1
|
Szekely JE, Seideman T. Alignment Thresholds of Molecules. PHYSICAL REVIEW LETTERS 2022; 129:183201. [PMID: 36374678 DOI: 10.1103/physrevlett.129.183201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/23/2022] [Accepted: 09/10/2022] [Indexed: 06/16/2023]
Abstract
Molecules have long been known to align in moderately intense, far off-resonance laser fields with a large variety of applications in physics and optics. We illustrate and describe the physical origin of a previously unexplored phenomenon in the adiabatic alignment dynamics of molecules, which is fundamentally interesting and also has an important practical implication. Specifically, the intensity dependence of the degree of adiabatic alignment exhibits a threshold behavior, below which molecules are isotropically distributed rotationally and above which the alignment rapidly reaches a plateau. Furthermore, we show that both the intensity and the temperature dependencies of the alignment of all linear molecules exhibit universal curves and derive analytical forms to describe these dependencies. Finally, we illustrate that the alignment threshold occurs very generally at a lower intensity than the off-resonance ionization threshold, a numerical observation that is readily illustrated analytically. The threshold behavior is attributed to a tunneling mechanism that rapidly switches off at the threshold intensity, where tunneling between the potential wells corresponding to the two orientations of the aligned molecules becomes impossible. The universal threshold behavior of molecular alignment is a simple phenomenon, but one that was not realized before and can be readily tested experimentally.
Collapse
Affiliation(s)
- Joshua E Szekely
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Tamar Seideman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
2
|
Zhu X, Hu X, Yan S, Peng Y, Feng W, Guo D, Gao Y, Zhang S, Cassimi A, Xu J, Zhao D, Dong D, Hai B, Wu Y, Wang J, Ma X. Heavy N + ion transfer in doubly charged N 2Ar van der Waals cluster. Nat Commun 2020; 11:2987. [PMID: 32533002 PMCID: PMC7293282 DOI: 10.1038/s41467-020-16749-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/20/2020] [Indexed: 11/30/2022] Open
Abstract
Van der Waals clusters are weakly bound atomic/molecular systems and are an important medium for understanding micro-environmental chemical phenomena in bio-systems. The presence of neighboring atoms may open channels otherwise forbidden in isolated atoms/molecules. In hydrogen-bond clusters, proton transfer plays a crucial role, which involves mass and charge migration over large distances within the cluster and results in its fragmentation. Here we report an exotic transfer channel involving a heavy N+ ion observed in a doubly charged cluster produced by 1 MeV Ne8+ ions: (N2Ar)2+→N++NAr+. The neighboring Ar atom decreases the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathrm{N}}_2^{2 + }$$\end{document}N22+ barrier height and width, resulting in significant shorter lifetimes of the metastable molecular ion state \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathrm{N}}_2^{2 + }$$\end{document}N22+(\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathrm{X}}^{1}}{\Sigma _{{\mathrm{g}}}^{+}}$$\end{document}X1Σg+). Consequently, the breakup of the covalent N+−N+ bond, the tunneling out of the N+ ion from the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathrm{N}}_2^{2 + }$$\end{document}N22+ potential well, as well as the formation of an N−Ar+ bound system take place almost simultaneously, resulting in a Coulomb explosion of N+ and NAr+ ion pairs. There are multiple ways by which energy and charge transfer occur in weakly bound systems. Here the authors reveal a heavy ion N+ transfer in a doubly charged Van der Waals cluster produced in collisions of the highly charged Ne8+ ion with N2Ar, leading to fragmentation of N+ and NAr+ via Coulomb explosion.
Collapse
Affiliation(s)
- XiaoLong Zhu
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - XiaoQing Hu
- Institute of Applied Physics and Computational Mathematics, 100088, Beijing, China
| | - ShunCheng Yan
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - YiGeng Peng
- Institute of Applied Physics and Computational Mathematics, 100088, Beijing, China
| | - WenTian Feng
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
| | - DaLong Guo
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yong Gao
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
| | - ShaoFeng Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Amine Cassimi
- CIMAP, CEA/CNRS/ENSICAEN/UNICAEN, BP5133, 14070, Caen, France
| | - JiaWei Xu
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - DongMei Zhao
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China
| | - DaPu Dong
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Bang Hai
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yong Wu
- Institute of Applied Physics and Computational Mathematics, 100088, Beijing, China. .,HEDPS, Center of Applied Physics and Technology, Peking University, 100871, Beijing, China.
| | - JianGuo Wang
- Institute of Applied Physics and Computational Mathematics, 100088, Beijing, China
| | - X Ma
- Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
3
|
Zeller S, Kunitski M, Voigtsberger J, Kalinin A, Schottelius A, Schober C, Waitz M, Sann H, Hartung A, Bauer T, Pitzer M, Trinter F, Goihl C, Janke C, Richter M, Kastirke G, Weller M, Czasch A, Kitzler M, Braune M, Grisenti RE, Schöllkopf W, Schmidt LPH, Schöffler MS, Williams JB, Jahnke T, Dörner R. Imaging the He2 quantum halo state using a free electron laser. Proc Natl Acad Sci U S A 2016; 113:14651-14655. [PMID: 27930299 PMCID: PMC5187706 DOI: 10.1073/pnas.1610688113] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Quantum tunneling is a ubiquitous phenomenon in nature and crucial for many technological applications. It allows quantum particles to reach regions in space which are energetically not accessible according to classical mechanics. In this "tunneling region," the particle density is known to decay exponentially. This behavior is universal across all energy scales from nuclear physics to chemistry and solid state systems. Although typically only a small fraction of a particle wavefunction extends into the tunneling region, we present here an extreme quantum system: a gigantic molecule consisting of two helium atoms, with an 80% probability that its two nuclei will be found in this classical forbidden region. This circumstance allows us to directly image the exponentially decaying density of a tunneling particle, which we achieved for over two orders of magnitude. Imaging a tunneling particle shows one of the few features of our world that is truly universal: the probability to find one of the constituents of bound matter far away is never zero but decreases exponentially. The results were obtained by Coulomb explosion imaging using a free electron laser and furthermore yielded He2's binding energy of [Formula: see text] neV, which is in agreement with most recent calculations.
Collapse
Affiliation(s)
- Stefan Zeller
- Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany;
| | - Maksim Kunitski
- Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany
| | - Jörg Voigtsberger
- Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany
| | - Anton Kalinin
- Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany
| | | | - Carl Schober
- Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany
| | - Markus Waitz
- Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany
| | - Hendrik Sann
- Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany
| | - Alexander Hartung
- Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany
| | - Tobias Bauer
- Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany
| | - Martin Pitzer
- Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany
| | - Florian Trinter
- Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany
| | - Christoph Goihl
- Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany
| | - Christian Janke
- Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany
| | - Martin Richter
- Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany
| | - Gregor Kastirke
- Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany
| | - Miriam Weller
- Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany
| | - Achim Czasch
- Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany
| | - Markus Kitzler
- Photonics Institute, Vienna University of Technology, 1040 Vienna, Austria
| | - Markus Braune
- Deutsches Elektronen-Synchrotron, 22607 Hamburg, Germany
| | - Robert E Grisenti
- Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany
- GSI Helmholtz Centre for Heavy Ion Research, 64291 Darmstadt, Germany
| | - Wieland Schöllkopf
- Department of Molecular Physics, Fritz-Haber-Institut, 14195 Berlin, Germany
| | - Lothar Ph H Schmidt
- Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany
| | - Markus S Schöffler
- Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany
| | | | - Till Jahnke
- Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany
| | - Reinhard Dörner
- Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt, Germany;
| |
Collapse
|
4
|
Gong X, Song Q, Ji Q, Pan H, Ding J, Wu J, Zeng H. Strong-field dissociative double ionization of acetylene. PHYSICAL REVIEW LETTERS 2014; 112:243001. [PMID: 24996086 DOI: 10.1103/physrevlett.112.243001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Indexed: 05/21/2023]
Abstract
We investigate dissociative double ionization of acetylene, one of the smallest organic molecules yet with a rich electronic structure, in strong laser fields by measuring two fragment ions and two electrons in coincidence. The two-body fragmentation channels are dominated by the removal of electrons from the lower-lying molecular orbitals rather than from the highest occupied one. The electron localization-assisted enhanced ionization mechanism plays a central role for the strong-field deprotonation ionization of acetylene by releasing the second electron from the up-field potential well of the hydrogen site at the internuclear distance near twice the equilibrium value of the C-H bond.
Collapse
Affiliation(s)
- Xiaochun Gong
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Qiying Song
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Qinying Ji
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Haifeng Pan
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Jingxin Ding
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Jian Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| | - Heping Zeng
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
| |
Collapse
|