1
|
Ji H, Yoo J, Fox W, Yamada M, Argall M, Egedal J, Liu YH, Wilder R, Eriksson S, Daughton W, Bergstedt K, Bose S, Burch J, Torbert R, Ng J, Chen LJ. Laboratory Study of Collisionless Magnetic Reconnection. SPACE SCIENCE REVIEWS 2023; 219:76. [PMID: 38023292 PMCID: PMC10651714 DOI: 10.1007/s11214-023-01024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/03/2023] [Indexed: 12/01/2023]
Abstract
A concise review is given on the past two decades' results from laboratory experiments on collisionless magnetic reconnection in direct relation with space measurements, especially by the Magnetospheric Multiscale (MMS) mission. Highlights include spatial structures of electromagnetic fields in ion and electron diffusion regions as a function of upstream symmetry and guide field strength, energy conversion and partitioning from magnetic field to ions and electrons including particle acceleration, electrostatic and electromagnetic kinetic plasma waves with various wavelengths, and plasmoid-mediated multiscale reconnection. Combined with the progress in theoretical, numerical, and observational studies, the physics foundation of fast reconnection in collisionless plasmas has been largely established, at least within the parameter ranges and spatial scales that were studied. Immediate and long-term future opportunities based on multiscale experiments and space missions supported by exascale computation are discussed, including dissipation by kinetic plasma waves, particle heating and acceleration, and multiscale physics across fluid and kinetic scales.
Collapse
Affiliation(s)
- H. Ji
- Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, 08544 New Jersey USA
- Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, 08543 New Jersey USA
| | - J. Yoo
- Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, 08543 New Jersey USA
| | - W. Fox
- Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, 08543 New Jersey USA
| | - M. Yamada
- Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, 08543 New Jersey USA
| | - M. Argall
- Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, 8 College Road, Durham, 03824 New Hampshire USA
| | - J. Egedal
- Department of Physics, University of Wisconsin - Madison, 1150 University Avenue, Madison, 53706 Wisconsin USA
| | - Y.-H. Liu
- Department of Physics and Astronomy, Dartmouth College, 17 Fayerweather Hill Road, Hanover, 03755 New Hampshire USA
| | - R. Wilder
- Department of Physics, University of Texas at Arlington, 701 S. Nedderman Drive, Arlington, 76019 Texas USA
| | - S. Eriksson
- Laboratory for Atmospheric and Space Physics, University of Colorado at Boulder, 1234 Innovation Drive, Boulder, 80303 Colorado USA
| | - W. Daughton
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, 87545 New Mexico USA
| | - K. Bergstedt
- Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Princeton, 08544 New Jersey USA
| | - S. Bose
- Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, 08543 New Jersey USA
| | - J. Burch
- Southwest Research Institute, 6220 Culebra Road, San Antonio, 78238 Texas USA
| | - R. Torbert
- Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, 8 College Road, Durham, 03824 New Hampshire USA
| | - J. Ng
- Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, 08543 New Jersey USA
- Department of Astronomy, University of Maryland, 4296 Stadium Drive, College Park, 20742 Maryland USA
- Goddard Space Flight Center, Mail Code 130, Greenbelt, 20771 Maryland USA
| | - L.-J. Chen
- Goddard Space Flight Center, Mail Code 130, Greenbelt, 20771 Maryland USA
| |
Collapse
|
2
|
Uzdensky DA. Relativistic Nonthermal Particle Acceleration in Two-Dimensional Collisionless Magnetic Reconnection. JOURNAL OF PLASMA PHYSICS 2022; 88:905880114. [PMID: 35241860 PMCID: PMC8886498 DOI: 10.1017/s0022377822000046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Magnetic reconnection, especially in the relativistic regime, provides an efficient mechanism for accelerating relativistic particles and thus offers an attractive physical explanation for nonthermal high-energy emission from various astrophysical sources. I present a simple analytical model that elucidates key physical processes responsible for reconnection-driven relativistic nonthermal particle acceleration (NTPA) in the large-system, plasmoid-dominated regime in two dimensions. The model aims to explain the numerically-observed dependencies of the power-law index p and high-energy cutoff γc of the resulting nonthermal particle energy spectrum f(γ) on the ambient plasma magnetization σ, and (for γc ) on the system size L. In this self-similar model, energetic particles are continuously accelerated by the out-of-plane reconnection electric field E rec until they become magnetized by the reconnected magnetic field and eventually trapped in plasmoids large enough to confine them. The model also includes diffusive Fermi acceleration by particle bouncing off rapidly moving plasmoids. I argue that the balance between electric acceleration and magnetization controls the power-law index, while trapping in plasmoids governs the cutoff, thus tying the particle energy spectrum to the plasmoid distribution.
Collapse
Affiliation(s)
- Dmitri A. Uzdensky
- Center for Integrated Plasma Studies, Physics Department, 390 UCB, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
3
|
Sitnov M, Birn J, Ferdousi B, Gordeev E, Khotyaintsev Y, Merkin V, Motoba T, Otto A, Panov E, Pritchett P, Pucci F, Raeder J, Runov A, Sergeev V, Velli M, Zhou X. Explosive Magnetotail Activity. SPACE SCIENCE REVIEWS 2019; 215:31. [PMID: 31178609 PMCID: PMC6528807 DOI: 10.1007/s11214-019-0599-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 04/27/2019] [Indexed: 06/01/2023]
Abstract
Modes and manifestations of the explosive activity in the Earth's magnetotail, as well as its onset mechanisms and key pre-onset conditions are reviewed. Two mechanisms for the generation of the pre-onset current sheet are discussed, namely magnetic flux addition to the tail lobes, or other high-latitude perturbations, and magnetic flux evacuation from the near-Earth tail associated with dayside reconnection. Reconnection onset may require stretching and thinning of the sheet down to electron scales. It may also start in thicker sheets in regions with a tailward gradient of the equatorial magnetic field B z ; in this case it begins as an ideal-MHD instability followed by the generation of bursty bulk flows and dipolarization fronts. Indeed, remote sensing and global MHD modeling show the formation of tail regions with increased B z , prone to magnetic reconnection, ballooning/interchange and flapping instabilities. While interchange instability may also develop in such thicker sheets, it may grow more slowly compared to tearing and cause secondary reconnection locally in the dawn-dusk direction. Post-onset transients include bursty flows and dipolarization fronts, micro-instabilities of lower-hybrid-drift and whistler waves, as well as damped global flux tube oscillations in the near-Earth region. They convert the stretched tail magnetic field energy into bulk plasma acceleration and collisionless heating, excitation of a broad spectrum of plasma waves, and collisional dissipation in the ionosphere. Collisionless heating involves ion reflection from fronts, Fermi, betatron as well as other, non-adiabatic, mechanisms. Ionospheric manifestations of some of these magnetotail phenomena are discussed. Explosive plasma phenomena observed in the laboratory, the solar corona and solar wind are also discussed.
Collapse
Affiliation(s)
- Mikhail Sitnov
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | | | | | - Evgeny Gordeev
- Earth’s Physics Department, Saint Petersburg State University, St. Petersburg, Russia
| | | | - Viacheslav Merkin
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | - Tetsuo Motoba
- The Johns Hopkins University Applied Physics Laboratory, Laurel, MD USA
| | | | - Evgeny Panov
- Space Research Institute, Austrian Academy of Sciences, Graz, Austria
| | - Philip Pritchett
- Department of Physics and Astronomy, University of California, Los Angeles, CA USA
| | - Fulvia Pucci
- National Institute for Fusion Science, National Institutes of Natural Sciences, Toki, 509-5292 Japan
- Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ USA
| | - Joachim Raeder
- Institute for the Study of Earth, Oceans and Space, University of New Hampshire, Durham, NH USA
| | - Andrei Runov
- Institute of Geophysics and Planetary Physics, University of California, Los Angeles, CA USA
| | - Victor Sergeev
- Earth’s Physics Department, Saint Petersburg State University, St. Petersburg, Russia
| | - Marco Velli
- University of California Los Angeles, Los Angeles, CA 90095 USA
| | - Xuzhi Zhou
- School of Earth and Space Sciences, Peking University, Beijing, 100871 China
| |
Collapse
|
4
|
Kumar P, Karpen JT, Antiochos SK, Wyper PF, Devore CR, Deforest CE. EVIDENCE FOR THE MAGNETIC BREAKOUT MODEL IN AN EQUATORIAL CORONAL-HOLE JET. THE ASTROPHYSICAL JOURNAL 2018; 854:155. [PMID: 33867543 PMCID: PMC8051205 DOI: 10.3847/1538-4357/aaab4f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Small, impulsive jets commonly occur throughout the solar corona, but are especially visible in coronal holes. Evidence is mounting that jets are part of a continuum of eruptions that extends to much larger coronal mass ejections and eruptive flares. Because coronal-hole jets originate in relatively simple magnetic structures, they offer an ideal testbed for theories of energy buildup and release in the full range of solar eruptions. We analyzed an equatorial coronal-hole jet observed by SDO/AIA on 09 January 2014, in which the magnetic-field structure was consistent with the embedded-bipole topology that we identified and modeled previously as an origin of coronal jets. In addition, this event contained a mini-filament, which led to important insights into the energy storage and release mechanisms. SDO/HMI magnetograms revealed footpoint motions in the primary minority-polarity region at the eruption site, but show negligible flux emergence or cancellation for at least 16 hours before the eruption. Therefore, the free energy powering this jet probably came from magnetic shear concentrated at the polarity inversion line within the embedded bipole. We find that the observed activity sequence and its interpretation closely match the predictions of the breakout jet model, strongly supporting the hypothesis that the breakout model can explain solar eruptions on a wide range of scales.
Collapse
Affiliation(s)
- Pankaj Kumar
- Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - Judith T Karpen
- Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - Spiro K Antiochos
- Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - Peter F Wyper
- Department of Mathematical Sciences, Durham University, Durham DH1 3LE, UK and
| | - C Richard Devore
- Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - Craig E Deforest
- Southwest Research Institute, 1050 Walnut Street, Boulder, CO, USA
| |
Collapse
|
5
|
Loureiro NF, Boldyrev S. Role of Magnetic Reconnection in Magnetohydrodynamic Turbulence. PHYSICAL REVIEW LETTERS 2017; 118:245101. [PMID: 28665671 DOI: 10.1103/physrevlett.118.245101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Indexed: 06/07/2023]
Abstract
The current understanding of magnetohydrodynamic (MHD) turbulence envisions turbulent eddies which are anisotropic in all three directions. In the plane perpendicular to the local mean magnetic field, this implies that such eddies become current-sheetlike structures at small scales. We analyze the role of magnetic reconnection in these structures and conclude that reconnection becomes important at a scale λ∼LS_{L}^{-4/7}, where S_{L} is the outer-scale (L) Lundquist number and λ is the smallest of the field-perpendicular eddy dimensions. This scale is larger than the scale set by the resistive diffusion of eddies, therefore implying a fundamentally different route to energy dissipation than that predicted by the Kolmogorov-like phenomenology. In particular, our analysis predicts the existence of the subinertial, reconnection interval of MHD turbulence, with the estimated scaling of the Fourier energy spectrum E(k_{⊥})∝k_{⊥}^{-5/2}, where k_{⊥} is the wave number perpendicular to the local mean magnetic field. The same calculation is also performed for high (perpendicular) magnetic Prandtl number plasmas (Pm), where the reconnection scale is found to be λ/L∼S_{L}^{-4/7}Pm^{-2/7}.
Collapse
Affiliation(s)
- Nuno F Loureiro
- Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Stanislav Boldyrev
- Department of Physics, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA
- Space Science Institute, Boulder, Colorado 80301, USA
| |
Collapse
|
6
|
Uzdensky DA, Loureiro NF. Magnetic Reconnection Onset via Disruption of a Forming Current Sheet by the Tearing Instability. PHYSICAL REVIEW LETTERS 2016; 116:105003. [PMID: 27015487 DOI: 10.1103/physrevlett.116.105003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Indexed: 06/05/2023]
Abstract
The recent realization that Sweet-Parker current sheets are violently unstable to the secondary tearing (plasmoid) instability implies that such current sheets cannot occur in real systems. This suggests that, in order to understand the onset of magnetic reconnection, one needs to consider the growth of the tearing instability in a current layer as it is being formed. Such an analysis is performed here in the context of nonlinear resistive magnetohydrodynamics for a generic time-dependent equilibrium representing a gradually forming current sheet. It is shown that two onset regimes, single-island and multi-island, are possible, depending on the rate of current sheet formation. A simple model is used to compute the criterion for transition between these two regimes, as well as the reconnection onset time and the current sheet parameters at that moment. For typical solar corona parameters, this model yields results consistent with observations.
Collapse
Affiliation(s)
- D A Uzdensky
- Center for Integrated Plasma Studies, Physics Department, UCB-390, University of Colorado, Boulder, Colorado 80309, USA
| | - N F Loureiro
- Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
7
|
Zhdankin V, Uzdensky DA, Boldyrev S. Temporal intermittency of energy dissipation in magnetohydrodynamic turbulence. PHYSICAL REVIEW LETTERS 2015; 114:065002. [PMID: 25723225 DOI: 10.1103/physrevlett.114.065002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Indexed: 06/04/2023]
Abstract
Energy dissipation in magnetohydrodynamic (MHD) turbulence is known to be highly intermittent in space, being concentrated in sheetlike coherent structures. Much less is known about intermittency in time, another fundamental aspect of turbulence which has great importance for observations of solar flares and other space or astrophysical phenomena. In this Letter, we investigate the temporal intermittency of energy dissipation in numerical simulations of MHD turbulence. We consider four-dimensional spatiotemporal structures, "flare events," responsible for a large fraction of the energy dissipation. We find that although the flare events are often highly complex, they exhibit robust power-law distributions and scaling relations. We find that the probability distribution of dissipated energy has a power-law index close to α≈1.75, similar to observations of solar flares, indicating that intense dissipative events dominate the heating of the system. We also discuss the temporal asymmetry of flare events as a signature of the turbulent cascade.
Collapse
Affiliation(s)
- Vladimir Zhdankin
- Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, Wisconsin 53706, USA
| | - Dmitri A Uzdensky
- Center for Integrated Plasma Studies, Physics Department, UCB-390, University of Colorado, Boulder, Colorado 80309, USA
| | - Stanislav Boldyrev
- Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, Wisconsin 53706, USA
| |
Collapse
|