1
|
Ren FY, Hu C, Huang WB, Duan LH, Meng YZ, Li XL, Fang Z, Zhao XY, Wang W, Li XS, Zhao J, Zhang XY, Hou SL, Xu H, Shi Y, He LN, Zhao B. Modulated Multicomponent Reaction Pathway by Pore-Confinement Effect in MOFs for Highly Efficient Catalysis of Low-Concentration CO 2. Angew Chem Int Ed Engl 2025:e202503898. [PMID: 39996375 DOI: 10.1002/anie.202503898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 02/24/2025] [Accepted: 02/24/2025] [Indexed: 02/26/2025]
Abstract
The conversion of flue gas CO2 into high-value chemicals via multicomponent reactions (MCRs) offers the advantages of atom economy, bond-formation efficiency and product complexity. However, because of the competition between reaction sequences and pathways among substrates, the efficient synthesize the desired product is a great challenge. Herein, a porous noble-metal-free framework (Cu-TCA) was synthesized, which can highly effectively catalyze the multicomponent conversion of CO2 by modulating reaction pathways. The pores with the size of 6.5 Å×6.5 Å in Cu-TCA selectively permit the entry of propargylamine and CO2 at simulated flue gas concentrations, At the same time, the larger-sized phosphine oxide is hindered outside the pores. Control experiments and NMR spectroscopy revealed that CO2 and propargylamine in the pores preferentially reacted to form oxazolidinones, which further reacted with phosphine oxide outside the pores to produce phosphorylated 2-oxazolidinones. Therefore, the reaction pathways and sequence of the substrates were controlled by the confinement effect of the pores in Cu-TCA. Density functional theory (DFT) calculations supported the coordination of Cu-TCA with the alkyne, significantly reducing the reaction barrier and promoting catalytic reaction. This study developed a new strategy for regulating the reaction pathways to promote MCRs via the confinement effect of MOF.
Collapse
Affiliation(s)
- Fang-Yu Ren
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Chaopeng Hu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Wen-Bin Huang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Ling-Hao Duan
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Yun-Zhu Meng
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Xiu-Lan Li
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Zhi Fang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Xin-Yuan Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Wen Wang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Xiang-Shuai Li
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Jian Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Xiang-Yu Zhang
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Sheng-Li Hou
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Hang Xu
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Ying Shi
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| | - Liang-Nian He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Bin Zhao
- Department of Chemistry, Key Laboratory of Advanced Energy Materials Chemistry, Renewable Energy Conversion and Storage Center (RECAST), Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
2
|
Lara M, Jambrina PG, Aoiz FJ. Universal behavior in complex-mediated reactions: Dynamics of S(1D) + o-D2 → D + SD at low collision energies. J Chem Phys 2023; 158:2889001. [PMID: 37154275 DOI: 10.1063/5.0147182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023] Open
Abstract
Reactive and elastic cross sections and rate coefficients have been calculated for the S(1D) + D2(v = 0, j = 0) reaction using a modified hyperspherical quantum reactive scattering method. The considered collision energy ranges from the ultracold regime, where only one partial wave is open, up to the Langevin regime, where many of them contribute. This work presents the extension of the quantum calculations, which in a previous study were compared with the experimental results, down to energies in the cold and ultracold domains. Results are analyzed and compared with the universal case of the quantum defect theory by Jachymski et al. [Phys. Rev. Lett. 110, 213202 (2013)]. State-to-state integral and differential cross sections are also shown covering the ranges of low-thermal, cold, and ultracold collision energy regimes. It is found that at E/kB < 1 K, there are substantial departures from the expected statistical behavior and that dynamical features become increasingly important with decreasing collision energy, leading to vibrational excitation.
Collapse
Affiliation(s)
- Manuel Lara
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - P G Jambrina
- Departamento de Química Física, Facultad de Farmacia, Universidad de Salamanca, 37008 Salamanca, Spain
| | - F J Aoiz
- Departamento de Química Física, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
3
|
Schnabel J, Cheng L, Köhn A. Limitations of perturbative coupled-cluster approximations for highly accurate investigations of Rb 2. J Chem Phys 2021; 155:124101. [PMID: 34598557 DOI: 10.1063/5.0062098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We reveal limitations of several standard coupled-cluster (CC) methods with perturbation-theory based noniterative or approximate iterative treatments of triple excitations when applied to the determination of highly accurate potential energy curves (PECs) of ionic dimers, such as the XΣg+2 electronic ground state of Rb2 +. Such computations are of current interest for the understanding of ion-atom interactions in the ultracold regime. We demonstrate that these CC methods lead to an unphysical long-range barrier for the Rb2 + system. The barrier is small but spoils the long-range behavior of the PEC. The effect is also found for other X2 + systems, such as X = Li, Na, and K. Calculations using a flexible framework for obtaining leading perturbative triples corrections derived using an analytic CC singles and doubles energy derivative formulation demonstrate that the origin of this problem lies in the use of T̂3 amplitudes obtained from approximate CC singles, doubles, and triples amplitude equations. It is shown that the unphysical barrier is related to a symmetry instability of the underlying Hartree-Fock mean-field solution, leading to orbitals representing two +0.5-fold charged ions in the limit of separated fragments. This, in turn, leads to a wrong 1/R asymptote of the interaction potential computed by perturbation-based CC approximations. Physically meaningful perturbative corrections in the long-range tail of the PEC may instead be obtained using symmetry-broken reference determinants.
Collapse
Affiliation(s)
- Jan Schnabel
- Institute for Theoretical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, 70569 Stuttgart, Germany
| | - Lan Cheng
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Andreas Köhn
- Institute for Theoretical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
4
|
Huang J, Yang D, Zuo J, Hu X, Xie D, Guo H. Full-Dimensional Global Potential Energy Surface for the KRb + KRb → K 2Rb 2* → K 2 + Rb 2 Reaction with Accurate Long-Range Interactions and Quantum Statistical Calculation of the Product State Distribution under Ultracold Conditions. J Phys Chem A 2021; 125:6198-6206. [PMID: 34251201 DOI: 10.1021/acs.jpca.1c04506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A full-dimensional global potential energy surface (PES) for the KRb + KRb → K2Rb2* → K2 + Rb2 reaction is reported based on high-level ab initio calculations. The short-range part of the PES is fit with the permutationally invariant polynomial-neural network method, while the long-range parts of the PES in both the reactant and product asymptotes are represented by an asymptotically correct form. The long- and short-range parts are connected with intermediate-range parts to make them smooth. Within a statistical quantum model, this PES reproduces both the measured loss rates of ultracold KRb molecules and the K2 and Rb2 product state distributions, underscoring the important role of tunneling in ultracold chemistry. The PES also correctly predicts the lifetime of the K2Rb2* intermediate complex within the Rice-Ramsperger-Kassel-Marcus limit. It thus provides a reliable platform for future dynamical studies of the prototypical reaction.
Collapse
Affiliation(s)
- Jing Huang
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Dongzheng Yang
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Junxiang Zuo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Xixi Hu
- Kuang Yaming Honors School, Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
5
|
Yang D, Huang J, Hu X, Xie D, Guo H. Statistical quantum mechanical approach to diatom–diatom capture dynamics and application to ultracold KRb + KRb reaction. J Chem Phys 2020; 152:241103. [DOI: 10.1063/5.0014805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Dongzheng Yang
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jing Huang
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - Xixi Hu
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| |
Collapse
|
6
|
Chapurin R, Xie X, Van de Graaff MJ, Popowski JS, D'Incao JP, Julienne PS, Ye J, Cornell EA. Precision Test of the Limits to Universality in Few-Body Physics. PHYSICAL REVIEW LETTERS 2019; 123:233402. [PMID: 31868479 DOI: 10.1103/physrevlett.123.233402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/13/2019] [Indexed: 06/10/2023]
Abstract
We perform precise studies of two- and three-body interactions near an intermediate-strength Feshbach resonance in ^{39}K at 33.5820(14) G. Precise measurement of dimer binding energies, spanning three orders of magnitude, enables the construction of a complete two-body coupled-channel model for determination of the scattering lengths with an unprecedented low uncertainty. Utilizing an accurate scattering length map, we measure the precise location of the Efimov ground state to test van der Waals universality. Precise control of the sample's temperature and density ensures that systematic effects on the Efimov trimer state are well understood. We measure the ground Efimov resonance location to be at -14.05(17) times the van der Waals length r_{vdW}, significantly deviating from the value of -9.7r_{vdW} predicted by van der Waals universality. We find that a refined multichannel three-body model, built on our measurement of two-body physics, can account for this difference and even successfully predict the Efimov inelasticity parameter η.
Collapse
Affiliation(s)
- Roman Chapurin
- JILA, National Institute of Standards and Technology, and the University of Colorado, Department of Physics, Boulder, Colorado 80309, USA
| | - Xin Xie
- JILA, National Institute of Standards and Technology, and the University of Colorado, Department of Physics, Boulder, Colorado 80309, USA
| | - Michael J Van de Graaff
- JILA, National Institute of Standards and Technology, and the University of Colorado, Department of Physics, Boulder, Colorado 80309, USA
| | - Jared S Popowski
- JILA, National Institute of Standards and Technology, and the University of Colorado, Department of Physics, Boulder, Colorado 80309, USA
| | - José P D'Incao
- JILA, National Institute of Standards and Technology, and the University of Colorado, Department of Physics, Boulder, Colorado 80309, USA
| | - Paul S Julienne
- Joint Quantum Institute, National Institute of Standards and Technology, and the University of Maryland, College Park, Maryland 20742, USA
| | - Jun Ye
- JILA, National Institute of Standards and Technology, and the University of Colorado, Department of Physics, Boulder, Colorado 80309, USA
| | - Eric A Cornell
- JILA, National Institute of Standards and Technology, and the University of Colorado, Department of Physics, Boulder, Colorado 80309, USA
| |
Collapse
|
7
|
Kleinbach KS, Engel F, Dieterle T, Löw R, Pfau T, Meinert F. Ionic Impurity in a Bose-Einstein Condensate at Submicrokelvin Temperatures. PHYSICAL REVIEW LETTERS 2018; 120:193401. [PMID: 29799221 DOI: 10.1103/physrevlett.120.193401] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Indexed: 06/08/2023]
Abstract
Rydberg atoms immersed in a Bose-Einstein condensate interact with the quantum gas via electron-atom and ion-atom interaction. To suppress the typically dominant electron-neutral interaction, Rydberg states with a principal quantum number up to n=190 are excited from a dense and tightly trapped micron-sized condensate. This allows us to explore a regime where the Rydberg orbit exceeds the size of the atomic sample by far. In this case, a detailed line shape analysis of the Rydberg excitation spectrum provides clear evidence for ion-atom interaction at temperatures well below a microkelvin. Our results may open up ways to enter the quantum regime of ion-atom scattering for the exploration of charged quantum impurities and associated polaron physics.
Collapse
Affiliation(s)
- K S Kleinbach
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - F Engel
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - T Dieterle
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - R Löw
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - T Pfau
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - F Meinert
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
8
|
Ye X, Guo M, González-Martínez ML, Quéméner G, Wang D. Collisions of ultracold 23Na 87Rb molecules with controlled chemical reactivities. SCIENCE ADVANCES 2018; 4:eaaq0083. [PMID: 29387798 PMCID: PMC5786443 DOI: 10.1126/sciadv.aaq0083] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
The collision of molecules at ultracold temperatures is of great importance to understand the chemical interactions at the quantum regime. Although much theoretical work has been devoted to this, experimental data are only sparsely available, mainly because of the difficulty in producing ground-state molecules at ultracold temperatures. We report here the creation of optically trapped samples of ground-state bosonic sodium-rubidium molecules with precisely controlled internal states and, enabled by this, a detailed study on the inelastic loss with and without the NaRb + NaRb → Na2 + Rb2 chemical reaction. Contrary to intuitive expectations, we observed very similar loss and heating, regardless of the chemical reactivities. In addition, as evidenced by the reducing loss rate constants with increasing temperatures, we found that these collisions are already outside the Wigner region although the sample temperatures are sub-microkelvin. Our measurement agrees semiquantitatively with models based on long-range interactions but calls for a deeper understanding on the short-range physics for a more complete interpretation.
Collapse
Affiliation(s)
- Xin Ye
- Department of Physics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Mingyang Guo
- Department of Physics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Maykel L. González-Martínez
- Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Paris-Saclay, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Goulven Quéméner
- Laboratoire Aimé Cotton, CNRS, Université Paris-Sud, ENS Paris-Saclay, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Dajun Wang
- Department of Physics, The Chinese University of Hong Kong, Hong Kong SAR, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
9
|
Inelastic collisions of ultracold triplet Rb 2 molecules in the rovibrational ground state. Nat Commun 2017; 8:14854. [PMID: 28332492 PMCID: PMC5376650 DOI: 10.1038/ncomms14854] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 02/07/2017] [Indexed: 11/08/2022] Open
Abstract
Exploring and controlling inelastic and reactive collisions on the quantum level is a main goal of the developing field of ultracold chemistry. For this, the preparation of precisely defined initial atomic and molecular states in tailored environments is necessary. Here we present experimental studies of inelastic collisions of metastable ultracold Rb2 molecules in an array of quasi-1D potential tubes. In particular, we investigate collisions of molecules in the absolute lowest triplet energy level where any inelastic process requires a change of the electronic state. Remarkably, we find similar decay rates as for collisions between rotationally or vibrationally excited triplet molecules where other decay paths are also available. The decay rates are close to the ones for universal reactions but vary considerably when confinement and collision energy are changed. This might be exploited to control the collisional properties of molecules. Investigating the collisional behaviour of molecules on the quantum level is the key in understanding and controlling chemical reactions. Here the authors measure inelastic collision rates for ultracold Rb2 dimers in precisely defined quantum states and show that the rates can be tuned via external parameters.
Collapse
|
10
|
Balakrishnan N. Perspective: Ultracold molecules and the dawn of cold controlled chemistry. J Chem Phys 2016; 145:150901. [DOI: 10.1063/1.4964096] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- N. Balakrishnan
- Department of Chemistry, University of Nevada, Las Vegas, Nevada 89154, USA
| |
Collapse
|
11
|
Jankunas J, Jachymski K, Hapka M, Osterwalder A. Communication: Importance of rotationally inelastic processes in low-energy Penning ionization of CHF3. J Chem Phys 2016; 144:221102. [DOI: 10.1063/1.4953908] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Justin Jankunas
- Institute for Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Krzysztof Jachymski
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
- Institute for Theoretical Physics III and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany
| | - Michał Hapka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Andreas Osterwalder
- Institute for Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Lara M, Jambrina PG, Aoiz FJ, Launay JM. Cold and ultracold dynamics of the barrierless D+ + H2 reaction: Quantum reactive calculations for ∼R−4 long range interaction potentials. J Chem Phys 2015; 143:204305. [DOI: 10.1063/1.4936144] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Manuel Lara
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - P. G. Jambrina
- Departamento de Química Física, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | - F. J. Aoiz
- Departamento de Química Física, Facultad de Química, Universidad Complutense, 28040 Madrid, Spain
| | - J.-M. Launay
- Institut de Physique de Rennes, UMR CNRS 6251, Université de Rennes I, F-35042 Rennes, France
| |
Collapse
|
13
|
Pawlak M, Shagam Y, Narevicius E, Moiseyev N. Adiabatic theory for anisotropic cold molecule collisions. J Chem Phys 2015; 143:074114. [PMID: 26298122 DOI: 10.1063/1.4928690] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mariusz Pawlak
- Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, Haifa 32000, Israel
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Yuval Shagam
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Edvardas Narevicius
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nimrod Moiseyev
- Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, Haifa 32000, Israel
- Faculty of Physics, Technion–Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
14
|
Tomza M. Energetics and Control of Ultracold Isotope-Exchange Reactions between Heteronuclear Dimers in External Fields. PHYSICAL REVIEW LETTERS 2015; 115:063201. [PMID: 26296115 DOI: 10.1103/physrevlett.115.063201] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Indexed: 06/04/2023]
Abstract
We show that isotope-exchange reactions between ground-state alkali-metal, alkaline-earth-metal, and lanthanide heteronuclear dimers consisting of two isotopes of the same atom are exothermic with an energy change in the range of 1-8000 MHz, thus resulting in cold or ultracold products. For these chemical reactions, there are only one rovibrational and at most several hyperfine possible product states. The number and energetics of open and closed reactive channels can be controlled by the laser and magnetic fields. We suggest a laser-induced isotope- and state-selective Stark shift control to tune the exothermic isotope-exchange reactions to become endothermic, thus providing the ground for testing models of the chemical reactivity. The present proposal opens the way for studying the state-to-state dynamics of ultracold chemical reactions beyond the universal limit with a meaningful control over the quantum states of both reactants and products.
Collapse
Affiliation(s)
- Michał Tomza
- ICFO-Institut de Ciéncies Fotóniques, Avenue Carl Friedrich Gauss, 3, 08860 Castelldefels, Spain and Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
15
|
Jankunas J, Jachymski K, Hapka M, Osterwalder A. Observation of orbiting resonances in He(3S1) + NH3Penning ionization. J Chem Phys 2015; 142:164305. [DOI: 10.1063/1.4919369] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Justin Jankunas
- Institute for Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | | - Michał Hapka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Andreas Osterwalder
- Institute for Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
16
|
Jankunas J, Bertsche B, Jachymski K, Hapka M, Osterwalder A. Dynamics of gas phase Ne* + NH3 and Ne* + ND3 Penning ionisation at low temperatures. J Chem Phys 2014; 140:244302. [PMID: 24985633 DOI: 10.1063/1.4883517] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Justin Jankunas
- Institute for Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Benjamin Bertsche
- Institute for Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | | | - Michał Hapka
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Andreas Osterwalder
- Institute for Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
17
|
Hapka M, Chałasiński G, Kłos J, Żuchowski PS. First-principle interaction potentials for metastable He(3S) and Ne(3P) with closed-shell molecules: Application to Penning-ionizing systems. J Chem Phys 2013; 139:014307. [DOI: 10.1063/1.4812182] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|