem Chem Phys 2018; 20:16650-16656. [PMID: 29873355 DOI: 10.1039/c8cp02565g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structure of an aluminum layered hydroxide, boehmite (γ-AlOOH), as a function of pressure was studied by using in situ synchrotron X-ray and neutron diffraction. Peak broadening, which is only found for hkl (h ≠ 0) peaks in the X-ray diffraction patterns, is explained by stacking disorder accompanying a continuously increasing displacement of the AlO6 octahedral layer along the a-axis. This finding could be the first experimental result for pressure-induced stacking disorder driven by continuous layer displacement. The magnitude of the layer displacement was estimated from the X-ray scattering profile calculation based on the stacking disordered structure model. Hydrogen bond geometries of boehmite, obtained by structure refinements of the observed neutron diffraction patterns for the deuterated sample up to 10 GPa, show linearly approaching O-D covalent and DO hydrogen bond distances and they merge below 26 GPa. Pressure-induced stacking disorder makes the electrostatic potential of hydrogen bonds asymmetric, yielding less chance for proton-tunnelling.
Collapse
Affiliation(s)
- Y Ishii
- Geochemical Research Center, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Petitgirard S, Malfait WJ, Journaux B, Collings IE, Jennings ES, Blanchard I, Kantor I, Kurnosov A, Cotte M, Dane T, Burghammer M, Rubie DC. SiO_{2} Glass Density to Lower-Mantle Pressures. PHYSICAL REVIEW LETTERS 2017; 119:215701. [PMID: 29219420 DOI: 10.1103/physrevlett.119.215701] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Indexed: 06/07/2023]
Abstract
The convection or settling of matter in the deep Earth's interior is mostly constrained by density variations between the different reservoirs. Knowledge of the density contrast between solid and molten silicates is thus of prime importance to understand and model the dynamic behavior of the past and present Earth. SiO_{2} is the main constituent of Earth's mantle and is the reference model system for the behavior of silicate melts at high pressure. Here, we apply our recently developed x-ray absorption technique to the density of SiO_{2} glass up to 110 GPa, doubling the pressure range for such measurements. Our density data validate recent molecular dynamics simulations and are in good agreement with previous experimental studies conducted at lower pressure. Silica glass rapidly densifies up to 40 GPa, but the density trend then flattens to become asymptotic to the density of SiO_{2} minerals above 60 GPa. The density data present two discontinuities at ∼17 and ∼60 GPa that can be related to a silicon coordination increase from 4 to a mixed 5/6 coordination and from 5/6 to sixfold, respectively. SiO_{2} glass becomes denser than MgSiO_{3} glass at ∼40 GPa, and its density becomes identical to that of MgSiO_{3} glass above 80 GPa. Our results on SiO_{2} glass may suggest that a variation of SiO_{2} content in a basaltic or pyrolitic melt with pressure has at most a minor effect on the final melt density, and iron partitioning between the melts and residual solids is the predominant factor that controls melt buoyancy in the lowermost mantle.
Collapse
Affiliation(s)
| | - Wim J Malfait
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, Empa, 8600 Dübendorf, Switzerland
| | - Baptiste Journaux
- Institut des Géosciences de l'Environnement-UMR 5001, Université Grenoble Alpes CS 40700, 38 058 Grenoble Cedex 9, France
| | - Ines E Collings
- Laboratory of Crystallography, University of Bayreuth, Bayreuth D-95440, Germany
- European Synchrotron Radiation Facility, BP 220, Grenoble F-38043, France
| | - Eleanor S Jennings
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth D-95440, Germany
| | - Ingrid Blanchard
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth D-95440, Germany
| | | | - Alexander Kurnosov
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth D-95440, Germany
| | - Marine Cotte
- European Synchrotron Radiation Facility, BP 220, Grenoble F-38043, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8220, Laboratoire d'archéologie moléculaire et structurale (LAMS), 4 Place Jussieu 75005 Paris, France
| | - Thomas Dane
- European Synchrotron Radiation Facility, BP 220, Grenoble F-38043, France
| | - Manfred Burghammer
- European Synchrotron Radiation Facility, BP 220, Grenoble F-38043, France
| | - David C Rubie
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth D-95440, Germany
| |
Collapse
|
9
|
Zakharov BA, Seryotkin YV, Tumanov NA, Paliwoda D, Hanfland M, Kurnosov AV, Boldyreva EV. The role of fluids in high-pressure polymorphism of drugs: different behaviour of β-chlorpropamide in different inert gas and liquid media. RSC Adv 2016. [DOI: 10.1039/c6ra17750f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Compression of β-chlorpropamide gives different phases depending on the choice of non-dissolving pressure-transmitting fluid (paraffin, neon and helium).
Collapse
Affiliation(s)
- B. A. Zakharov
- Institute of Solid State Chemistry and Mechanochemistry SB RAS
- Novosibirsk 630128
- Russia
- Novosibirsk State University
- Novosibirsk 630090
| | - Y. V. Seryotkin
- Institute of Solid State Chemistry and Mechanochemistry SB RAS
- Novosibirsk 630128
- Russia
- Novosibirsk State University
- Novosibirsk 630090
| | - N. A. Tumanov
- Institute of Condensed Matter and Nanosciences
- Université catholique de Louvain
- Louvain-la-Neuve 1348
- Belgium
- Université de Namur
| | - D. Paliwoda
- European Synchrotron Radiation Facility
- Grenoble 38000
- France
| | - M. Hanfland
- European Synchrotron Radiation Facility
- Grenoble 38000
- France
| | - A. V. Kurnosov
- Bayerisches Geoinstitut
- Universität Bayreuth
- Bayreuth D-95447
- Germany
| | - E. V. Boldyreva
- Institute of Solid State Chemistry and Mechanochemistry SB RAS
- Novosibirsk 630128
- Russia
| |
Collapse
|
10
|
Coasne B, Weigel C, Polian A, Kint M, Rouquette J, Haines J, Foret M, Vacher R, Rufflé B. Poroelastic theory applied to the adsorption-induced deformation of vitreous silica. J Phys Chem B 2014; 118:14519-25. [PMID: 25383694 DOI: 10.1021/jp5094383] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
When vitreous silica is submitted to high pressures under a helium atmosphere, the change in volume observed is much smaller than expected from its elastic properties. It results from helium penetration into the interstitial free volume of the glass network. We present here the results of concurrent spectroscopic experiments using either helium or neon and molecular simulations relating the amount of gas adsorbed to the strain of the network. We show that a generalized poromechanical approach, describing the elastic properties of microporous materials upon adsorption, can be applied successfully to silica glass in which the free volume exists only at the subnanometer scale. In that picture, the adsorption-induced deformation accounts for the small apparent compressibility of silica observed in experiments.
Collapse
Affiliation(s)
- Benoit Coasne
- Institut Charles Gerhardt Montpellier, CNRS/Université Montpellier 2/ENSCM/UMR 5253 , F-34095 Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|