1
|
Munkes F, Rayment MH, Trachtmann A, Anschütz F, Eder E, Hengel P, Schellander Y, Schalberger P, Fruehauf N, Anders J, Löw R, Pfau T, Hogan SD, Kübler H. High-Resolution Continuous-Wave Laser Spectroscopy of Long-Lived Rydberg States in NO. J Phys Chem Lett 2024; 15:10171-10180. [PMID: 39352077 DOI: 10.1021/acs.jpclett.4c02002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
High-resolution continuous-wave (cw) laser spectroscopy of nitric oxide (NO) molecules has been performed to study and characterize the energy-level structure of and effects of electric fields on the high Rydberg states. The experiments were carried out with molecules flowing through a room temperature gas cell. Rydberg-state photoexcitation was implemented using the resonance enhanced ( n l ) X + Σ + 1 ← H Σ + 2 ← A Σ + 2 ← X Π 3 / 2 2 three-color three-photon excitation scheme. Excited molecules were detected by high-sensitivity optogalvanic methods. Detailed measurements were made of Rydberg states with principal quantum numbers n = 22 and 32 in the series converging to the lowest rotational and vibrational state of the NO+ cation. The experimental data were compared with the results of numerical calculations which provided insight into the orbital angular momentum character of the intermediate H 2Σ+ state, improved determinations of the nf and ng quantum defects, a bound on the magnitude of the nh quantum defect, and information on the decay rates of the nf and ng Rydberg states. These measurements represent a step-change in laser spectroscopic studies of high Rydberg states in small atmospheric molecules. They open opportunities for more detailed studies of slow decay processes of Rydberg NO molecules confined in electrostatic traps, the synthesis of ultralong range Rydberg bimolecules, and the development of optical methods for trace gas detection.
Collapse
Affiliation(s)
- Fabian Munkes
- 5th Institute of Physics, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Matthew H Rayment
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Alexander Trachtmann
- 5th Institute of Physics, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Florian Anschütz
- 5th Institute of Physics, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Ettore Eder
- 5th Institute of Physics, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Philipp Hengel
- Institute of Smart Sensors, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
| | - Yannick Schellander
- Institute for Large Area Microelectronics, University of Stuttgart, Allmandring 3b, 70569 Stuttgart, Germany
| | - Patrick Schalberger
- Institute for Large Area Microelectronics, University of Stuttgart, Allmandring 3b, 70569 Stuttgart, Germany
| | - Norbert Fruehauf
- Institute for Large Area Microelectronics, University of Stuttgart, Allmandring 3b, 70569 Stuttgart, Germany
| | - Jens Anders
- Institute of Smart Sensors, University of Stuttgart, Pfaffenwaldring 47, 70569 Stuttgart, Germany
| | - Robert Löw
- 5th Institute of Physics, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Tilman Pfau
- 5th Institute of Physics, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Stephen D Hogan
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Harald Kübler
- 5th Institute of Physics, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
2
|
LeVan J, Acciarri MD, Baalrud SD. Bulk viscosity of the rigid rotor one-component plasma. Phys Rev E 2024; 110:015208. [PMID: 39160954 DOI: 10.1103/physreve.110.015208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/03/2024] [Indexed: 08/21/2024]
Abstract
Bulk viscosity of a plasma consisting of strongly coupled diatomic ions is computed using molecular dynamics simulations. The simulations are based on the rigid rotor one-component plasma, which is introduced as a model system that adds two degrees of molecular rotation to the traditional one-component plasma. It is characterized by two parameters: the Coulomb coupling parameter, Γ, and the bond length parameter, Ω. Results show that the long-range nature of the Coulomb potential can lead to long rotational relaxation times, which in turn yield large values for bulk viscosity. The bulk-to-shear viscosity ratio is found to span from small to large values depending on the values of Γ and Ω. Although bulk viscosity is often neglected in plasma modeling, these results motivate that it can be large in molecular plasmas with rotational degrees of freedom.
Collapse
|
3
|
Wang R, Sous J, Aghigh M, MarroquÃn KL, Grant KM, Martins FBV, Keller JS, Grant ER. mm-wave Rydberg-Rydberg transitions gauge intermolecular coupling in a molecular ultracold plasma. J Chem Phys 2022; 157:064305. [DOI: 10.1063/5.0083684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Out-of-equilibrium, strong correlation in a many-body system can trigger emergent properties that act to constrain the natural dissipation of energy and matter. Signs of such self-organization appear in the avalanche, bifurcation, and quench of a state-selected Rydberg gas of nitric oxide to form an ultracold, strongly correlated ultracold plasma. Work reported here focuses on initial stages of avalanche and quench, and uses the mm-wave spectroscopy of an embedded quantum probe to characterize the intermolecular interaction dynamics associated with the evolution to plasma. Double-resonance excitation prepares a Rydberg gas of nitric oxide composed of a single selected state of principal quantum number, n0. Penning ionization, followed by an avalanche of electron-Rydberg collisions, forms a plasma of NO+ ions and weakly bound electrons, in which a residual population of n0 Rydberg molecules evolves to a state of high orbital angular momentum, l. Predissociation depletes the plasma of low- l molecules. Relaxation ceases and n0l(2) molecules with l {greater than or equal to} 4 persist for very long times. At short times, varying excitation spectra of mm-wave Rydberg-Rydberg transitions mark the rate of electron-collisional l-mixing. Deep depletion resonances that persist for long times signal energy redistribution in the basis of central-field Rydberg states. The widths and asymmetries of Fano lineshapes witness the degree to which coupling in the arrested bath i) broadens the allowed transition and ii) mixes the local network of levels in the ensemble.
Collapse
Affiliation(s)
- Ruoxi Wang
- The University of British Columbia Department of Chemistry, Canada
| | - John Sous
- Columbia University Department of Physics, United States of America
| | - Mahyad Aghigh
- The University of British Columbia Department of Chemistry, Canada
| | | | - Kiara M. Grant
- The University of British Columbia Department of Chemistry, Canada
| | | | - James S. Keller
- Kenyon College Department of Chemistry, United States of America
| | - Edward R. Grant
- Department of Chemistry, University of British Columbia Department of Chemistry, Canada
| |
Collapse
|
4
|
Deller A, Rayment MH, Hogan SD. Slow Decay Processes of Electrostatically Trapped Rydberg NO Molecules. PHYSICAL REVIEW LETTERS 2020; 125:073201. [PMID: 32857581 DOI: 10.1103/physrevlett.125.073201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/20/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) molecules initially traveling at 795 m/s in pulsed supersonic beams have been photoexcited to long-lived hydrogenic Rydberg-Stark states, decelerated and electrostatically trapped in a cryogenically cooled, chip-based transmission-line Rydberg-Stark decelerator. The decelerated and trapped molecules were detected in situ by pulsed electric field ionization. The operation of the decelerator was validated by comparison of the experimental data with the results of numerical calculations of particle trajectories. Studies of the decay of the trapped molecules on timescales up to 1 ms provide new insights into the lifetimes of, and effects of blackbody radiation on, Rydberg states of NO.
Collapse
Affiliation(s)
- A Deller
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - M H Rayment
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - S D Hogan
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
5
|
Mizoguchi M, Zhang Y, Kunimi M, Tanaka A, Takeda S, Takei N, Bharti V, Koyasu K, Kishimoto T, Jaksch D, Glaetzle A, Kiffner M, Masella G, Pupillo G, Weidemüller M, Ohmori K. Ultrafast Creation of Overlapping Rydberg Electrons in an Atomic BEC and Mott-Insulator Lattice. PHYSICAL REVIEW LETTERS 2020; 124:253201. [PMID: 32639753 DOI: 10.1103/physrevlett.124.253201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
We study an array of ultracold atoms in an optical lattice (Mott insulator) excited with a coherent ultrashort laser pulse to a state where single-electron wave functions spatially overlap. Beyond a threshold principal quantum number where Rydberg orbitals of neighboring lattice sites overlap with each other, the atoms efficiently undergo spontaneous Penning ionization resulting in a drastic change of ion-counting statistics, sharp increase of avalanche ionization, and the formation of an ultracold plasma. These observations signal the actual creation of electronic states with overlapping wave functions, which is further confirmed by a significant difference in ionization dynamics between a Bose-Einstein condensate and a Mott insulator. This system is a promising platform for simulating electronic many-body phenomena dominated by Coulomb interactions in the condensed phase.
Collapse
Affiliation(s)
- M Mizoguchi
- Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - Y Zhang
- Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, and Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - M Kunimi
- Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - A Tanaka
- Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - S Takeda
- Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - N Takei
- Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - V Bharti
- Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - K Koyasu
- Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi 444-8585, Japan
| | - T Kishimoto
- Department of Engineering Science and Institute for Advanced Science, University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - D Jaksch
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
- Center for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| | - A Glaetzle
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
- Center for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| | - M Kiffner
- Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
- Center for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| | - G Masella
- icFRC and ISIS (UMR 7006), Université de Strasbourg and CNRS, 67000 Strasbourg, France
| | - G Pupillo
- icFRC and ISIS (UMR 7006), Université de Strasbourg and CNRS, 67000 Strasbourg, France
| | - M Weidemüller
- Physikalisches Institut, Universität Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China and CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - K Ohmori
- Institute for Molecular Science, National Institutes of Natural Sciences, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi 444-8585, Japan
- SOKENDAI (The Graduate University for Advanced Studies), Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|
6
|
Martins FBV, Keller JS, Grant ER. Control of molecular ultracold plasma relaxation dynamics by mm-wave Rydberg–Rydberg transitions. Mol Phys 2019. [DOI: 10.1080/00268976.2019.1650968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Fernanda Banic Viana Martins
- Department of Chemistry, Kenyon College, Gambier, OH, USA
- Department of Chemistry, and Department of Physics & Astronomy, University of British Columbia, Vancouver, Canada
| | - James S. Keller
- Department of Chemistry, Kenyon College, Gambier, OH, USA
- Department of Chemistry, and Department of Physics & Astronomy, University of British Columbia, Vancouver, Canada
| | - Edward R. Grant
- Department of Chemistry, and Department of Physics & Astronomy, University of British Columbia, Vancouver, Canada
| |
Collapse
|
7
|
Langin TK, Gorman GM, Killian TC. Laser cooling of ions in a neutral plasma. Science 2019; 363:61-64. [PMID: 30606841 DOI: 10.1126/science.aat3158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 11/13/2018] [Indexed: 11/02/2022]
Abstract
Laser cooling of a neutral plasma is a challenging task because of the high temperatures typically associated with the plasma state. By using an ultracold neutral plasma created by photoionization of an ultracold atomic gas, we avoid this obstacle and demonstrate laser cooling of ions in a neutral plasma. After 135 microseconds of cooling, we observed a reduction in ion temperature by up to a factor of four, with the temperature reaching as low as 50(4) millikelvin. This pushes laboratory studies of neutral plasmas deeper into the strongly coupled regime, beyond the limits of validity of current kinetic theories for calculating transport properties. The same optical forces also retard the plasma expansion, opening avenues for neutral-plasma confinement and manipulation.
Collapse
Affiliation(s)
- Thomas K Langin
- Department of Physics and Astronomy, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Grant M Gorman
- Department of Physics and Astronomy, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Thomas C Killian
- Department of Physics and Astronomy, Rice University, 6100 Main Street, Houston, TX 77005, USA.
| |
Collapse
|
8
|
Sous J, Grant E. Possible Many-Body Localization in a Long-Lived Finite-Temperature Ultracold Quasineutral Molecular Plasma. PHYSICAL REVIEW LETTERS 2018; 120:110601. [PMID: 29601764 DOI: 10.1103/physrevlett.120.110601] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 01/26/2018] [Indexed: 06/08/2023]
Abstract
We argue that the quenched ultracold plasma presents an experimental platform for studying the quantum many-body physics of disordered systems in the long-time and finite energy-density limits. We consider an experiment that quenches a plasma of nitric oxide to an ultracold system of Rydberg molecules, ions, and electrons that exhibits a long-lived state of arrested relaxation. The qualitative features of this state fail to conform with classical models. Here, we develop a microscopic quantum description for the arrested phase based on an effective many-body spin Hamiltonian that includes both dipole-dipole and van der Waals interactions. This effective model appears to offer a way to envision the essential quantum disordered nonequilibrium physics of this system.
Collapse
Affiliation(s)
- John Sous
- Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Edward Grant
- Department of Physics & Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
9
|
Lyon M, Rolston SL. Ultracold neutral plasmas. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:017001. [PMID: 27852983 DOI: 10.1088/0034-4885/80/1/017001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
By photoionizing samples of laser-cooled atoms with laser light tuned just above the ionization limit, plasmas can be created with electron and ion temperatures below 10 K. These ultracold neutral plasmas have extended the temperature bounds of plasma physics by two orders of magnitude. Table-top experiments, using many of the tools from atomic physics, allow for the study of plasma phenomena in this new regime with independent control over the density and temperature of the plasma through the excitation process. Characteristic of these systems is an inhomogeneous density profile, inherited from the density distribution of the laser-cooled neutral atom sample. Most work has dealt with unconfined plasmas in vacuum, which expand outward at velocities of order 100 m/s, governed by electron pressure, and with lifetimes of order 100 μs, limited by stray electric fields. Using detection of charged particles and optical detection techniques, a wide variety of properties and phenomena have been observed, including expansion dynamics, collective excitations in both the electrons and ions, and collisional properties. Through three-body recombination collisions, the plasmas rapidly form Rydberg atoms, and clouds of cold Rydberg atoms have been observed to spontaneously avalanche ionize to form plasmas. Of particular interest is the possibility of the formation of strongly coupled plasmas, where Coulomb forces dominate thermal motion and correlations become important. The strongest impediment to strong coupling is disorder-induced heating, a process in which Coulomb energy from an initially disordered sample is converted into thermal energy. This restricts electrons to a weakly coupled regime and leaves the ions barely within the strongly coupled regime. This review will give an overview of the field of ultracold neutral plasmas, from its inception in 1999 to current work, including efforts to increase strong coupling and effects on plasma properties due to strong coupling.
Collapse
Affiliation(s)
- M Lyon
- Joint Quantum Institute, University of Maryland, College Park and NIST, College Park, MD 20742, USA
| | | |
Collapse
|
10
|
Lyon M, Bergeson SD, Diaw A, Murillo MS. Using higher ionization states to increase Coulomb coupling in an ultracold neutral plasma. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:033101. [PMID: 25871218 DOI: 10.1103/physreve.91.033101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Indexed: 06/04/2023]
Abstract
We report measurements and simulations of the time-evolving rms velocity distribution in an ultracold neutral plasma. A strongly coupled ultracold neutral Ca+ plasma is generated by photoionizing laser-cooled atoms close to threshold. A fraction of these ions is then promoted to the second ionization state to form a mixed Ca+-Ca2+ plasma. By varying the time delay between the first and the second ionization events, a minimum in ion heating is achieved. We show that the Coulomb strong-coupling parameter Γ increases by a factor of 1.4 to a maximum value of 3.6. A pure Ca2+ plasma would have Γ=6.8, moving these strongly coupled systems closer to the regime of liquid-like correlations.
Collapse
Affiliation(s)
- M Lyon
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA
| | - S D Bergeson
- Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602, USA
| | - A Diaw
- New Mexico Consortium, Los Alamos, New Mexico 87544, USA
| | - M S Murillo
- New Mexico Consortium, Los Alamos, New Mexico 87544, USA
| |
Collapse
|