1
|
Djienbekov NE, Bastykova NK, Ramazanov TS, Kodanova SK. Non-equilibrium molecular dynamics study of heat transfer parameters in two-dimensional Yukawa systems under uniform magnetic field. Sci Rep 2024; 14:15042. [PMID: 38951572 PMCID: PMC11217476 DOI: 10.1038/s41598-024-64866-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
The present study explores the effect of a magnetic field on the thermal conductivity of two-dimensional (2D) Yukawa systems in a wide range of system parameters using the non-equilibrium molecular dynamic method (NEMD). We consider an external magnetic field with Ω = ω c / ω p ≤ 1 (with Ω being the ratio of the cyclotron frequency to plasma frequency) and the coupling parameter values in the range 1 ≤ Γ ≤ 100 (with Γ being the ratio of the Coulomb interaction energy at mean inter-particle distance to the thermal energy of particles). The results show that an external uniform magnetic field results in the reduction of the thermal conductivity at the considered values of the coupling parameter Γ . Additionally, we found that the effect of the magnetic field on thermal conduction is weaker at larger values of the system coupling parameter. To ensure that calculated results for the thermal conductivity are accurate and reliable, we performed a detailed investigation of the convergence of the results with respect to simulation parameters in NEMD with a strong external magnetic field. We believe that the presented results will serve as useful benchmark data for the theoretical models of (2D) Yukawa systems.
Collapse
Affiliation(s)
- N E Djienbekov
- Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, 71 Al-Farabi Ave., 050040, Almaty, Kazakhstan
- Institute of Applied Sciences and IT, 40-48 Shashkin Str., 050038, Almaty, Kazakhstan
| | - N Kh Bastykova
- Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, 71 Al-Farabi Ave., 050040, Almaty, Kazakhstan.
- Institute of Applied Sciences and IT, 40-48 Shashkin Str., 050038, Almaty, Kazakhstan.
| | - T S Ramazanov
- Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, 71 Al-Farabi Ave., 050040, Almaty, Kazakhstan
- Institute of Applied Sciences and IT, 40-48 Shashkin Str., 050038, Almaty, Kazakhstan
| | - S K Kodanova
- Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, 71 Al-Farabi Ave., 050040, Almaty, Kazakhstan
- Institute of Applied Sciences and IT, 40-48 Shashkin Str., 050038, Almaty, Kazakhstan
| |
Collapse
|
2
|
Abdoli I, Löwen H, Sommer JU, Sharma A. Tailoring the escape rate of a Brownian particle by combining a vortex flow with a magnetic field. J Chem Phys 2023; 158:101101. [PMID: 36922145 DOI: 10.1063/5.0139830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023] Open
Abstract
The probability per unit time for a thermally activated Brownian particle to escape over a potential well is, in general, well-described by Kramers's theory. Kramers showed that the escape time decreases exponentially with increasing barrier height. The dynamics slow down when the particle is charged and subjected to a Lorentz force due to an external magnetic field. This is evident via a rescaling of the diffusion coefficient entering as a prefactor in the Kramers's escape rate without any impact on the barrier-height-dependent exponent. Here, we show that the barrier height can be effectively changed when the charged particle is subjected to a vortex flow. While the vortex alone does not affect the mean escape time of the particle, when combined with a magnetic field, it effectively pushes the fluctuating particle either radially outside or inside depending on its sign relative to that of the magnetic field. In particular, the effective potential over which the particle escapes can be changed to a flat, a stable, and an unstable potential by tuning the signs and magnitudes of the vortex and the applied magnetic field. Notably, the last case corresponds to enhanced escape dynamics.
Collapse
Affiliation(s)
- I Abdoli
- Leibniz-Institut für Polymerforschung Dresden, Institut Theorie der Polymere, 01069 Dresden, Germany
| | - H Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225, Germany
| | - J-U Sommer
- Leibniz-Institut für Polymerforschung Dresden, Institut Theorie der Polymere, 01069 Dresden, Germany
| | - A Sharma
- Leibniz-Institut für Polymerforschung Dresden, Institut Theorie der Polymere, 01069 Dresden, Germany
| |
Collapse
|
3
|
Huang Y, Reichhardt C, Reichhardt CJO, Feng Y. Superlubric-pinned transition of a two-dimensional solid dusty plasma under a periodic triangular substrate. Phys Rev E 2022; 106:035204. [PMID: 36266846 DOI: 10.1103/physreve.106.035204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/24/2022] [Indexed: 06/16/2023]
Abstract
The superlubric-pinned transition in the depinning dynamics of a two-dimensional (2D) solid dusty plasma modulated by 2D triangular periodic substrates is investigated using Langevin dynamical simulations. When the lattice structure of the 2D solid dusty plasma perfectly matches the triangular substrate, two distinctive pinned and moving ordered states are observed as the external uniform driving force gradually increases from zero. When there is a mismatch between the lattice structure and the triangular substrate, however, on shallow substrates, it is discovered that all of the particles can slide freely on the substrate even when the applied driving force is tiny. This is a typical example of superlubricity, which is caused by the competition between the substrate-particle and particle-particle interactions. If the substrate depth increases further, as the driving force increases from zero, there are three dynamical states consisting of the pinned state, the disordered plastic flow state, and the moving ordered state. In an underdense system, where there are fewer particles than potential well minima, it is found that the occurrence of the three different dynamical states is controlled by the depth of the substrate, which is quantitatively characterized using the average mobility.
Collapse
Affiliation(s)
- Y Huang
- Institute of Plasma Physics and Technology, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - C Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Yan Feng
- Institute of Plasma Physics and Technology, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
4
|
Abdoli I, Wittmann R, Brader JM, Sommer JU, Löwen H, Sharma A. Tunable Brownian magneto heat pump. Sci Rep 2022; 12:13405. [PMID: 35927292 PMCID: PMC9352690 DOI: 10.1038/s41598-022-17584-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 11/09/2022] Open
Abstract
We propose a mesoscopic Brownian magneto heat pump made of a single charged Brownian particle that is steered by an external magnetic field. The particle is subjected to two thermal noises from two different heat sources. When confined, the particle performs gyrating motion around a potential energy minimum. We show that such a magneto-gyrator can be operated as both a heat engine and a refrigerator. The maximum power delivered by the engine and the performance of the refrigerator, namely the rate of heat transferred per unit external work, can be tuned and optimised by the applied magnetic field. Further tunability of the key properties of the engine, such as the direction of gyration and the torque exerted by the engine on the confining potential, is obtained by varying the strength and direction of the applied magnetic field. In principle, our predictions can be tested by experiments with colloidal particles and complex plasmas.
Collapse
Affiliation(s)
- Iman Abdoli
- Institut Theorie der Polymere, Leibniz-Institut für Polymerforschung Dresden, 01069, Dresden, Germany.,Institut für Theoretische Physik, Technische Universität Dresden, 01069, Dresden, Germany
| | - René Wittmann
- Institut für Theoretische Physik II, Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | | | - Jens-Uwe Sommer
- Institut Theorie der Polymere, Leibniz-Institut für Polymerforschung Dresden, 01069, Dresden, Germany.,Institut für Theoretische Physik, Technische Universität Dresden, 01069, Dresden, Germany
| | - Hartmut Löwen
- Institut für Theoretische Physik II, Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Abhinav Sharma
- Institut Theorie der Polymere, Leibniz-Institut für Polymerforschung Dresden, 01069, Dresden, Germany. .,Institut für Theoretische Physik, Technische Universität Dresden, 01069, Dresden, Germany.
| |
Collapse
|
5
|
Berumen J, Goree J. Experiment and model for a Stokes layer in a strongly coupled dusty plasma. Phys Rev E 2021; 104:035208. [PMID: 34654083 DOI: 10.1103/physreve.104.035208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/28/2021] [Indexed: 11/07/2022]
Abstract
A Stokes layer, which is a flow pattern that arises in a viscous fluid adjacent to an oscillatory boundary, was observed in an experiment using a two-dimensional strongly coupled dusty plasma. Liquid conditions were maintained using laser heating, while a separate laser manipulation applied an oscillatory shear that was localized and sinusoidal. The evolution of the resulting flow was analyzed using space-time diagrams. These figures provide an intuitive visualization of a Stokes layer, including features such as the depth of penetration and wavelength. Another feature, the characteristic speed for the penetration of the oscillatory flow, also appears prominently in space-time diagrams. To model the experiment, the Maxwell-fluid model of a Stokes layer was generalized to describe a two-phase liquid. In our experiment, the phases were gas and dust, where the dust cloud was viscoelastic due to strong Coulomb coupling. The model is found to agree with the experiment, in the appearance of the space-time diagrams, and in the values of the characteristic speed, depth of penetration, and wavelength.
Collapse
Affiliation(s)
- Jorge Berumen
- Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, USA
| | - J Goree
- Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, USA
| |
Collapse
|
6
|
Ding X, Lu S, Sun T, Murillo MS, Feng Y. Head-on collision of compressional shocks in two-dimensional Yukawa systems. Phys Rev E 2021; 103:013202. [PMID: 33601497 DOI: 10.1103/physreve.103.013202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 12/01/2020] [Indexed: 11/07/2022]
Abstract
The head-on collision of compressional shocks in two-dimensional dusty plasmas is investigated using both molecular dynamical and Langevin simulations. Two compressional shocks are generated from the inward compressional boundaries in simulations. It is found that, during the collision of shocks, there is a generally existing time delay of shocks τ, which diminishes monotonically with the increasing compressional speed of boundaries, corresponding to the time resolution of the studied system. Dispersive shock waves (DSWs) are generated around the shock front for some conditions. It is also found that the period of the DSW decreases monotonically with the inward compressional speed of boundaries, more substantially than the time delay of shocks τ. When the inward compressional speed of boundaries increases further, the DSWs gradually vanish. We speculate that, for these high compressional speeds of boundaries, the period of the DSW might be reduced to a comparable timescale of the time delay of shocks τ, i.e., the time resolution of our studied system, or even shorter, thus the DSW reasonably vanishes.
Collapse
Affiliation(s)
- Xia Ding
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Shaoyu Lu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Tianyue Sun
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - M S Murillo
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Yan Feng
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| |
Collapse
|
7
|
Löwen H. Active particles in noninertial frames: How to self-propel on a carousel. Phys Rev E 2019; 99:062608. [PMID: 31330628 DOI: 10.1103/physreve.99.062608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Indexed: 06/10/2023]
Abstract
Typically the motion of self-propelled active particles is described in a quiescent environment establishing an inertial frame of reference. Here we assume that friction, self-propulsion, and fluctuations occur relative to a noninertial frame and thereby the active Brownian motion model is generalized to noninertial frames. First, analytical solutions are presented for the overdamped case, both for linear swimmers and for circle swimmers. For a frame rotating with constant angular velocity ("carousel"), the resulting noise-free trajectories in the static laboratory frame are trochoids if these are circles in the rotating frame. For systems governed by inertia, such as vibrated granulates or active complex plasmas, centrifugal and Coriolis forces become relevant. For both linear and circling self-propulsion, these forces lead to out-spiraling trajectories which for long times approach a spira mirabilis. This implies that a self-propelled particle will typically leave a rotating carousel. A navigation strategy is proposed to avoid this expulsion, by adjusting the self-propulsion direction at will. For a particle, initially quiescent in the rotating frame, it is shown that this strategy only works if the initial distance to the rotation center is smaller than a critical radius R_{c} which scales with the self-propulsion velocity. Possible experiments to verify the theoretical predictions are discussed.
Collapse
Affiliation(s)
- Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
8
|
Hartmann P, Reyes JC, Kostadinova EG, Matthews LS, Hyde TW, Masheyeva RU, Dzhumagulova KN, Ramazanov TS, Ott T, Kählert H, Bonitz M, Korolov I, Donkó Z. Self-diffusion in two-dimensional quasimagnetized rotating dusty plasmas. Phys Rev E 2019; 99:013203. [PMID: 30780312 DOI: 10.1103/physreve.99.013203] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Indexed: 11/07/2022]
Abstract
The self-diffusion phenomenon in a two-dimensional dusty plasma at extremely strong (effective) magnetic fields is studied experimentally and by means of molecular dynamics simulations. In the experiment the high magnetic field is introduced by rotating the particle cloud and observing the particle trajectories in a corotating frame, which allows reaching effective magnetic fields up to 3000 T. The experimental results confirm the predictions of the simulations: (i) superdiffusive behavior is found at intermediate timescales and (ii) the dependence of the self-diffusion coefficient on the magnetic field is well reproduced.
Collapse
Affiliation(s)
- P Hartmann
- Institute for Solid State Physics and Optics, Wigner Research Centre, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary.,Center for Astrophysics, Space Physics, and Engineering Research (CASPER), One Bear Place 97283, Baylor University, Waco, Texas 76798, USA
| | - J C Reyes
- Center for Astrophysics, Space Physics, and Engineering Research (CASPER), One Bear Place 97283, Baylor University, Waco, Texas 76798, USA
| | - E G Kostadinova
- Center for Astrophysics, Space Physics, and Engineering Research (CASPER), One Bear Place 97283, Baylor University, Waco, Texas 76798, USA
| | - L S Matthews
- Center for Astrophysics, Space Physics, and Engineering Research (CASPER), One Bear Place 97283, Baylor University, Waco, Texas 76798, USA
| | - T W Hyde
- Center for Astrophysics, Space Physics, and Engineering Research (CASPER), One Bear Place 97283, Baylor University, Waco, Texas 76798, USA
| | - R U Masheyeva
- IETP, Al Farabi Kazakh National University, 71 al Farabi Avenue, Almaty 050040, Kazakhstan
| | - K N Dzhumagulova
- IETP, Al Farabi Kazakh National University, 71 al Farabi Avenue, Almaty 050040, Kazakhstan
| | - T S Ramazanov
- IETP, Al Farabi Kazakh National University, 71 al Farabi Avenue, Almaty 050040, Kazakhstan
| | - T Ott
- Institute for Theoretical Physics and Astrophysics, Christian-Albrechts-University Kiel, Leibnizstrasse 15, 24098 Kiel, Germany
| | - H Kählert
- Institute for Theoretical Physics and Astrophysics, Christian-Albrechts-University Kiel, Leibnizstrasse 15, 24098 Kiel, Germany
| | - M Bonitz
- Institute for Theoretical Physics and Astrophysics, Christian-Albrechts-University Kiel, Leibnizstrasse 15, 24098 Kiel, Germany
| | - I Korolov
- Institute for Solid State Physics and Optics, Wigner Research Centre, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
| | - Z Donkó
- Institute for Solid State Physics and Optics, Wigner Research Centre, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
| |
Collapse
|
9
|
Ott T, Bonitz M, Hartmann P, Donkó Z. Spontaneous generation of temperature anisotropy in a strongly coupled magnetized plasma. Phys Rev E 2017; 95:013209. [PMID: 28208314 DOI: 10.1103/physreve.95.013209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Indexed: 06/06/2023]
Abstract
A magnetic field was recently shown to enhance field-parallel heat conduction in a strongly correlated plasma whereas cross-field conduction is reduced. Here we show that in such plasmas, the magnetic field has the additional effect of inhibiting the isotropization process between field-parallel and cross-field temperature components, thus leading to the emergence of strong and long-lived temperature anisotropies when the plasma is locally perturbed. An extended heat equation is shown to describe this process accurately.
Collapse
Affiliation(s)
- T Ott
- Christian-Albrechts-University Kiel, Institute for Theoretical Physics and Astrophysics, Leibnizstraße 15, 24098 Kiel, Germany
| | - M Bonitz
- Christian-Albrechts-University Kiel, Institute for Theoretical Physics and Astrophysics, Leibnizstraße 15, 24098 Kiel, Germany
| | - P Hartmann
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
| | - Z Donkó
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest, Hungary
| |
Collapse
|
10
|
Dzhumagulova KN, Masheyeva RU, Ott T, Hartmann P, Ramazanov TS, Bonitz M, Donkó Z. Cage correlation and diffusion in strongly coupled three-dimensional Yukawa systems in magnetic fields. Phys Rev E 2016; 93:063209. [PMID: 27415379 DOI: 10.1103/physreve.93.063209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Indexed: 06/06/2023]
Abstract
The influence of an external homogeneous magnetic field on the quasilocalization of the particles-characterized quantitatively by cage correlation functions-in strongly coupled three-dimensional Yukawa systems is investigated via molecular dynamics computer simulations over a wide domain of the system parameters (coupling and screening strengths, and magnetic field). The caging time is found to be enhanced by the magnetic field B. The anisotropic migration of the particles in the presence of magnetic field is quantified via computing directional correlation functions, which indicate a more significant increase of localization in the direction perpendicular to B, while a moderate increase is also found along the B field lines. Associating the particles' escapes from the cages with jumps of a characteristic length, a connection is found with the diffusion process: the diffusion coefficients derived from the decay time of the directional correlation functions in both the directions perpendicular to and parallel with B are in very good agreement with respective diffusion coefficients values obtained from their usual computation based on the mean-squared displacement of the particles.
Collapse
Affiliation(s)
- K N Dzhumagulova
- IETP, Al Farabi Kazakh National University, 71, al Farabi Avenue, Almaty, 050040, Kazakhstan
| | - R U Masheyeva
- IETP, Al Farabi Kazakh National University, 71, al Farabi Avenue, Almaty, 050040, Kazakhstan
| | - T Ott
- Institute for Theoretical Physics and Astrophysics, Christian-Albrechts-University Kiel, Leibnizstrasse 15, 24098 Kiel, Germany
| | - P Hartmann
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1121 Budapest, Konkoly-Thege Miklós Street 29-33, Hungary
| | - T S Ramazanov
- IETP, Al Farabi Kazakh National University, 71, al Farabi Avenue, Almaty, 050040, Kazakhstan
| | - M Bonitz
- Institute for Theoretical Physics and Astrophysics, Christian-Albrechts-University Kiel, Leibnizstrasse 15, 24098 Kiel, Germany
| | - Z Donkó
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1121 Budapest, Konkoly-Thege Miklós Street 29-33, Hungary
| |
Collapse
|
11
|
Ott T, Bonitz M, Donkó Z. Effect of correlations on heat transport in a magnetized strongly coupled plasma. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:063105. [PMID: 26764836 DOI: 10.1103/physreve.92.063105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Indexed: 06/05/2023]
Abstract
In a classical ideal plasma, a magnetic field is known to reduce the heat conductivity perpendicular to the field, whereas it does not alter the one along the field. Here we show that, in strongly correlated plasmas that are observed at high pressure and/or low temperature, a magnetic field reduces the perpendicular heat transport much less and even enhances the parallel transport. These surprising observations are explained by the competition of kinetic, potential, and collisional contributions to the heat conductivity. Our results are based on first-principle molecular dynamics simulations of a one-component plasma.
Collapse
Affiliation(s)
- T Ott
- Christian-Albrechts-University Kiel, Institute for Theoretical Physics and Astrophysics, Leibnizstraße 15, 24098 Kiel, Germany
| | - M Bonitz
- Christian-Albrechts-University Kiel, Institute for Theoretical Physics and Astrophysics, Leibnizstraße 15, 24098 Kiel, Germany
| | - Z Donkó
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, H-1525 Budapest, P.O.B 49, Hungary
| |
Collapse
|
12
|
Hartmann P, Kovács AZ, Douglass AM, Reyes JC, Matthews LS, Hyde TW. Slow plastic creep of 2D dusty plasma solids. PHYSICAL REVIEW LETTERS 2014; 113:025002. [PMID: 25062196 DOI: 10.1103/physrevlett.113.025002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Indexed: 06/03/2023]
Abstract
We report complex plasma experiments, assisted by numerical simulations, providing an alternative qualitative link between the macroscopic response of polycrystalline solid matter to small shearing forces and the possible underlying microscopic processes. In the stationary creep regime we have determined the exponents of the shear rate dependence of the shear stress and defect density, being α=1.15±0.1 and β=2.4±0.4, respectively. We show that the formation and rapid glide motion of dislocation pairs in the lattice are dominant processes.
Collapse
Affiliation(s)
- Peter Hartmann
- Institute for Solid State Physics and Optics, Wigner Research Centre, Hungarian Academy of Sciences, P.O.Box. 49, H-1525 Budapest, Hungary and Center for Astrophysics, Space Physics and Engineering Research (CASPER), One Bear Place 97310, Baylor University, Waco, Texas 76798, USA
| | - Anikó Zs Kovács
- Institute for Solid State Physics and Optics, Wigner Research Centre, Hungarian Academy of Sciences, P.O.Box. 49, H-1525 Budapest, Hungary
| | - Angela M Douglass
- Ouachita Baptist University, 410 Ouachita Street, Arkadelphia, Arkansas 71923, USA
| | - Jorge C Reyes
- Center for Astrophysics, Space Physics and Engineering Research (CASPER), One Bear Place 97310, Baylor University, Waco, Texas 76798, USA
| | - Lorin S Matthews
- Center for Astrophysics, Space Physics and Engineering Research (CASPER), One Bear Place 97310, Baylor University, Waco, Texas 76798, USA
| | - Truell W Hyde
- Center for Astrophysics, Space Physics and Engineering Research (CASPER), One Bear Place 97310, Baylor University, Waco, Texas 76798, USA
| |
Collapse
|
13
|
Feng Y, Goree J, Liu B, Intrator TP, Murillo MS. Superdiffusion of two-dimensional Yukawa liquids due to a perpendicular magnetic field. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:013105. [PMID: 25122399 DOI: 10.1103/physreve.90.013105] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Indexed: 06/03/2023]
Abstract
Stochastic transport of a two-dimensional (2D) dusty plasma liquid with a perpendicular magnetic field is studied. Superdiffusion is found to occur especially at higher magnetic fields with β of order unity. Here, β = ω(c)/ω(pd) is the ratio of the cyclotron and plasma frequencies for dust particles. The mean-square displacement MSD = 4D(α)t(α) is found to have an exponent α > 1, indicating superdiffusion, with α increasing monotonically to 1.1 as β increases to unity. The 2D Langevin molecular dynamics simulation used here also reveals that another indicator of random particle motion, the velocity autocorrelation function, has a dominant peak frequency ω(peak) that empirically obeys ω(peak)(2) = ω(c)(2) + ω(pd)(2)/4.
Collapse
Affiliation(s)
- Yan Feng
- Los Alamos National Laboratory, Mail Stop E526, Los Alamos, New Mexico 87545, USA
| | - J Goree
- Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242, USA
| | - Bin Liu
- Department of Physics and Astronomy, The University of Iowa, Iowa City, Iowa 52242, USA
| | - T P Intrator
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - M S Murillo
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
14
|
Dzhumagulova KN, Masheeva RU, Ramazanov TS, Donkó Z. Effect of magnetic field on the velocity autocorrelation and the caging of particles in two-dimensional Yukawa liquids. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:033104. [PMID: 24730953 DOI: 10.1103/physreve.89.033104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Indexed: 06/03/2023]
Abstract
We investigate the effect of an external magnetic field on the velocity autocorrelation function and the "caging" of the particles in a two-dimensional strongly coupled Yukawa liquid, via numerical simulations. The influence of the coupling strength on the position of the dominant peak in the frequency spectrum of the velocity autocorrelation function confirms the onset of a joint effect of the magnetic field and strong correlations at high coupling. Our molecular dynamics simulations quantify the decorrelation of the particles' surroundings: the magnetic field is found to increase significantly the caging time, which reaches values well beyond the time scale of plasma oscillations. The observation of the increased caging time is in accordance with findings that the magnetic field decreases diffusion in similar systems.
Collapse
Affiliation(s)
- K N Dzhumagulova
- IETP, Al Farabi Kazakh National University, 71 al Farabi Avenue, Almaty 050040, Kazakhstan
| | - R U Masheeva
- IETP, Al Farabi Kazakh National University, 71 al Farabi Avenue, Almaty 050040, Kazakhstan
| | - T S Ramazanov
- IETP, Al Farabi Kazakh National University, 71 al Farabi Avenue, Almaty 050040, Kazakhstan
| | - Z Donkó
- Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege Miklós Street 29-33, H-1121 Budapest, Hungary
| |
Collapse
|
15
|
Laut I, Räth C, Wörner L, Nosenko V, Zhdanov SK, Schablinski J, Block D, Thomas HM, Morfill GE. Network analysis of three-dimensional complex plasma clusters in a rotating electric field. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:023104. [PMID: 25353583 DOI: 10.1103/physreve.89.023104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Indexed: 06/04/2023]
Abstract
Network analysis was used to study the structure and time evolution of driven three-dimensional complex plasma clusters. The clusters were created by suspending micron-size particles in a glass box placed on top of the rf electrode in a capacitively coupled discharge. The particles were highly charged and manipulated by an external electric field that had a constant magnitude and uniformly rotated in the horizontal plane. Depending on the frequency of the applied electric field, the clusters rotated in the direction of the electric field or remained stationary. The positions of all particles were measured using stereoscopic digital in-line holography. The network analysis revealed the interplay between two competing symmetries in the cluster. The rotating cluster was shown to be more cylindrical than the nonrotating cluster. The emergence of vertical strings of particles was also confirmed.
Collapse
Affiliation(s)
- I Laut
- Max-Planck-Institut für Extraterrestrische Physik, D-85741 Garching, Germany
| | - C Räth
- Max-Planck-Institut für Extraterrestrische Physik, D-85741 Garching, Germany
| | - L Wörner
- Max-Planck-Institut für Extraterrestrische Physik, D-85741 Garching, Germany
| | - V Nosenko
- Max-Planck-Institut für Extraterrestrische Physik, D-85741 Garching, Germany
| | - S K Zhdanov
- Max-Planck-Institut für Extraterrestrische Physik, D-85741 Garching, Germany
| | - J Schablinski
- Christian-Albrechts Universität zu Kiel, D-24118 Kiel, Germany
| | - D Block
- Christian-Albrechts Universität zu Kiel, D-24118 Kiel, Germany
| | - H M Thomas
- Max-Planck-Institut für Extraterrestrische Physik, D-85741 Garching, Germany
| | - G E Morfill
- Max-Planck-Institut für Extraterrestrische Physik, D-85741 Garching, Germany
| |
Collapse
|
16
|
Ott T, Löwen H, Bonitz M. Dynamics of two-dimensional one-component and binary Yukawa systems in a magnetic field. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:013105. [PMID: 24580344 DOI: 10.1103/physreve.89.013105] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Indexed: 06/03/2023]
Abstract
We consider two-dimensional Yukawa systems in a perpendicular magnetic field. Computer simulations of both one-component and binary systems are used to explore the equilibrium particle dynamics in the fluid state. The mobility is found to scale with the inverse of the magnetic field strength (Bohm diffusion), for strong fields (ωc/ωp≳1). For bidisperse mixtures, the magnetic field dependence of the long-time mobility depends on the particle species, providing an external control of their mobility ratio. At large magnetic fields, the highly charged particles are almost immobilized by the magnetic field and form a porous matrix of obstacles for the mobile low-charge particles.
Collapse
Affiliation(s)
- T Ott
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany and Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| | - H Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - M Bonitz
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, 24098 Kiel, Germany
| |
Collapse
|