1
|
Wang W, Li J, Liang Z, Wu L, Lozano PM, Komarek AC, Shen X, Reid AH, Wang X, Li Q, Yin W, Sun K, Robinson IK, Zhu Y, Dean MP, Tao J. Verwey transition as evolution from electronic nematicity to trimerons via electron-phonon coupling. SCIENCE ADVANCES 2023; 9:eadf8220. [PMID: 37294769 PMCID: PMC10256157 DOI: 10.1126/sciadv.adf8220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 05/04/2023] [Indexed: 06/11/2023]
Abstract
Understanding the driving mechanisms behind metal-insulator transitions (MITs) is a critical step toward controlling material's properties. Since the proposal of charge order-induced MIT in magnetite Fe3O4 in 1939 by Verwey, the nature of the charge order and its role in the transition have remained elusive. Recently, a trimeron order was found in the low-temperature structure of Fe3O4; however, the expected transition entropy change in forming trimeron is greater than the observed value, which arises a reexamination of the ground state in the high-temperature phase. Here, we use electron diffraction to unveil that a nematic charge order on particular Fe sites emerges in the high-temperature structure of bulk Fe3O4 and that, upon cooling, a competitive intertwining of charge and lattice orders arouses the Verwey transition. Our findings discover an unconventional type of electronic nematicity in correlated materials and offer innovative insights into the transition mechanism in Fe3O4 via the electron-phonon coupling.
Collapse
Affiliation(s)
- Wei Wang
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jun Li
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Zhixiu Liang
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Lijun Wu
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Pedro M. Lozano
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY 11973, USA
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, USA
| | - Alexander C. Komarek
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Street 40, 01187 Dresden, Germany
| | - Xiaozhe Shen
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Alex H. Reid
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Xijie Wang
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Qiang Li
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY 11973, USA
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800, USA
| | - Weiguo Yin
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Kai Sun
- Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ian K. Robinson
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY 11973, USA
- London Centre for Nanotechnology, University College, London WC1E 6BT, UK
| | - Yimei Zhu
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Mark P.M. Dean
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Jing Tao
- Condensed Matter Physics and Materials Science Division, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
2
|
Layek S, Greenberg E, Chariton S, Bykov M, Bykova E, Trots DM, Kurnosov AV, Chuvashova I, Ovsyannikov SV, Leonov I, Rozenberg GK. Verwey-Type Charge Ordering and Site-Selective Mott Transition in Fe 4O 5 under Pressure. J Am Chem Soc 2022; 144:10259-10269. [PMID: 35649281 PMCID: PMC9204770 DOI: 10.1021/jacs.2c00895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 11/28/2022]
Abstract
The metal-insulator transition driven by electronic correlations is one of the most fundamental concepts in condensed matter. In mixed-valence compounds, this transition is often accompanied by charge ordering (CO), resulting in the emergence of complex phases and unusual behaviors. The famous example is the archetypal mixed-valence mineral magnetite, Fe3O4, exhibiting a complex charge-ordering below the Verwey transition, whose nature has been a subject of long-time debates. In our study, using high-resolution X-ray diffraction supplemented by resistance measurements and DFT+DMFT calculations, the electronic, magnetic, and structural properties of recently synthesized mixed-valence Fe4O5 are investigated under pressure to ∼100 GPa. Our calculations, consistent with experiment, reveal that at ambient conditions Fe4O5 is a narrow-gap insulator characterized by the original Verwey-type CO. Under pressure Fe4O5 undergoes a series of electronic and magnetic-state transitions with an unusual compressional behavior above ∼50 GPa. A site-dependent collapse of local magnetic moments is followed by the site-selective insulator-to-metal transition at ∼84 GPa, occurring at the octahedral Fe sites. This phase transition is accompanied by a 2+ to 3+ valence change of the prismatic Fe ions and collapse of CO. We provide a microscopic explanation of the complex charge ordering in Fe4O5 which "unifies" it with the behavior of two archetypal examples of charge- or bond-ordered materials, magnetite and rare-earth nickelates (RNiO3). We find that at low temperatures the Verwey-type CO competes with the "trimeron"/"dimeron" charge ordered states, allowing for pressure/temperature tuning of charge ordering. Summing up the available data, we present the pressure-temperature phase diagram of Fe4O5.
Collapse
Affiliation(s)
- Samar Layek
- School
of Physics and Astronomy, Tel Aviv University, 69978 Tel Aviv, Israel
- Department
of Physics, School of Engineering, University
of Petroleum and Energy Studies (UPES), Dehradun, Uttarakhand 248007, India
| | - Eran Greenberg
- Center
for Advanced Radiation Sources, University
of Chicago, 5640 South Ellis Avenue, 60637 Chicago, United States
- Applied
Physics Division, Soreq NRC, Yavne, 81800, Israel
| | - Stella Chariton
- Center
for Advanced Radiation Sources, University
of Chicago, 5640 South Ellis Avenue, 60637 Chicago, United States
| | - Maxim Bykov
- Institute
of Inorganic Chemistry, University of Cologne, Greinstrasse 6, 50939 Cologne, Germany
| | - Elena Bykova
- Earth
and
Planets Laboratory, Carnegie Institution
for Science, Washington, District of Columbia 20015, United States
- Bayerisches
Geoinstitut, Universität Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany
| | - Dmytro M. Trots
- Bayerisches
Geoinstitut, Universität Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany
| | - Alexander V. Kurnosov
- Bayerisches
Geoinstitut, Universität Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany
| | - Irina Chuvashova
- Harvard
Physics, Jefferson Physical
Lab, 17 Oxford Street, Cambridge, Massachusetts 02138, United States
- Department
of Chemistry and Biochemistry, Florida International
University, 11200 SW
Eighth Street, CP 234, Miami, Florida 33199, United
States
| | - Sergey V. Ovsyannikov
- Bayerisches
Geoinstitut, Universität Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany
| | - Ivan Leonov
- M. N. Miheev
Institute of Metal Physics, Russian Academy
of Sciences, 620108 Yekaterinburg, Russia
- Ural
Federal University, 620002 Yekaterinburg, Russia
- Skolkovo
Institute of Science and Technology, 143026 Moscow, Russia
| | | |
Collapse
|
3
|
Attfield JP. Magnetism and the Trimeron Bond. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:2877-2885. [PMID: 35814039 PMCID: PMC9261838 DOI: 10.1021/acs.chemmater.2c00275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/14/2022] [Indexed: 05/06/2023]
Abstract
A review of progress in understanding the Verwey transition in magnetite (Fe3O4) over the past decade is presented. This electronic and structural transition at T V ≈ 125 K was reported in 1939 and has since been a contentious issue in magnetism. Long range Fe2+/Fe3+ charge ordering has been confirmed below the transition from crystal structure refinement, and Fe2+ orbital ordering and formation of trimerons through weak bonding of Fe2+ states to two Fe neighbors has been discovered. This model has accounted for many spectroscopic observations such as the 57Fe NMR frequencies. The trimeron lifetime has been measured, and trimeron soft modes have been observed. The origin of the first to second order crossover of Verwey transitions in doped magnetites has been revealed by a nanoparticle study. Electronic and structural fluctuations are found to persist to temperatures far above T V and local structural distortions track the bulk magnetization, disappearing at the 850 K Curie transition. New binary mixed-valent iron oxides discovered at high pressure are found to have electronic transitions and orbital molecule ground states similar to those of magnetite.
Collapse
|
4
|
Elnaggar H, Sainctavit P, Juhin A, Lafuerza S, Wilhelm F, Rogalev A, Arrio MA, Brouder C, van der Linden M, Kakol Z, Sikora M, Haverkort MW, Glatzel P, de Groot FMF. Noncollinear Ordering of the Orbital Magnetic Moments in Magnetite. PHYSICAL REVIEW LETTERS 2019; 123:207201. [PMID: 31809079 DOI: 10.1103/physrevlett.123.207201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 10/02/2019] [Indexed: 05/22/2023]
Abstract
The magnitude of the orbital magnetic moment and its role as a trigger of the Verwey transition in the prototypical Mott insulator, magnetite, remain contentious. Using 1s2p resonant inelastic x-ray scattering angle distribution (RIXS-AD), we prove the existence of noncollinear orbital magnetic ordering and infer the presence of dynamical distortion creating a polaronic precursor for the metal to insulator transition. These conclusions are based on a subtle angular shift of the RIXS-AD spectral intensity as a function of the magnetic field orientation. Theoretical simulations show that these results are only consistent with noncollinear magnetic orbital ordering. To further support these claims we perform Fe K-edge x-ray magnetic circular dichroism in order to quantify the Fe average orbital magnetic moment.
Collapse
Affiliation(s)
- H Elnaggar
- Debye Institute for Nanomaterials Science, Utrecht University, 3584 CA Utrecht, The Netherlands
| | - Ph Sainctavit
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS, Sorbonne Université, MNHN, UMR7590, 75252 Paris Cedex 05, France
| | - A Juhin
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS, Sorbonne Université, MNHN, UMR7590, 75252 Paris Cedex 05, France
| | - S Lafuerza
- European Synchrotron Radiation Facility, CS40220, F-38043 Grenoble Cedex 9, France
| | - F Wilhelm
- European Synchrotron Radiation Facility, CS40220, F-38043 Grenoble Cedex 9, France
| | - A Rogalev
- European Synchrotron Radiation Facility, CS40220, F-38043 Grenoble Cedex 9, France
| | - M-A Arrio
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS, Sorbonne Université, MNHN, UMR7590, 75252 Paris Cedex 05, France
| | - Ch Brouder
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS, Sorbonne Université, MNHN, UMR7590, 75252 Paris Cedex 05, France
| | - M van der Linden
- Debye Institute for Nanomaterials Science, Utrecht University, 3584 CA Utrecht, The Netherlands
- European Synchrotron Radiation Facility, CS40220, F-38043 Grenoble Cedex 9, France
| | - Z Kakol
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
| | - M Sikora
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
| | - M W Haverkort
- Institut für Theoritiche Physik, Universität Heidelberg, Philosophenweg 19, 69120 Heidelberg, Germany
| | - P Glatzel
- European Synchrotron Radiation Facility, CS40220, F-38043 Grenoble Cedex 9, France
| | - F M F de Groot
- Debye Institute for Nanomaterials Science, Utrecht University, 3584 CA Utrecht, The Netherlands
| |
Collapse
|
5
|
Elnaggar H, Wang RP, Lafuerza S, Paris E, Tseng Y, McNally D, Komarek A, Haverkort M, Sikora M, Schmitt T, de Groot FMF. Magnetic Contrast at Spin-Flip Excitations: An Advanced X-Ray Spectroscopy Tool to Study Magnetic-Ordering. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36213-36220. [PMID: 31495171 PMCID: PMC6778912 DOI: 10.1021/acsami.9b10196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/09/2019] [Indexed: 06/01/2023]
Abstract
The determination of the local orientation and magnitude of the magnetization in spin textures plays a pivotal role in understanding and harnessing magnetic properties for technological applications. Here, we show that by employing the polarization dependence of resonant inelastic X-ray scattering (RIXS), we can directly probe the spin ordering with chemical and site selectivity. Applied on the prototypical ferrimagnetic mixed-valence system, magnetite ([Fe3+]A[Fe3+,Fe2+]BO4), we can distinguish spin-flip excitations at the A and B antiferromagnetically coupled Fe3+ sublattices and quantify the exchange field. Furthermore, it is possible to determine the orbital contribution to the magnetic moment from detailed angular dependence measurements. RIXS dichroism measurements performed at spin-flip excitations with nanometer spatial resolution will offer a powerful mapping contrast suitable for the characterization of magnetic ordering at interfaces and engineered spin textures.
Collapse
Affiliation(s)
- Hebatalla Elnaggar
- Debye
Institute for Nanomaterials Science, Utrecht
University, Universiteitsweg 99, 3584 CA Utrecht, The Netherlands
| | - Ru-Pan Wang
- Debye
Institute for Nanomaterials Science, Utrecht
University, Universiteitsweg 99, 3584 CA Utrecht, The Netherlands
| | - Sara Lafuerza
- European
Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Eugenio Paris
- Photon
Science Division, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Yi Tseng
- Photon
Science Division, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Daniel McNally
- Photon
Science Division, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Alexander Komarek
- Max-Planck-Institute
for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden, Germany
| | - Maurits Haverkort
- Institut
für Theoritiche Physik, Universität
Heidelberg, Philosophenweg
19, 69120 Heidelberg, Germany
| | - Marcin Sikora
- Academic
Centre for Materials and Nanotechnology, AGH University of Science and Technology, Mickiewicza 30, 30-059 Krakow, Poland
| | - Thorsten Schmitt
- Photon
Science Division, Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen PSI, Switzerland
| | - Frank M. F. de Groot
- Debye
Institute for Nanomaterials Science, Utrecht
University, Universiteitsweg 99, 3584 CA Utrecht, The Netherlands
| |
Collapse
|
6
|
Co-emergence of magnetic order and structural fluctuations in magnetite. Nat Commun 2019; 10:2857. [PMID: 31253806 PMCID: PMC6599026 DOI: 10.1038/s41467-019-10949-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/10/2019] [Indexed: 11/09/2022] Open
Abstract
The nature of the Verwey transition occurring at TV ≈ 125 K in magnetite (Fe3O4) has been an outstanding problem over many decades. A complex low temperature electronic order was recently discovered and associated structural fluctuations persisting above TV are widely reported, but the origin of the underlying correlations and hence of the Verwey transition remains unclear. Here we show that local structural fluctuations in magnetite emerge below the Curie transition at TC ≈ 850 K, through X-ray pair distribution function analysis. Around 80% of the low temperature correlations emerge in proportion to magnetization below TC. This confirms that fluctuations in Fe-Fe bonding arising from magnetic order are the primary electronic instability and hence the origin of the Verwey transition. Such hidden instabilities may be important to other spin-polarised conductors and orbitally degenerate materials.
Collapse
|
7
|
Huang HY, Chen ZY, Wang RP, de Groot FMF, Wu WB, Okamoto J, Chainani A, Singh A, Li ZY, Zhou JS, Jeng HT, Guo GY, Park JG, Tjeng LH, Chen CT, Huang DJ. Jahn-Teller distortion driven magnetic polarons in magnetite. Nat Commun 2017; 8:15929. [PMID: 28660878 PMCID: PMC5493765 DOI: 10.1038/ncomms15929] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 05/12/2017] [Indexed: 11/20/2022] Open
Abstract
The first known magnetic mineral, magnetite, has unusual properties, which have fascinated mankind for centuries; it undergoes the Verwey transition around 120 K with an abrupt change in structure and electrical conductivity. The mechanism of the Verwey transition, however, remains contentious. Here we use resonant inelastic X-ray scattering over a wide temperature range across the Verwey transition to identify and separate out the magnetic excitations derived from nominal Fe2+ and Fe3+ states. Comparison of the experimental results with crystal-field multiplet calculations shows that the spin–orbital dd excitons of the Fe2+ sites arise from a tetragonal Jahn-Teller active polaronic distortion of the Fe2+O6 octahedra. These low-energy excitations, which get weakened for temperatures above 350 K but persist at least up to 550 K, are distinct from optical excitations and are best explained as magnetic polarons. The Verwey transition of magnetite is complex due to the coexistence of strong correlations and electron-phonon coupling. Here, the authors use resonant inelastic X-ray scattering to show evidence for magnetic polarons in magnetite and provide insight into the nature of the transition.
Collapse
Affiliation(s)
- H Y Huang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan.,Program of Science and Technology of Synchrotron Light Source, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Z Y Chen
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - R-P Wang
- Inorganic Chemistry and Catalysis, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - F M F de Groot
- Inorganic Chemistry and Catalysis, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - W B Wu
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - J Okamoto
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - A Chainani
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - A Singh
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Z-Y Li
- Department of Mechanical Engineering, Texas Material Institute, University of Texas at Austin, Austin, Texas 78712, USA
| | - J-S Zhou
- Department of Mechanical Engineering, Texas Material Institute, University of Texas at Austin, Austin, Texas 78712, USA
| | - H-T Jeng
- Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - G Y Guo
- Department of Physics, National Taiwan University, Taipei 10617, Taiwan.,Division of Physics, National Center for Theoretical Sciences, Hsinchu 30013, Taiwan
| | - Je-Geun Park
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea.,Center for Correlated Electron Systems, Institute for Basic Science, Seoul 08826, Korea
| | - L H Tjeng
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzerstr. 40, 01187 Dresden, Germany
| | - C T Chen
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - D J Huang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan.,Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
8
|
|
9
|
Pradip R, Piekarz P, Bosak A, Merkel DG, Waller O, Seiler A, Chumakov AI, Rüffer R, Oleś AM, Parlinski K, Krisch M, Baumbach T, Stankov S. Lattice Dynamics of EuO: Evidence for Giant Spin-Phonon Coupling. PHYSICAL REVIEW LETTERS 2016; 116:185501. [PMID: 27203332 DOI: 10.1103/physrevlett.116.185501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Indexed: 06/05/2023]
Abstract
Comprehensive studies of lattice dynamics in the ferromagnetic semiconductor EuO have been performed by a combination of inelastic x-ray scattering, nuclear inelastic scattering, and ab initio calculations. A remarkably large broadening of the transverse acoustic phonons was discovered at temperatures above and below the Curie temperature T_{C}=69 K. This result indicates a surprisingly strong momentum-dependent spin-phonon coupling induced by the spin dynamics in EuO.
Collapse
Affiliation(s)
- R Pradip
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen, Germany
| | - P Piekarz
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland
| | - A Bosak
- ESRF-The European Synchrotron, F-38000 Grenoble, France
| | - D G Merkel
- ESRF-The European Synchrotron, F-38000 Grenoble, France
| | - O Waller
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen, Germany
| | - A Seiler
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen, Germany
| | - A I Chumakov
- ESRF-The European Synchrotron, F-38000 Grenoble, France
| | - R Rüffer
- ESRF-The European Synchrotron, F-38000 Grenoble, France
| | - A M Oleś
- Max-Planck-Institut für Festkörperforschung, D-70569 Stuttgart, Germany
- Marian Smoluchowski Institute of Physics, Jagiellonian University, PL-30348 Kraków, Poland
| | - K Parlinski
- Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków, Poland
| | - M Krisch
- ESRF-The European Synchrotron, F-38000 Grenoble, France
| | - T Baumbach
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen, Germany
- ANKA, Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen, Germany
| | - S Stankov
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology, D-76131 Karlsruhe, Germany
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
10
|
Bernal-Villamil I, Gallego S. Electronic phase transitions in ultrathin magnetite films. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:293202. [PMID: 26153727 DOI: 10.1088/0953-8984/27/29/293202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Magnetite (Fe3O4) shows singular electronic and magnetic properties, resulting from complex electron-electron and electron-phonon interactions that involve the interplay of charge, orbital and spin degrees of freedom. The Verwey transition is a manifestation of these interactions, with a puzzling connection between the low temperature charge ordered state and the dynamic charge fluctuations still present above the transition temperature. Here we explore how these rich physical phenomena are affected by thin film geometries, particularly focusing on the ultimate size limit defined by thicknesses below the minimum bulk unit cell. On one hand, we address the influence of extended defects, such as surfaces or antiphase domains, on the novel features exhibited by thin films. On the other, we try to isolate the effect of the reduced thickness on the electronic and magnetic properties. We will show that a distinct phase diagram and novel charge distributions emerge under reduced dimensions, while holding the local high magnetic moments. Altogether, thin film geometries offer unique possibilities to understand the complex interplay of short- and long-range orders in the Verwey transition. Furthermore, they arise as interesting candidates for the exploitation of the rich physics of magnetite in devices that demand nanoscale geometries, additionally offering novel functionalities based on their distinct properties with respect to the bulk form.
Collapse
Affiliation(s)
- I Bernal-Villamil
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
11
|
Bernal-Villamil I, Gallego S. Charge order at magnetite Fe₃O₄(0 0 1): surface and Verwey phase transitions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:012001. [PMID: 25419695 DOI: 10.1088/0953-8984/27/1/012001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
At ambient conditions, the Fe3O4(0 0 1) surface shows a (√2 × √2)R45° reconstruction that has been proposed as the surface analog of the bulk phase below the Verwey transition temperature, T(V). The reconstruction disappears at a high temperature, T(S), through a second order transition. We calculate the temperature evolution of the surface electronic structure based on a reduced bulk unit cell of P2/m symmetry that contains the main features of the bulk charge distribution. We demonstrate that the insulating surface gap arises from the large demand of charge of the surface O, at difference with that of the bulk. Furthermore, it is coupled to a significant restructuration that inhibits the formation of trimerons at the surface. An alternative bipolaronic charge distribution emerges below T(S), introducing a competition between surface and bulk charge orders below T(V).
Collapse
Affiliation(s)
- I Bernal-Villamil
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|