Kim H, Bang J, Kang J. Robust ferromagnetism in hydrogenated graphene mediated by spin-polarized pseudospin.
Sci Rep 2018;
8:13940. [PMID:
30224827 PMCID:
PMC6141587 DOI:
10.1038/s41598-018-31934-0]
[Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/29/2018] [Indexed: 11/26/2022] Open
Abstract
The origin of the ferromagnetism in metal-free graphitic materials has been a decade-old puzzle. The possibility of long-range magnetic order in graphene has been recently questioned by the experimental findings that point defects in graphene, such as fluorine adatoms and vacancies, lead to defect-induced paramagnetism but no magnetic ordering down to 2 K. It remains controversial whether collective magnetic order in graphene can emerge from point defects at finite temperatures. This work provides a new framework for understanding the ferromagnetism in hydrogenated graphene, highlighting the key contribution of the spin-polarized pseudospin as a “mediator” of long-range magnetic interactions in graphene. Using first-principles calculations of hydrogenated graphene, we found that the unique ‘zero-energy’ position of H-induced quasilocalized states enables notable spin polarization of the graphene’s sublattice pseudospin. The pseudospin-mediated magnetic interactions between the H-induced magnetic moments stabilize the two-dimensional ferromagnetic ordering with Curie temperatures of Tc = nH × 34,000 K for the atom percentage nH of H adatoms. These findings show that atomic-scale control of hydrogen adsorption on graphene can give rise to a robust magnetic order.
Collapse