1
|
Saito R, Mukaiyama T. Sensing Aharonov-Bohm Phase Using a Multiply-Orbiting-Ion Interferometer. PHYSICAL REVIEW LETTERS 2024; 133:143402. [PMID: 39423407 DOI: 10.1103/physrevlett.133.143402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 10/21/2024]
Abstract
Interferometers, which are built using spatially propagating light or matter waves, are commonly used to measure physical quantities. These measurements are made possible by exploiting the interference between waves traveling along different paths. This study introduces a novel approach to sensing of the Aharonov-Bohm phase, an ion matter-wave interferometer operating within a two-dimensional rotational trajectory in a trap potential. The ion orbitals in the nearly circular potential change rotation direction with time. This reversal of rotation direction results in a corresponding change in the interference phase. Our study is the first attempt to utilize propagating matter waves of an ion in constructing a two-dimensional interferometer for the measurement of physical quantities. Given that the scale factor of the interferometer to the cyclotron motion and the rotation of the system is common, the sensitivity to the Aharonov-Bohm phase in this study corresponds to a rotation sensitivity of approximately 300 rad/s. Besides advancing interferometry, our work also lays the foundation for future research into the use of ion matter waves in gyroscopic applications.
Collapse
|
2
|
Carrasco SC, Goerz MH, Malinovskaya SA, Vuletić V, Schleich WP, Malinovsky VS. Dicke State Generation and Extreme Spin Squeezing via Rapid Adiabatic Passage. PHYSICAL REVIEW LETTERS 2024; 132:153603. [PMID: 38682989 DOI: 10.1103/physrevlett.132.153603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/15/2024] [Indexed: 05/01/2024]
Abstract
Considering the unique energy level structure of the one-axis twisting Hamiltonian in combination with standard rotations, we propose the implementation of a rapid adiabatic passage scheme on the Dicke state basis. The method permits to drive Dicke states of the many-atom system into entangled states with maximum quantum Fisher information. The designed states allow us to overcome the classical limit of phase sensitivity in quantum metrology and sensing. We show how to generate superpositions of Dicke states, which maximize metrological gain for a Ramsey interferometric measurement. The proposed scheme is remarkably robust to variations of the driving field and has favorable time scaling, especially for a small to moderate (∼1000) number of atoms, where the total time does not depend on the number of atoms.
Collapse
Affiliation(s)
| | - Michael H Goerz
- DEVCOM Army Research Laboratory, Adelphi, Maryland 20783, USA
| | | | - Vladan Vuletić
- Department of Physics, MIT-Harvard Center for Ultracold Atoms, and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Wolfgang P Schleich
- Institute of Quantum Physics and Center for Integrated Quantum Science and Technology (IQST), Ulm University, Ulm, Germany
| | | |
Collapse
|
3
|
Khastehdel Fumani F, Mahdavifar S, Afrousheh K. Entangled unique coherent line in the ground-state phase diagram of the spin-1/2 XX chain model with three-spin interaction. Phys Rev E 2024; 109:044142. [PMID: 38755842 DOI: 10.1103/physreve.109.044142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 03/19/2024] [Indexed: 05/18/2024]
Abstract
Entangled spin coherent states are a type of quantum states that involve two or more spin systems that are correlated in a nonclassical way. These states can improve metrology and information processing, as they can surpass the standard quantum limit, which is the ultimate bound for precision measurements using coherent states. However, finding entangled coherent states in physical systems is challenging because they require precise control and manipulation of the interactions between the modes. In this work we show that entangled unique coherent states can be found in the ground state of the spin-1/2 XX chain model with three-spin interaction, which is an exactly solvable model in quantum magnetism. We use the spin squeezing parameter, the l_{1}-norm of coherence, and the entanglement entropy as tools to detect and characterize these unique coherent states. We find that these unique coherent states exist in a gapless spin liquid phase, where they form a line that separates two regions with different degrees of squeezing. We call this line the entangled unique coherent line, as it corresponds to the almost maximum entanglement between two halves of the system. We also study the critical scaling of the spin squeezing parameter and the entanglement entropy versus the system size.
Collapse
Affiliation(s)
- F Khastehdel Fumani
- Department of Basic Sciences, Langarud Branch, Islamic Azad University, 4471311127 Langarud, Iran
| | - S Mahdavifar
- Department of Physics, University of Guilan, 41335-1914 Rasht, Iran
| | - K Afrousheh
- Department of Physics, Kuwait University, P.O. Box 5969, 13060 Safat, Kuwait
| |
Collapse
|
4
|
Hetzel M, Pezzè L, Pür C, Quensen M, Hüper A, Geng J, Kruse J, Santos L, Ertmer W, Smerzi A, Klempt C. Tomography of a Number-Resolving Detector by Reconstruction of an Atomic Many-Body Quantum State. PHYSICAL REVIEW LETTERS 2023; 131:260601. [PMID: 38215377 DOI: 10.1103/physrevlett.131.260601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/10/2023] [Indexed: 01/14/2024]
Abstract
The high-fidelity analysis of many-body quantum states of indistinguishable atoms requires the accurate counting of atoms. Here we report the tomographic reconstruction of an atom-number-resolving detector. The tomography is performed with an ultracold rubidium ensemble that is prepared in a coherent spin state by driving a Rabi coupling between the two hyperfine clock levels. The coupling is followed by counting the occupation number in one level. We characterize the fidelity of our detector and show that a negative-valued Wigner function is associated with it. Our results offer an exciting perspective for the high-fidelity reconstruction of entangled states and can be applied for a future demonstration of Heisenberg-limited atom interferometry.
Collapse
Affiliation(s)
- Mareike Hetzel
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - Luca Pezzè
- QSTAR and INO-CNR and LENS, Largo Enrico Fermi 2, 50125 Firenze, Italy
| | - Cebrail Pür
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - Martin Quensen
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - Andreas Hüper
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - Jiao Geng
- Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Jens Kruse
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - Luis Santos
- Institut für Theoretische Physik, Leibniz Universität Hannover, Appelstraße 2, D-30167 Hannover, Germany
| | - Wolfgang Ertmer
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| | - Augusto Smerzi
- QSTAR and INO-CNR and LENS, Largo Enrico Fermi 2, 50125 Firenze, Italy
| | - Carsten Klempt
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany
| |
Collapse
|
5
|
Zheng W, Wang H, Schmieg R, Oesterle A, Polzik ES. Entanglement-Enhanced Magnetic Induction Tomography. PHYSICAL REVIEW LETTERS 2023; 130:203602. [PMID: 37267567 DOI: 10.1103/physrevlett.130.203602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 04/04/2023] [Indexed: 06/04/2023]
Abstract
Magnetic induction tomography (MIT) is a sensing protocol exploring conductive objects via their response to radio-frequency magnetic fields. MIT is used in nondestructive testing ranging from geophysics to medical applications. Atomic magnetometers, employed as MIT sensors, allow for significant improvement of the MIT sensitivity and for exploring its quantum limits. Here, we propose and verify a quantum-enhanced version of the atomic MIT by combining it with conditional spin squeezing and stroboscopic backaction evasion. We use this quantum enhancement to demonstrate sensitivity beyond the standard quantum limits of one-dimensional quantum MIT detecting a conductive sample.
Collapse
Affiliation(s)
- Wenqiang Zheng
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen ø, Denmark
- Zhejiang Provincial Key Laboratory and Collaborative Innovation Center for Quantum Precision Measurement, College of Science, Zhejiang University of Technology, Hangzhou 310023, China
| | - Hengyan Wang
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen ø, Denmark
- Department of Physics, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Rebecca Schmieg
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen ø, Denmark
| | - Alan Oesterle
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen ø, Denmark
| | - Eugene S Polzik
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen ø, Denmark
| |
Collapse
|
6
|
Sundar B, Barberena D, Orioli AP, Chu A, Thompson JK, Rey AM, Lewis-Swan RJ. Bosonic Pair Production and Squeezing for Optical Phase Measurements in Long-Lived Dipoles Coupled to a Cavity. PHYSICAL REVIEW LETTERS 2023; 130:113202. [PMID: 37001062 DOI: 10.1103/physrevlett.130.113202] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 02/14/2023] [Indexed: 06/19/2023]
Abstract
We propose to simulate bosonic pair creation using large arrays of long-lived dipoles with multilevel internal structure coupled to an undriven optical cavity. Entanglement between the atoms, generated by the exchange of virtual photons through a common cavity mode, grows exponentially fast and is described by two-mode squeezing of effective bosonic quadratures. The mapping between an effective bosonic model and the natural spin description of the dipoles allows us to realize the analog of optical homodyne measurements via straightforward global rotations and population measurements of the electronic states, and we propose to exploit this for quantum-enhanced sensing of an optical phase (common and differential between two ensembles). We discuss a specific implementation based on Sr atoms and show that our sensing protocol is robust to sources of decoherence intrinsic to cavity platforms. Our proposal can open unique opportunities for next-generation optical atomic clocks.
Collapse
Affiliation(s)
- Bhuvanesh Sundar
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Diego Barberena
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Asier Piñeiro Orioli
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Anjun Chu
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - James K Thompson
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Ana Maria Rey
- Center for Theory of Quantum Matter, University of Colorado, Boulder, Colorado 80309, USA
- JILA, NIST, Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - Robert J Lewis-Swan
- Homer L. Dodge Department of Physics and Astronomy, The University of Oklahoma, Norman, Oklahoma 73019, USA
- Center for Quantum Research and Technology, The University of Oklahoma, Norman, Oklahoma 73019, USA
| |
Collapse
|
7
|
Len YL, Gefen T, Retzker A, Kołodyński J. Quantum metrology with imperfect measurements. Nat Commun 2022; 13:6971. [PMID: 36379948 PMCID: PMC9666656 DOI: 10.1038/s41467-022-33563-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
The impact of measurement imperfections on quantum metrology protocols has not been approached in a systematic manner so far. In this work, we tackle this issue by generalising firstly the notion of quantum Fisher information to account for noisy detection, and propose tractable methods allowing for its approximate evaluation. We then show that in canonical scenarios involving N probes with local measurements undergoing readout noise, the optimal sensitivity depends crucially on the control operations allowed to counterbalance the measurement imperfections-with global control operations, the ideal sensitivity (e.g., the Heisenberg scaling) can always be recovered in the asymptotic N limit, while with local control operations the quantum-enhancement of sensitivity is constrained to a constant factor. We illustrate our findings with an example of NV-centre magnetometry, as well as schemes involving spin-1/2 probes with bit-flip errors affecting their two-outcome measurements, for which we find the input states and control unitary operations sufficient to attain the ultimate asymptotic precision.
Collapse
Affiliation(s)
- Yink Loong Len
- Centre for Quantum Optical Technologies, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warszawa, Poland.
- Yale-NUS College, 16 College Avenue West, Singapore, 138527, Singapore.
| | - Tuvia Gefen
- Institute for Quantum Information and Matter, Caltech, Pasadena, CA, USA.
| | - Alex Retzker
- Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem, 91904, Givat Ram, Israel
- AWS Center for Quantum Computing, Pasadena, CA, 91125, USA
| | - Jan Kołodyński
- Centre for Quantum Optical Technologies, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warszawa, Poland.
| |
Collapse
|
8
|
Montenegro V, Jones GS, Bose S, Bayat A. Sequential Measurements for Quantum-Enhanced Magnetometry in Spin Chain Probes. PHYSICAL REVIEW LETTERS 2022; 129:120503. [PMID: 36179207 DOI: 10.1103/physrevlett.129.120503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Quantum sensors outperform their classical counterparts in their estimation precision, given the same amount of resources. So far, quantum-enhanced sensitivity has been achieved by exploiting the superposition principle. This enhancement has been obtained for particular forms of entangled states, adaptive measurement basis change, critical many-body systems, and steady state of periodically driven systems. Here, we introduce a different approach to obtain quantum-enhanced sensitivity in a many-body probe through utilizing the nature of quantum measurement and its subsequent wave function collapse without demanding prior entanglement. Our protocol consists of a sequence of local measurements, without reinitialization, performed regularly during the evolution of a many-body probe. As the number of sequences increases, the sensing precision is enhanced beyond the standard limit, reaching the Heisenberg bound asymptotically. The benefits of the protocol are multifold as it uses a product initial state and avoids complex initialization (e.g., prior entangled states or critical ground states) and allows for remote quantum sensing.
Collapse
Affiliation(s)
- Victor Montenegro
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610051, China
| | - Gareth Siôn Jones
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Sougato Bose
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Abolfazl Bayat
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610051, China
| |
Collapse
|
9
|
Wang Y, Shi T, Zhou W, Tang J, Zhou B, Jin G, Han B, Zou S. Evaluation of optical parameters for a microminiature Rb vapor cell in a dual-beam SERF magnetometer. OPTICS EXPRESS 2022; 30:23587-23599. [PMID: 36225035 DOI: 10.1364/oe.458827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/06/2022] [Indexed: 06/16/2023]
Abstract
In the spin-exchange relaxation-free (SERF) magnetometer of a perpendicular pump-probe configuration, the pump and probe beam characteristics significantly affect the performance. In this paper, an efficient evaluation of optical parameters to improve the sensitivity of a miniature magnetometer has been presented. We have determined the pump light's optimal intensity and wavelength through theoretical analysis and the zero-field resonance experiments. Chirp signals are applied to measure the optical rotations at different probe intensities and frequencies. Through theoretical and experimental analysis of noise source characterization under different beam intensities and wavelengths, we demonstrate that dual-beam magnetometer performance is mainly limited by photon shot noise. Based on the optimum pump and probe beam parameters, we demonstrate magnetic field sensitivity of 6.3 fT/Hz in an 87Rb vapor cell filled with nitrogen gas, with an active measurement volume of 3 × 3 × 3 mm3.
Collapse
|
10
|
Xu K, Zhang YR, Sun ZH, Li H, Song P, Xiang Z, Huang K, Li H, Shi YH, Chen CT, Song X, Zheng D, Nori F, Wang H, Fan H. Metrological Characterization of Non-Gaussian Entangled States of Superconducting Qubits. PHYSICAL REVIEW LETTERS 2022; 128:150501. [PMID: 35499907 DOI: 10.1103/physrevlett.128.150501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Multipartite entangled states are significant resources for both quantum information processing and quantum metrology. In particular, non-Gaussian entangled states are predicted to achieve a higher sensitivity of precision measurements than Gaussian states. On the basis of metrological sensitivity, the conventional linear Ramsey squeezing parameter (RSP) efficiently characterizes the Gaussian entangled atomic states but fails for much wider classes of highly sensitive non-Gaussian states. These complex non-Gaussian entangled states can be classified by the nonlinear squeezing parameter (NLSP), as a generalization of the RSP with respect to nonlinear observables and identified via the Fisher information. However, the NLSP has never been measured experimentally. Using a 19-qubit programmable superconducting processor, we report the characterization of multiparticle entangled states generated during its nonlinear dynamics. First, selecting ten qubits, we measure the RSP and the NLSP by single-shot readouts of collective spin operators in several different directions. Then, by extracting the Fisher information of the time-evolved state of all 19 qubits, we observe a large metrological gain of 9.89_{-0.29}^{+0.28} dB over the standard quantum limit, indicating a high level of multiparticle entanglement for quantum-enhanced phase sensitivity. Benefiting from high-fidelity full controls and addressable single-shot readouts, the superconducting processor with interconnected qubits provides an ideal platform for engineering and benchmarking non-Gaussian entangled states that are useful for quantum-enhanced metrology.
Collapse
Affiliation(s)
- Kai Xu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu-Ran Zhang
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- RIKEN Center for Quantum Computing (RQC), Wako-shi, Saitama 351-0198, Japan
| | - Zheng-Hang Sun
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hekang Li
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Pengtao Song
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhongcheng Xiang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Kaixuan Huang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hao Li
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yun-Hao Shi
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Chi-Tong Chen
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiaohui Song
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Dongning Zheng
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
- RIKEN Center for Quantum Computing (RQC), Wako-shi, Saitama 351-0198, Japan
- Physics Department, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| | - H Wang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Heng Fan
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Beijing Academy of Quantum Information Sciences and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
11
|
Orenes DB, Sewell RJ, Lodewyck J, Mitchell MW. Improving Short-Term Stability in Optical Lattice Clocks by Quantum Nondemolition Measurement. PHYSICAL REVIEW LETTERS 2022; 128:153201. [PMID: 35499904 DOI: 10.1103/physrevlett.128.153201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
We propose a multimeasurement estimation protocol for quantum nondemolition (QND) measurements in a Rabi clock interferometer. The method is well suited for current state-of-the-art optical lattice clocks with QND measurement capabilities. The protocol exploits the correlations between multiple nondestructive measurements of the initially prepared coherent spin state. A suitable Gaussian estimator for the clock laser detuning is presented, and an analytic expression for the sensitivity of the protocol is derived. We use this analytic expression to optimize the protocol using available experimental parameters, achieving an improvement of 7.9 dB with respect to the standard quantum limit in terms of clock stability. We also discuss the measurement back-action effects of our protocol into the atomic state.
Collapse
Affiliation(s)
- Daniel Benedicto Orenes
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Robert J Sewell
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - Jérôme Lodewyck
- LNE-SYRTE, Observatoire de Paris, Université PSL, CNRS, Sorbonne Université, 61 avenue de l'Observatoire, F-75014 Paris, France
| | - Morgan W Mitchell
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
12
|
Corgier R, Gaaloul N, Smerzi A, Pezzè L. Delta-Kick Squeezing. PHYSICAL REVIEW LETTERS 2021; 127:183401. [PMID: 34767389 DOI: 10.1103/physrevlett.127.183401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
We explore the possibility to overcome the standard quantum limit (SQL) in a free-fall atom interferometer using a Bose-Einstein condensate (BEC) in either of the two relevant cases of Bragg or Raman scattering light pulses. The generation of entanglement in the BEC is dramatically enhanced by amplifying the atom-atom interactions via the rapid action of an external trap, focusing the matter waves to significantly increase the atomic densities during a preparation stage-a technique we refer to as delta-kick squeezing (DKS). The action of a second DKS operation at the end of the interferometry sequence allows one to implement a nonlinear readout scheme, making the sub-SQL sensitivity highly robust against imperfect atom counting detection. We predict more than 30 dB of sensitivity gain beyond the SQL for the variance, assuming realistic parameters and 10^{6} atoms.
Collapse
Affiliation(s)
- Robin Corgier
- QSTAR, INO-CNR and LENS, Largo Enrico Fermi 2, 50125 Firenze, Italy
| | - Naceur Gaaloul
- Institut für Quantenoptik, Leibniz Universität Hannover, Welfengarten 1, 30167 Hannover, Germany
| | - Augusto Smerzi
- QSTAR, INO-CNR and LENS, Largo Enrico Fermi 2, 50125 Firenze, Italy
| | - Luca Pezzè
- QSTAR, INO-CNR and LENS, Largo Enrico Fermi 2, 50125 Firenze, Italy
| |
Collapse
|
13
|
Baamara Y, Sinatra A, Gessner M. Scaling Laws for the Sensitivity Enhancement of Non-Gaussian Spin States. PHYSICAL REVIEW LETTERS 2021; 127:160501. [PMID: 34723607 DOI: 10.1103/physrevlett.127.160501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
We identify the large-N scaling of the metrological quantum gain offered by over-squeezed spin states that are accessible by one-axis twisting, as a function of the preparation time. We further determine how the scaling is modified by relevant decoherence processes and predict a discontinuous change of the quantum gain at a critical preparation time that depends on the noise. Our analytical results provide recipes for optimal and feasible implementations of quantum enhancements with non-Gaussian spin states in existing experiments, well beyond the reach of spin squeezing.
Collapse
Affiliation(s)
- Youcef Baamara
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 Rue Lhomond, 75005 Paris, France
| | - Alice Sinatra
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 Rue Lhomond, 75005 Paris, France
| | - Manuel Gessner
- Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 Rue Lhomond, 75005 Paris, France
| |
Collapse
|
14
|
Bai SY, An JH. Generating Stable Spin Squeezing by Squeezed-Reservoir Engineering. PHYSICAL REVIEW LETTERS 2021; 127:083602. [PMID: 34477431 DOI: 10.1103/physrevlett.127.083602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/13/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
As a genuine many-body entanglement, spin squeezing (SS) can be used to realize the highly precise measurement beyond the limit constrained by classical physics. Its generation has attracted much attention recently. It was reported that N two-level systems (TLSs) located near a one-dimensional waveguide can generate SS by using the mediation effect of the waveguide. However, a coherent driving on each TLS is used to stabilize the SS, which raises a high requirement for experiments. We here propose a scheme to generate stable SS resorting to neither the spin-spin coupling nor the coherent driving on the TLSs. Incorporating the mediation role of the common waveguide and the technique of squeezed-reservoir engineering, our scheme exhibits the advantages over previous ones in the scaling relation of the SS parameter with the number of the TLSs. The long-range correlation feature of the generated SS along the waveguide in our scheme may endow it with certain superiority in quantum sensing, e.g., improving the sensing efficiency of spatially unidentified weak magnetic fields.
Collapse
Affiliation(s)
- Si-Yuan Bai
- Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, China
| | - Jun-Hong An
- Lanzhou Center for Theoretical Physics, Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
15
|
Vinante A, Timberlake C, Budker D, Kimball DFJ, Sushkov AO, Ulbricht H. Surpassing the Energy Resolution Limit with Ferromagnetic Torque Sensors. PHYSICAL REVIEW LETTERS 2021; 127:070801. [PMID: 34459646 DOI: 10.1103/physrevlett.127.070801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
We discuss the fundamental noise limitations of a ferromagnetic torque sensor based on a levitated magnet in the tipping regime. We evaluate the optimal magnetic field resolution taking into account the thermomechanical noise and the mechanical detection noise at the standard quantum limit. We find that the energy resolution limit, pointed out in recent literature as a relevant benchmark for most classes of magnetometers, can be surpassed by many orders of magnitude. Moreover, similarly to the case of a ferromagnetic gyroscope, it is also possible to surpass the standard quantum limit for magnetometry with independent spins, arising from spin-projection noise. Our finding indicates that magnetomechanical systems optimized for magnetometry can achieve a magnetic field resolution per unit volume several orders of magnitude better than any conventional magnetometer. We discuss possible implications, focusing on fundamental physics problems such as the search for exotic interactions beyond the standard model.
Collapse
Affiliation(s)
- Andrea Vinante
- Istituto di Fotonica e Nanotecnologie CNR and Fondazione Bruno Kessler, I-38123 Povo, Trento, Italy
| | - Chris Timberlake
- Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Dmitry Budker
- Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany
- Helmholtz-Institute, GSI Helmholtzzentrum für Schwerionenforschung, 55128 Mainz, Germany
- Department of Physics, University of California at Berkeley, Berkeley, California 94720-7300, USA
| | - Derek F Jackson Kimball
- Department of Physics, California State University-East Bay, Hayward, California 94542-3084, USA
| | - Alexander O Sushkov
- Department of Physics, Boston University, Boston, Massachusetts 02215, USA
- Department of Electrical and Computer Engineering, Boston University, Boston, Massachusetts 02215, USA
- Photonics Center, Boston University, Boston, Massachusetts 02215, USA
| | - Hendrik Ulbricht
- Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
16
|
Pezzè L, Smerzi A. Heisenberg-Limited Noisy Atomic Clock Using a Hybrid Coherent and Squeezed State Protocol. PHYSICAL REVIEW LETTERS 2020; 125:210503. [PMID: 33274961 DOI: 10.1103/physrevlett.125.210503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/29/2020] [Indexed: 06/12/2023]
Abstract
We propose a hybrid quantum-classical atomic clock where the interrogation of atoms prepared in a spin-coherent (or weakly squeezed) state is used to feed back one or more highly spin-squeezed atomic states toward their optimal phase-sensitivity point. The hybrid clock overcomes the stability of a single Ramsey clock using coherent or optimal spin-squeezed states and reaches a Heisenberg-limited stability while avoiding nondestructive measurements. When optimized with respect to the total number of particles, the protocol surpasses the state-of-the-art proposals that use Greenberger-Horne-Zeilinger or NOON states. We compare analytical predictions with numerical simulations of clock operations, including correlated 1/f local oscillator noise.
Collapse
Affiliation(s)
- Luca Pezzè
- QSTAR, INO-CNR and LENS, Largo Enrico Fermi 2, 50125 Firenze, Italy
| | - Augusto Smerzi
- QSTAR, INO-CNR and LENS, Largo Enrico Fermi 2, 50125 Firenze, Italy
| |
Collapse
|
17
|
Rossi MAC, Albarelli F, Tamascelli D, Genoni MG. Noisy Quantum Metrology Enhanced by Continuous Nondemolition Measurement. PHYSICAL REVIEW LETTERS 2020; 125:200505. [PMID: 33258625 DOI: 10.1103/physrevlett.125.200505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 10/19/2020] [Indexed: 06/12/2023]
Abstract
We show that continuous quantum nondemolition (QND) measurement of an atomic ensemble is able to improve the precision of frequency estimation even in the presence of independent dephasing acting on each atom. We numerically simulate the dynamics of an ensemble with up to N=150 atoms initially prepared in a (classical) spin coherent state, and we show that, thanks to the spin squeezing dynamically generated by the measurement, the information obtainable from the continuous photocurrent scales superclassically with respect to the number of atoms N. We provide evidence that such superclassical scaling holds for different values of dephasing and monitoring efficiency. We moreover calculate the extra information obtainable via a final strong measurement on the conditional states generated during the dynamics and show that the corresponding ultimate limit is nearly achieved via a projective measurement of the spin-squeezed collective spin operator. We also briefly discuss the difference between our protocol and standard estimation schemes, where the state preparation time is neglected.
Collapse
Affiliation(s)
- Matteo A C Rossi
- QTF Centre of Excellence, Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014 Turun Yliopisto, Finland
| | - Francesco Albarelli
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa, Poland
| | - Dario Tamascelli
- Dipartimento di Fisica "Aldo Pontremoli," Università degli Studi di Milano, I-20133 Milano, Italy
| | - Marco G Genoni
- Dipartimento di Fisica "Aldo Pontremoli," Università degli Studi di Milano, I-20133 Milano, Italy
- INFN - Sezione di Milano, I-20133 Milano, Italy
| |
Collapse
|
18
|
Szigeti SS, Nolan SP, Close JD, Haine SA. High-Precision Quantum-Enhanced Gravimetry with a Bose-Einstein Condensate. PHYSICAL REVIEW LETTERS 2020; 125:100402. [PMID: 32955338 DOI: 10.1103/physrevlett.125.100402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
We show that the inherently large interatomic interactions of a Bose-Einstein condensate (BEC) can enhance the sensitivity of a high precision cold-atom gravimeter beyond the shot-noise limit (SNL). Through detailed numerical simulation, we demonstrate that our scheme produces spin-squeezed states with variances up to 14 dB below the SNL, and that absolute gravimetry measurement sensitivities between two and five times below the SNL are achievable with BECs between 10^{4} and 10^{6} in atom number. Our scheme is robust to phase diffusion, imperfect atom counting, and shot-to-shot variations in atom number and laser intensity. Our proposal is immediately achievable in current laboratories, since it needs only a small modification to existing state-of-the-art experiments and does not require additional guiding potentials or optical cavities.
Collapse
Affiliation(s)
- Stuart S Szigeti
- Department of Quantum Science, Research School of Physics, The Australian National University, Canberra 2601, Australia
| | - Samuel P Nolan
- QSTAR, INO-CNR and LENS, Largo Enrico Fermi 2, Firenze 50125, Italy
| | - John D Close
- Department of Quantum Science, Research School of Physics, The Australian National University, Canberra 2601, Australia
| | - Simon A Haine
- Department of Quantum Science, Research School of Physics, The Australian National University, Canberra 2601, Australia
| |
Collapse
|
19
|
Muñoz-Arias MH, Poggi PM, Jessen PS, Deutsch IH. Simulating Nonlinear Dynamics of Collective Spins via Quantum Measurement and Feedback. PHYSICAL REVIEW LETTERS 2020; 124:110503. [PMID: 32242733 DOI: 10.1103/physrevlett.124.110503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 03/03/2020] [Indexed: 06/11/2023]
Abstract
We study a method to simulate quantum many-body dynamics of spin ensembles using measurement-based feedback. By performing a weak collective measurement on a large ensemble of two-level quantum systems and applying global rotations conditioned on the measurement outcome, one can simulate the dynamics of a mean-field quantum kicked top, a standard paradigm of quantum chaos. We analytically show that there exists a regime in which individual quantum trajectories adequately recover the classical limit, and show the transition between noisy quantum dynamics to full deterministic chaos described by classical Lyapunov exponents. We also analyze the effects of decoherence, and show that the proposed scheme represents a robust method to explore the emergence of chaos from complex quantum dynamics in a realistic experimental platform based on an atom-light interface.
Collapse
Affiliation(s)
- Manuel H Muñoz-Arias
- Center for Quantum Information and Control, CQuIC, Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Pablo M Poggi
- Center for Quantum Information and Control, CQuIC, Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Poul S Jessen
- Center for Quantum Information and Control, CQuIC, College of Optical Sciences and Department of Physics, University of Arizona, Tucson, Arizona 85721, USA
| | - Ivan H Deutsch
- Center for Quantum Information and Control, CQuIC, Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
20
|
Abstract
The optical properties of subwavelength arrays of atoms or other quantum emitters have attracted significant interest recently. For example, the strong constructive or destructive interference of emitted light enables arrays to function as nearly perfect mirrors, support topological edge states, and allow for exponentially better quantum memories. In these proposals, the assumed atomic structure was simple, consisting of a unique electronic ground state. Within linear optics, the system is then equivalent to a periodic array of classical dielectric particles, whose periodicity supports the emergence of guided modes. However, it has not been known whether such phenomena persist in the presence of hyperfine structure, as exhibited by most quantum emitters. Here, we show that waveguiding can arise from rich atomic entanglement as a quantum many-body effect and elucidate the necessary conditions. Our work represents a significant step forward in understanding collective effects in arrays of atoms with realistic electronic structure.
Collapse
|
21
|
Aloy A, Tura J, Baccari F, Acín A, Lewenstein M, Augusiak R. Device-Independent Witnesses of Entanglement Depth from Two-Body Correlators. PHYSICAL REVIEW LETTERS 2019; 123:100507. [PMID: 31573313 DOI: 10.1103/physrevlett.123.100507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Indexed: 06/10/2023]
Abstract
We consider the characterization of entanglement depth in a quantum many-body system from the device-independent perspective; that is, we aim at certifying how many particles are genuinely entangled without relying on assumptions on the system itself nor on the measurements performed. We obtain device-independent witnesses of entanglement depth (DIWEDs) using the Bell inequalities introduced in [J. Tura et al., Science 344, 1256 (2014)SCIEAS0036-807510.1126/science.1247715] and compute their k-producibility bounds. To this end, we exploit two complementary methods: first, a variational one, yielding a possibly optimal k-producible state; second, a certificate of optimality via a semidefinite program, based on a relaxation of the quantum marginal problem. Numerical results suggest a clear pattern on k-producible bounds for large system sizes, which we then tackle analytically in the thermodynamic limit. Contrary to existing DIWEDs, the ones we present here can be effectively measured by accessing only collective measurements and second moments thereof. These technical requirements are met in current experiments, which have already been performed in the context of detecting Bell correlations in quantum many-body systems of 5×10^{2}-5×10^{5} atoms.
Collapse
Affiliation(s)
- A Aloy
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - J Tura
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, 85748 Garching, Germany
| | - F Baccari
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - A Acín
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - M Lewenstein
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
- ICREA, Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - R Augusiak
- Center for Theoretical Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
22
|
Braverman B, Kawasaki A, Pedrozo-Peñafiel E, Colombo S, Shu C, Li Z, Mendez E, Yamoah M, Salvi L, Akamatsu D, Xiao Y, Vuletić V. Near-Unitary Spin Squeezing in ^{171}Yb. PHYSICAL REVIEW LETTERS 2019; 122:223203. [PMID: 31283296 DOI: 10.1103/physrevlett.122.223203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Indexed: 06/09/2023]
Abstract
Spin squeezing can improve atomic precision measurements beyond the standard quantum limit (SQL), and unitary spin squeezing is essential for improving atomic clocks. We report substantial and nearly unitary spin squeezing in ^{171}Yb, an optical lattice clock atom. The collective nuclear spin of ∼10^{3} atoms is squeezed by cavity feedback, using light detuned from the system's resonances to attain unitarity. The observed precision gain over the SQL is limited by state readout to 6.5(4) dB, while the generated states offer a gain of 12.9(6) dB, limited by the curvature of the Bloch sphere. Using a squeezed state within 30% of unitarity, we demonstrate an interferometer that improves the averaging time over the SQL by a factor of 3.7(2). In the future, the squeezing can be simply transferred onto the optical-clock transition of ^{171}Yb.
Collapse
Affiliation(s)
- Boris Braverman
- Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Akio Kawasaki
- Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Edwin Pedrozo-Peñafiel
- Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Simone Colombo
- Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Chi Shu
- Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Zeyang Li
- Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Enrique Mendez
- Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Megan Yamoah
- Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Leonardo Salvi
- Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Dipartimento di Fisica e Astronomia and LENS-Università di Firenze, INFN-Sezione di Firenze, Via Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Daisuke Akamatsu
- Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563, Japan
| | - Yanhong Xiao
- Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Physics, State Key Laboratory of Surface Physics and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Vladan Vuletić
- Department of Physics, MIT-Harvard Center for Ultracold Atoms and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
23
|
Masson SJ, Parkins S. Rapid Production of Many-Body Entanglement in Spin-1 Atoms via Cavity Output Photon Counting. PHYSICAL REVIEW LETTERS 2019; 122:103601. [PMID: 30932652 DOI: 10.1103/physrevlett.122.103601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Indexed: 06/09/2023]
Abstract
We propose a simple and efficient method for generating metrologically useful quantum entanglement in an ensemble of spin-1 atoms that interacts with a high-finesse optical cavity mode. It requires straightforward preparation of N atoms in the m_{F}=0 sublevel, tailoring of the atom-field interaction to give an effective Tavis-Cummings model for the collective spin-1 ensemble, and a photon counting measurement on the cavity output field. The photon number provides a projective measurement of the collective spin length S, which, for the chosen initial state, is heavily weighted around values S≃sqrt[N], for which the corresponding spin states are strongly entangled and exhibit Heisenberg scaling of the metrological sensitivity with N, as quantified by the quantum Fisher information.
Collapse
Affiliation(s)
- Stuart J Masson
- Dodd-Walls Centre for Photonic and Quantum Technologies, New Zealand and Department of Physics, University of Auckland, Private Bag 92109, Auckland, New Zealand
| | - Scott Parkins
- Dodd-Walls Centre for Photonic and Quantum Technologies, New Zealand and Department of Physics, University of Auckland, Private Bag 92109, Auckland, New Zealand
| |
Collapse
|
24
|
Gessner M, Smerzi A, Pezzè L. Metrological Nonlinear Squeezing Parameter. PHYSICAL REVIEW LETTERS 2019; 122:090503. [PMID: 30932524 DOI: 10.1103/physrevlett.122.090503] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Indexed: 06/09/2023]
Abstract
The well-known metrological linear squeezing parameters (such as quadrature or spin squeezing) efficiently quantify the sensitivity of Gaussian states. Yet, these parameters are insufficient to characterize the much wider class of highly sensitive non-Gaussian states. Here, we introduce a class of metrological nonlinear squeezing parameters obtained by analytical optimization of measurement observables among a given set of accessible (possibly nonlinear) operators. This allows for the metrological characterization of non-Gaussian quantum states of discrete and continuous variables. Our results lead to optimized and experimentally feasible recipes for a high-precision moment-based estimation of a phase parameter and can be used to systematically construct multipartite entanglement and nonclassicality witnesses for complex quantum states.
Collapse
Affiliation(s)
- Manuel Gessner
- QSTAR, CNR-INO and LENS, Largo Enrico Fermi 2, 50125 Firenze, Italy
- Département de Physique, École Normale Supérieure, PSL Université, CNRS, 24 Rue Lhomond, 75005 Paris, France
| | - Augusto Smerzi
- Département de Physique, École Normale Supérieure, PSL Université, CNRS, 24 Rue Lhomond, 75005 Paris, France
| | - Luca Pezzè
- Département de Physique, École Normale Supérieure, PSL Université, CNRS, 24 Rue Lhomond, 75005 Paris, France
| |
Collapse
|
25
|
Huang X, Zeuthen E, Vasilyev DV, He Q, Hammerer K, Polzik ES. Unconditional Steady-State Entanglement in Macroscopic Hybrid Systems by Coherent Noise Cancellation. PHYSICAL REVIEW LETTERS 2018; 121:103602. [PMID: 30240274 DOI: 10.1103/physrevlett.121.103602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Indexed: 06/08/2023]
Abstract
The generation of entanglement between disparate physical objects is a key ingredient in the field of quantum technologies, since they can have different functionalities in a quantum network. Here we propose and analyze a generic approach to steady-state entanglement generation between two oscillators with different temperatures and decoherence properties coupled in cascade to a common unidirectional light field. The scheme is based on a combination of coherent noise cancellation and dynamical cooling techniques for two oscillators with effective masses of opposite signs, such as quasispin and motional degrees of freedom, respectively. The interference effect provided by the cascaded setup can be tuned to implement additional noise cancellation leading to improved entanglement even in the presence of a hot thermal environment. The unconditional entanglement generation is advantageous since it provides a ready-to-use quantum resource. Remarkably, by comparing to the conditional entanglement achievable in the dynamically stable regime, we find our unconditional scheme to deliver a virtually identical performance when operated optimally.
Collapse
Affiliation(s)
- Xinyao Huang
- State Key Laboratory of Mesoscopic Physics, School of Physics, Peking University, Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Emil Zeuthen
- Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Denis V Vasilyev
- Center for Quantum Physics, Faculty of Mathematics, Computer Science and Physics, University of Innsbruck, A-6020 Innsbruck, Austria
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria
| | - Qiongyi He
- State Key Laboratory of Mesoscopic Physics, School of Physics, Peking University, Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Klemens Hammerer
- Institute for Theoretical Physics and Institute for Gravitational Physics (Albert Einstein Institute), Leibniz Universität Hannover, Callinstraße 38, 30167 Hannover, Germany
| | - Eugene S Polzik
- Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
26
|
Beating the classical precision limit with spin-1 Dicke states of more than 10,000 atoms. Proc Natl Acad Sci U S A 2018; 115:6381-6385. [PMID: 29858344 DOI: 10.1073/pnas.1715105115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interferometry is a paradigm for most precision measurements. Using N uncorrelated particles, the achievable precision for a two-mode (two-path) interferometer is bounded by the standard quantum limit (SQL), [Formula: see text], due to the discrete (quanta) nature of individual measurements. Despite being a challenging benchmark, the two-mode SQL has been approached in a number of systems, including the Laser Interferometer Gravitational-Wave Observatory and today's best atomic clocks. For multimode interferometry, the SQL becomes [Formula: see text] using M modes. Higher precision can also be achieved using entangled particles such that quantum noises from individual particles cancel out. In this work, we demonstrate an interferometric precision of [Formula: see text] dB beyond the three-mode SQL, using balanced spin-1 (three-mode) Dicke states containing thousands of entangled atoms. The input quantum states are deterministically generated by controlled quantum phase transition and exhibit close to ideal quality. Our work shines light on the pursuit of quantum metrology beyond SQL.
Collapse
|
27
|
Blair EP, Tóth G, Lent CS. Entanglement loss in molecular quantum-dot qubits due to interaction with the environment. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:195602. [PMID: 29578454 DOI: 10.1088/1361-648x/aab98d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We study quantum entanglement loss due to environmental interaction in a condensed matter system with a complex geometry relevant to recent proposals for computing with single electrons at the nanoscale. We consider a system consisting of two qubits, each realized by an electron in a double quantum dot, which are initially in an entangled Bell state. The qubits are widely separated and each interacts with its own environment. The environment for each is modeled by surrounding double quantum dots placed at random positions with random orientations. We calculate the unitary evolution of the joint system and environment. The global state remains pure throughout. We examine the time dependence of the expectation value of the bipartite Clauser-Horne-Shimony-Holt (CHSH) and Brukner-Paunković-Rudolph-Vedral (BPRV) Bell operators and explore the emergence of correlations consistent with local realism. Though the details of this transition depend on the specific environmental geometry, we show how the results can be mapped on to a universal behavior with appropriate scaling. We determine the relevant disentanglement times based on realistic physical parameters for molecular double-dots.
Collapse
Affiliation(s)
- Enrique P Blair
- Electrical and Computer Engineering Department, Baylor University, Waco, TX, United States of America
| | | | | |
Collapse
|
28
|
Manzoni MT, Moreno-Cardoner M, Asenjo-Garcia A, Porto JV, Gorshkov AV, Chang DE. Optimization of photon storage fidelity in ordered atomic arrays. NEW JOURNAL OF PHYSICS 2018; 20:10.1088/1367-2630/aadb74. [PMID: 31555054 PMCID: PMC6760042 DOI: 10.1088/1367-2630/aadb74] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A major application for atomic ensembles consists of a quantum memory for light, in which an optical state can be reversibly converted to a collective atomic excitation on demand. There exists a well-known fundamental bound on the storage error, when the ensemble is describable by a continuous medium governed by the Maxwell-Bloch equations. However, these equations are semi-phenomenological, as they treat emission of the atoms into other directions other than the mode of interest as being independent. On the other hand, in systems such as dense, ordered atomic arrays, atoms interact with each other strongly and spatial interference of the emitted light might be exploited to suppress emission into unwanted directions, thereby enabling improved error bounds. Here, we develop a general formalism that fully accounts for spatial interference, and which finds the maximum storage efficiency for a single photon with known spatial input mode into a collection of atoms with discrete, known positions. As an example, we apply this technique to study a finite two-dimensional square array of atoms. We show that such a system enables a storage error that scales with atom number N a like ∼ ( log N a ) 2 ∕ N a 2 , and that, remarkably, an array of just 4 × 4 atoms in principle allows for an error of less than 1%, which is comparable to a disordered ensemble with an optical depth of around 600.
Collapse
Affiliation(s)
- M T Manzoni
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, E-08860 Castelldefels (Barcelona), Spain
| | - M Moreno-Cardoner
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, E-08860 Castelldefels (Barcelona), Spain
| | - A Asenjo-Garcia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, E-08860 Castelldefels (Barcelona), Spain
- Norman Bridge Laboratory of Physics MC12-33, California Institute of Technology, Pasadena, CA 91125, United States of America
- Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA91125, United States of America
| | - J V Porto
- Joint Quantum Institute, NIST/University of Maryland, College Park, MD 20742, United States of America
| | - A V Gorshkov
- Joint Quantum Institute, NIST/University of Maryland, College Park, MD 20742, United States of America
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, MD 20742, United States of America
| | - D E Chang
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, E-08860 Castelldefels (Barcelona), Spain
- ICREA—Institució Catalana de Recerca i Estudis Avançats, E-08015 Barcelona, Spain
- Author to whom any correspondence should be addressed
| |
Collapse
|
29
|
Nolan SP, Szigeti SS, Haine SA. Optimal and Robust Quantum Metrology Using Interaction-Based Readouts. PHYSICAL REVIEW LETTERS 2017; 119:193601. [PMID: 29219523 DOI: 10.1103/physrevlett.119.193601] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Indexed: 06/07/2023]
Abstract
Useful quantum metrology requires nonclassical states with a high particle number and (close to) the optimal exploitation of the state's quantum correlations. Unfortunately, the single-particle detection resolution demanded by conventional protocols, such as spin squeezing via one-axis twisting, places severe limits on the particle number. Additionally, the challenge of finding optimal measurements (that saturate the quantum Cramér-Rao bound) for an arbitrary nonclassical state limits most metrological protocols to only moderate levels of quantum enhancement. "Interaction-based readout" protocols have been shown to allow optimal interferometry or to provide robustness against detection noise at the expense of optimality. In this Letter, we prove that one has great flexibility in constructing an optimal protocol, thereby allowing it to also be robust to detection noise. This requires the full probability distribution of outcomes in an optimal measurement basis, which is typically easily accessible and can be determined from specific criteria we provide. Additionally, we quantify the robustness of several classes of interaction-based readouts under realistic experimental constraints. We determine that optimal and robust quantum metrology is achievable in current spin-squeezing experiments.
Collapse
Affiliation(s)
- Samuel P Nolan
- School of Mathematics and Physics, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Stuart S Szigeti
- School of Mathematics and Physics, University of Queensland, Brisbane, Queensland 4072, Australia
- ARC Centre of Excellence for Engineered Quantum Systems, University of Queensland, Brisbane, Queensland 4072, Australia
- Department of Physics, Centre for Quantum Science, and Dodd-Walls Centre for Photonic and Quantum Technologies, University of Otago, Dunedin 9010, New Zealand
| | - Simon A Haine
- Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, United Kingdom
| |
Collapse
|
30
|
Naghiloo M, Jordan AN, Murch KW. Achieving Optimal Quantum Acceleration of Frequency Estimation Using Adaptive Coherent Control. PHYSICAL REVIEW LETTERS 2017; 119:180801. [PMID: 29219606 DOI: 10.1103/physrevlett.119.180801] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Indexed: 06/07/2023]
Abstract
Precision measurements of frequency are critical to accurate time keeping and are fundamentally limited by quantum measurement uncertainties. While for time-independent quantum Hamiltonians the uncertainty of any parameter scales at best as 1/T, where T is the duration of the experiment, recent theoretical works have predicted that explicitly time-dependent Hamiltonians can yield a 1/T^{2} scaling of the uncertainty for an oscillation frequency. This quantum acceleration in precision requires coherent control, which is generally adaptive. We experimentally realize this quantum improvement in frequency sensitivity with superconducting circuits, using a single transmon qubit. With optimal control pulses, the theoretically ideal frequency precision scaling is reached for times shorter than the decoherence time. This result demonstrates a fundamental quantum advantage for frequency estimation.
Collapse
Affiliation(s)
- M Naghiloo
- Department of Physics, Washington University, St. Louis, Missouri 63130, USA
| | - A N Jordan
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
- Center for Coherence and Quantum Optics, University of Rochester, Rochester, New York 14627, USA
- Institute for Quantum Studies, Chapman University, Orange, California 92866, USA
| | - K W Murch
- Department of Physics, Washington University, St. Louis, Missouri 63130, USA
- Institute for Materials Science and Engineering, St. Louis, Missouri 63130, USA
| |
Collapse
|
31
|
Pezzè L, Ciampini MA, Spagnolo N, Humphreys PC, Datta A, Walmsley IA, Barbieri M, Sciarrino F, Smerzi A. Optimal Measurements for Simultaneous Quantum Estimation of Multiple Phases. PHYSICAL REVIEW LETTERS 2017; 119:130504. [PMID: 29341700 DOI: 10.1103/physrevlett.119.130504] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Indexed: 06/07/2023]
Abstract
A quantum theory of multiphase estimation is crucial for quantum-enhanced sensing and imaging and may link quantum metrology to more complex quantum computation and communication protocols. In this Letter, we tackle one of the key difficulties of multiphase estimation: obtaining a measurement which saturates the fundamental sensitivity bounds. We derive necessary and sufficient conditions for projective measurements acting on pure states to saturate the ultimate theoretical bound on precision given by the quantum Fisher information matrix. We apply our theory to the specific example of interferometric phase estimation using photon number measurements, a convenient choice in the laboratory. Our results thus introduce concepts and methods relevant to the future theoretical and experimental development of multiparameter estimation.
Collapse
Affiliation(s)
- Luca Pezzè
- QSTAR, INO-CNR and LENS, Largo Enrico Fermi 2, I-50125 Firenze, Italy
| | - Mario A Ciampini
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Nicolò Spagnolo
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Peter C Humphreys
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Animesh Datta
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Ian A Walmsley
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, United Kingdom
| | - Marco Barbieri
- Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146 Rome, Italy
| | - Fabio Sciarrino
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Augusto Smerzi
- QSTAR, INO-CNR and LENS, Largo Enrico Fermi 2, I-50125 Firenze, Italy
| |
Collapse
|
32
|
Martin Ciurana F, Colangelo G, Slodička L, Sewell RJ, Mitchell MW. Entanglement-Enhanced Radio-Frequency Field Detection and Waveform Sensing. PHYSICAL REVIEW LETTERS 2017; 119:043603. [PMID: 29341778 DOI: 10.1103/physrevlett.119.043603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Indexed: 06/07/2023]
Abstract
We demonstrate a new technique for detecting the amplitude of arbitrarily chosen components of radio-frequency waveforms based on stroboscopic backaction evading measurements. We combine quantum nondemolition measurements and stroboscopic probing to detect waveform components with magnetic sensitivity beyond the standard quantum limit. Using an ensemble of 1.5×10^{6} cold rubidium atoms, we demonstrate entanglement-enhanced sensing of sinusoidal and linearly chirped waveforms, with 1.0(2) and 0.8(3) dB metrologically relevant noise reduction, respectively. We achieve volume-adjusted sensitivity of δBsqrt[V]≈3.96 fTsqrt[cm^{3}/Hz], comparable to the best rf magnetometers.
Collapse
Affiliation(s)
- F Martin Ciurana
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - G Colangelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - L Slodička
- Department of Optics, Palacký University, 17. listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - R J Sewell
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - M W Mitchell
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain
| |
Collapse
|
33
|
Colangelo G, Ciurana FM, Bianchet LC, Sewell RJ, Mitchell MW. Simultaneous tracking of spin angle and amplitude beyond classical limits. Nature 2017; 543:525-528. [PMID: 28332519 PMCID: PMC5407441 DOI: 10.1038/nature21434] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/19/2017] [Indexed: 11/09/2022]
Abstract
Measurement of spin precession is central to extreme sensing in physics, geophysics, chemistry, nanotechnology and neuroscience, and underlies magnetic resonance spectroscopy. Because there is no spin-angle operator, any measurement of spin precession is necessarily indirect, for example, it may be inferred from spin projectors at different times. Such projectors do not commute, and so quantum measurement back-action-the random change in a quantum state due to measurement-necessarily enters the spin measurement record, introducing errors and limiting sensitivity. Here we show that this disturbance in the spin projector can be reduced below N1/2-the classical limit for N spins-by directing the quantum measurement back-action almost entirely into an unmeasured spin component. This generates a planar squeezed state that, because spins obey non-Heisenberg uncertainty relations, enables simultaneous precise knowledge of spin angle and spin amplitude. We use high-dynamic-range optical quantum non-demolition measurements applied to a precessing magnetic spin ensemble to demonstrate spin tracking with steady-state angular sensitivity 2.9 decibels below the standard quantum limit, simultaneously with amplitude sensitivity 7.0 decibels below the Poissonian variance. The standard quantum limit and Poissonian variance indicate the best possible sensitivity with independent particles. Our method surpasses these limits in non-commuting observables, enabling orders-of-magnitude improvements in sensitivity for state-of-the-art sensing and spectroscopy.
Collapse
Affiliation(s)
- Giorgio Colangelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Ferran Martin Ciurana
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Lorena C. Bianchet
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Robert J. Sewell
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Morgan W. Mitchell
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
- ICREA – Institució Catalana de Recerca i Estudis Avançats, 08015 Barcelona, Spain
| |
Collapse
|
34
|
Huang Y, Xiong HN, Yang Y, Hu ZD, Xi Z. Quantum control of spin-nematic squeezing in a dipolar spin-1 condensate. Sci Rep 2017; 7:43159. [PMID: 28233786 PMCID: PMC5324127 DOI: 10.1038/srep43159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/20/2017] [Indexed: 11/09/2022] Open
Abstract
Versatile controllability of interactions and magnetic field in ultracold atomic gases ha now reached an era where spin mixing dynamics and spin-nematic squeezing can be studied. Recent experiments have realized spin-nematic squeezed vacuum and dynamic stabilization following a quench through a quantum phase transition. Here we propose a scheme for storage of maximal spin-nematic squeezing, with its squeezing angle maintained in a fixed direction, in a dipolar spin-1 condensate by applying a microwave pulse at a time that maximal squeezing occurs. The dynamic stabilization of the system is achieved by manipulating the external periodic microwave pulses. The stability diagram for the range of pulse periods and phase shifts that stabilize the dynamics is numerical simulated and agrees with a stability analysis. Moreover, the stability range coincides well with the spin-nematic vacuum squeezed region which indicates that the spin-nematic squeezed vacuum will never disappear as long as the spin dynamics are stabilized.
Collapse
Affiliation(s)
- Yixiao Huang
- School of Science, Zhejiang University of Science and Technology, Hangzhou, Zhejiang, 310023, China.,College of Computer Science, Shaanxi Normal University, Xi'an 710062, China
| | - Heng-Na Xiong
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Yang Yang
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310023, China
| | - Zheng-Da Hu
- Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology, School of Science, Jiangnan University, Wuxi 214122, China
| | - Zhengjun Xi
- College of Computer Science, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
35
|
Kohler J, Spethmann N, Schreppler S, Stamper-Kurn DM. Cavity-Assisted Measurement and Coherent Control of Collective Atomic Spin Oscillators. PHYSICAL REVIEW LETTERS 2017; 118:063604. [PMID: 28234539 DOI: 10.1103/physrevlett.118.063604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Indexed: 06/06/2023]
Abstract
We demonstrate continuous measurement and coherent control of the collective spin of an atomic ensemble undergoing Larmor precession in a high-finesse optical cavity. The coupling of the precessing spin to the cavity field yields phenomena similar to those observed in cavity optomechanics, including cavity amplification, damping, and optical spring shifts. These effects arise from autonomous optical feedback onto the atomic spin dynamics, conditioned by the cavity spectrum. We use this feedback to stabilize the spin in either its high- or low-energy state, where, in equilibrium with measurement backaction heating, it achieves a steady-state temperature, indicated by an asymmetry between the Stokes and the anti-Stokes scattering rates. For sufficiently large Larmor frequency, such feedback stabilizes the spin ensemble in a nearly pure quantum state, in spite of continuous measurement by the cavity field.
Collapse
Affiliation(s)
- Jonathan Kohler
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Nicolas Spethmann
- Department of Physics, University of California, Berkeley, California 94720, USA
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Sydney Schreppler
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - Dan M Stamper-Kurn
- Department of Physics, University of California, Berkeley, California 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
36
|
Enhancing quantum sensing sensitivity by a quantum memory. Nat Commun 2016; 7:12279. [PMID: 27506596 PMCID: PMC4987521 DOI: 10.1038/ncomms12279] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 06/17/2016] [Indexed: 01/08/2023] Open
Abstract
In quantum sensing, precision is typically limited by the maximum time interval over which phase can be accumulated. Memories have been used to enhance this time interval beyond the coherence lifetime and thus gain precision. Here, we demonstrate that by using a quantum memory an increased sensitivity can also be achieved. To this end, we use entanglement in a hybrid spin system comprising a sensing and a memory qubit associated with a single nitrogen-vacancy centre in diamond. With the memory we retain the full quantum state even after coherence decay of the sensor, which enables coherent interaction with distinct weakly coupled nuclear spin qubits. We benchmark the performance of our hybrid quantum system against use of the sensing qubit alone by gradually increasing the entanglement of sensor and memory. We further apply this quantum sensor-memory pair for high-resolution NMR spectroscopy of single 13C nuclear spins. In quantum sensing, memories have been used to enhance measurement precision. Here, the authors demonstrate the use of a memory to increase sensitivity of single 13C nuclear spins spectroscopy by storing the full sensor state and entangling memory and sensor.
Collapse
|
37
|
McConnell R, Zhang H, Hu J, Ćuk S, Vuletić V. Entanglement with negative Wigner function of three thousand atoms heralded by one photon. ACTA ACUST UNITED AC 2016. [DOI: 10.1088/1742-6596/723/1/012054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
38
|
Hosten O, Krishnakumar R, Engelsen NJ, Kasevich MA. Quantum phase magnification. Science 2016; 352:1552-5. [DOI: 10.1126/science.aaf3397] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/17/2016] [Indexed: 11/02/2022]
|
39
|
Haine SA. Mean-Field Dynamics and Fisher Information in Matter Wave Interferometry. PHYSICAL REVIEW LETTERS 2016; 116:230404. [PMID: 27341216 DOI: 10.1103/physrevlett.116.230404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Indexed: 06/06/2023]
Abstract
There has been considerable recent interest in the mean-field dynamics of various atom-interferometry schemes designed for precision sensing. In the field of quantum metrology, the standard tools for evaluating metrological sensitivity are the classical and quantum Fisher information. In this Letter, we show how these tools can be adapted to evaluate the sensitivity when the behavior is dominated by mean-field dynamics. As an example, we compare the behavior of four recent theoretical proposals for gyroscopes based on matter-wave interference in toroidally trapped geometries. We show that while the quantum Fisher information increases at different rates for the various schemes considered, in all cases it is consistent with the well-known Sagnac phase shift after the matter waves have traversed a closed path. However, we argue that the relevant metric for quantifying interferometric sensitivity is the classical Fisher information, which can vary considerably between the schemes.
Collapse
Affiliation(s)
- Simon A Haine
- School of Mathematics and Physics, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
40
|
Jackson Kimball DF, Sushkov AO, Budker D. Precessing Ferromagnetic Needle Magnetometer. PHYSICAL REVIEW LETTERS 2016; 116:190801. [PMID: 27232012 DOI: 10.1103/physrevlett.116.190801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Indexed: 06/05/2023]
Abstract
A ferromagnetic needle is predicted to precess about the magnetic field axis at a Larmor frequency Ω under conditions where its intrinsic spin dominates over its rotational angular momentum, Nℏ≫IΩ (I is the moment of inertia of the needle about the precession axis and N is the number of polarized spins in the needle). In this regime the needle behaves as a gyroscope with spin Nℏ maintained along the easy axis of the needle by the crystalline and shape anisotropy. A precessing ferromagnetic needle is a correlated system of N spins which can be used to measure magnetic fields for long times. In principle, by taking advantage of rapid averaging of quantum uncertainty, the sensitivity of a precessing needle magnetometer can far surpass that of magnetometers based on spin precession of atoms in the gas phase. Under conditions where noise from coupling to the environment is subdominant, the scaling with measurement time t of the quantum- and detection-limited magnetometric sensitivity is t^{-3/2}. The phenomenon of ferromagnetic needle precession may be of particular interest for precision measurements testing fundamental physics.
Collapse
Affiliation(s)
- Derek F Jackson Kimball
- Department of Physics, California State University-East Bay, Hayward, California 94542-3084, USA
| | | | - Dmitry Budker
- Helmholtz Institute Mainz, Johannes Gutenberg University, 55099 Mainz, Germany
- Department of Physics, University of California at Berkeley, Berkeley, California 94720-7300, USA
- Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
41
|
Cox KC, Greve GP, Weiner JM, Thompson JK. Deterministic Squeezed States with Collective Measurements and Feedback. PHYSICAL REVIEW LETTERS 2016; 116:093602. [PMID: 26991175 DOI: 10.1103/physrevlett.116.093602] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Indexed: 06/05/2023]
Abstract
We demonstrate the creation of entangled, spin-squeezed states using a collective, or joint, measurement and real-time feedback. The pseudospin state of an ensemble of N=5×10^{4} laser-cooled ^{87}Rb atoms is deterministically driven to a specified population state with angular resolution that is a factor of 5.5(8) [7.4(6) dB] in variance below the standard quantum limit for unentangled atoms-comparable to the best enhancements using only unitary evolution. Without feedback, conditioning on the outcome of the joint premeasurement, we directly observe up to 59(8) times [17.7(6) dB] improvement in quantum phase variance relative to the standard quantum limit for N=4×10^{5} atoms. This is one of the largest reported entanglement enhancements to date in any system.
Collapse
Affiliation(s)
- Kevin C Cox
- JILA, NIST, and University of Colorado, 440 UCB, Boulder, Colorado 80309, USA
| | - Graham P Greve
- JILA, NIST, and University of Colorado, 440 UCB, Boulder, Colorado 80309, USA
| | - Joshua M Weiner
- JILA, NIST, and University of Colorado, 440 UCB, Boulder, Colorado 80309, USA
| | - James K Thompson
- JILA, NIST, and University of Colorado, 440 UCB, Boulder, Colorado 80309, USA
| |
Collapse
|
42
|
Davis E, Bentsen G, Schleier-Smith M. Approaching the Heisenberg Limit without Single-Particle Detection. PHYSICAL REVIEW LETTERS 2016; 116:053601. [PMID: 26894711 DOI: 10.1103/physrevlett.116.053601] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Indexed: 06/05/2023]
Abstract
We propose an approach to quantum phase estimation that can attain precision near the Heisenberg limit without requiring single-particle-resolved state detection. We show that the "one-axis twisting" interaction, well known for generating spin squeezing in atomic ensembles, can also amplify the output signal of an entanglement-enhanced interferometer to facilitate readout. Applying this interaction-based readout to oversqueezed, non-Gaussian states yields a Heisenberg scaling in phase sensitivity, which persists in the presence of detection noise as large as the quantum projection noise of an unentangled ensemble. Even in dissipative implementations-e.g., employing light-mediated interactions in an optical cavity or Rydberg dressing-the method significantly relaxes the detection resolution required for spectroscopy beyond the standard quantum limit.
Collapse
Affiliation(s)
- Emily Davis
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Gregory Bentsen
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
43
|
Measurement noise 100 times lower than the quantum-projection limit using entangled atoms. Nature 2016; 529:505-8. [DOI: 10.1038/nature16176] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/22/2015] [Indexed: 11/08/2022]
|
44
|
Tanaka T, Knott P, Matsuzaki Y, Dooley S, Yamaguchi H, Munro WJ, Saito S. Proposed Robust Entanglement-Based Magnetic Field Sensor Beyond the Standard Quantum Limit. PHYSICAL REVIEW LETTERS 2015; 115:170801. [PMID: 26551094 DOI: 10.1103/physrevlett.115.170801] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Indexed: 06/05/2023]
Abstract
Recently, there have been significant developments in entanglement-based quantum metrology. However, entanglement is fragile against experimental imperfections, and quantum sensing to beat the standard quantum limit in scaling has not yet been achieved in realistic systems. Here, we show that it is possible to overcome such restrictions so that one can sense a magnetic field with an accuracy beyond the standard quantum limit even under the effect of decoherence, by using a realistic entangled state that can be easily created even with current technology. Our scheme could pave the way for the realizations of practical entanglement-based magnetic field sensors.
Collapse
Affiliation(s)
- Tohru Tanaka
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan
- Department of Physics, Waseda University, Tokyo 169-8555, Japan
| | - Paul Knott
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| | - Yuichiro Matsuzaki
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| | - Shane Dooley
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan
- National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
| | - Hiroshi Yamaguchi
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| | - William J Munro
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| | - Shiro Saito
- NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0198, Japan
| |
Collapse
|
45
|
McConnell R, Zhang H, Hu J, Ćuk S, Vuletić V. Entanglement with negative Wigner function of almost 3,000 atoms heralded by one photon. Nature 2015; 519:439-42. [DOI: 10.1038/nature14293] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 01/27/2015] [Indexed: 11/09/2022]
|
46
|
Auccaise R, Araujo-Ferreira AG, Sarthour RS, Oliveira IS, Bonagamba TJ, Roditi I. Spin squeezing in a quadrupolar nuclei NMR system. PHYSICAL REVIEW LETTERS 2015; 114:043604. [PMID: 25679893 DOI: 10.1103/physrevlett.114.043604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Indexed: 06/04/2023]
Abstract
We have produced and characterized spin-squeezed states at a temperature of 26 °C in a nuclear magnetic resonance quadrupolar system. The experiment was carried out on 133Cs nuclei of spin I=7/2 in a sample of lyotropic liquid crystal. The source of spin squeezing was identified as the interaction between the quadrupole moment of the nuclei and the electric field gradients present within the molecules. We use the spin angular momentum representation to describe formally the nonlinear operators that produce the spin squeezing on a Hilbert space of dimension 2I+1=8. The quantitative and qualitative characterization of this spin-squeezing phenomenon is expressed by a squeezing parameter and squeezing angle developed for the two-mode Bose-Einstein condensate system, as well as by the Wigner quasiprobability distribution function. The generality of the present experimental scheme points to potential applications in solid-state physics.
Collapse
Affiliation(s)
- R Auccaise
- Departamento de Física, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, 84030-900 Ponta Grossa, Paraná, Brazil
| | - A G Araujo-Ferreira
- Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970 São Carlos, São Paulo, Brazil
| | - R S Sarthour
- Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Rio de Janeiro, Brazil
| | - I S Oliveira
- Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Rio de Janeiro, Brazil
| | - T J Bonagamba
- Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970 São Carlos, São Paulo, Brazil
| | - I Roditi
- Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
47
|
Fitting magnetic field gradient with Heisenberg-scaling accuracy. Sci Rep 2014; 4:7390. [PMID: 25487218 PMCID: PMC4260217 DOI: 10.1038/srep07390] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/20/2014] [Indexed: 11/27/2022] Open
Abstract
The linear function is possibly the simplest and the most used relation appearing in various areas of our world. A linear relation can be generally determined by the least square linear fitting (LSLF) method using several measured quantities depending on variables. This happens for such as detecting the gradient of a magnetic field. Here, we propose a quantum fitting scheme to estimate the magnetic field gradient with N-atom spins preparing in W state. Our scheme combines the quantum multi-parameter estimation and the least square linear fitting method to achieve the quantum Cramér-Rao bound (QCRB). We show that the estimated quantity achieves the Heisenberg-scaling accuracy. Our scheme of quantum metrology combined with data fitting provides a new method in fast high precision measurements.
Collapse
|
48
|
Rushton JA, Aldous M, Himsworth MD. Contributed Review: The feasibility of a fully miniaturized magneto-optical trap for portable ultracold quantum technology. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:121501. [PMID: 25554265 DOI: 10.1063/1.4904066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Experiments using laser cooled atoms and ions show real promise for practical applications in quantum-enhanced metrology, timing, navigation, and sensing as well as exotic roles in quantum computing, networking, and simulation. The heart of many of these experiments has been translated to microfabricated platforms known as atom chips whose construction readily lend themselves to integration with larger systems and future mass production. To truly make the jump from laboratory demonstrations to practical, rugged devices, the complex surrounding infrastructure (including vacuum systems, optics, and lasers) also needs to be miniaturized and integrated. In this paper we explore the feasibility of applying this approach to the Magneto-Optical Trap; incorporating the vacuum system, atom source and optical geometry into a permanently sealed micro-litre system capable of maintaining 10(-10) mbar for more than 1000 days of operation with passive pumping alone. We demonstrate such an engineering challenge is achievable using recent advances in semiconductor microfabrication techniques and materials.
Collapse
Affiliation(s)
- J A Rushton
- School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - M Aldous
- School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - M D Himsworth
- School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
49
|
Lucivero VG, Anielski P, Gawlik W, Mitchell MW. Shot-noise-limited magnetometer with sub-picotesla sensitivity at room temperature. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2014; 85:113108. [PMID: 25430099 DOI: 10.1063/1.4901588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report a photon shot-noise-limited (SNL) optical magnetometer based on amplitude modulated optical rotation using a room-temperature (85)Rb vapor in a cell with anti-relaxation coating. The instrument achieves a room-temperature sensitivity of 70 fT / √Hz at 7.6 μT. Experimental scaling of noise with optical power, in agreement with theoretical predictions, confirms the SNL behaviour from 5 μT to 75 μT. The combination of best-in-class sensitivity and SNL operation makes the system a promising candidate for application of squeezed light to a state-of-the-art atomic sensor.
Collapse
Affiliation(s)
- Vito Giovanni Lucivero
- ICFO - Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels, Barcelona, Spain
| | - Pawel Anielski
- Center for Magneto-Optical Research Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow, Poland
| | - Wojciech Gawlik
- Center for Magneto-Optical Research Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow, Poland
| | - Morgan W Mitchell
- ICFO - Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels, Barcelona, Spain
| |
Collapse
|
50
|
Muessel W, Strobel H, Linnemann D, Hume DB, Oberthaler MK. Scalable spin squeezing for quantum-enhanced magnetometry with Bose-Einstein condensates. PHYSICAL REVIEW LETTERS 2014; 113:103004. [PMID: 25238356 DOI: 10.1103/physrevlett.113.103004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Indexed: 06/03/2023]
Abstract
A major challenge in quantum metrology is the generation of entangled states with a macroscopic atom number. Here, we demonstrate experimentally that atomic squeezing generated via nonlinear dynamics in Bose-Einstein condensates, combined with suitable trap geometries, allows scaling to large ensemble sizes. We achieve a suppression of fluctuations by 5.3(5) dB for 12,300 particles, from which we infer that similar squeezing can be obtained for more than 10(7) atoms. With this resource, we demonstrate quantum-enhanced magnetometry by swapping the squeezed state to magnetically sensitive hyperfine levels that have negligible nonlinearity. We find a quantum-enhanced single-shot sensitivity of 310(47) pT for static magnetic fields in a probe volume as small as 90 μm3.
Collapse
Affiliation(s)
- W Muessel
- Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - H Strobel
- Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - D Linnemann
- Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - D B Hume
- Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| | - M K Oberthaler
- Kirchhoff-Institut für Physik, Universität Heidelberg, Im Neuenheimer Feld 227, 69120 Heidelberg, Germany
| |
Collapse
|