1
|
Cao Z, Hou Z. Improved estimation for energy dissipation in biochemical oscillations. J Chem Phys 2022; 157:025102. [DOI: 10.1063/5.0092126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Biochemical oscillations, regulating the timing of life processes, need consume energy to achieve good performance on crucial functions, such as high accuracy of phase period and high sensitivity to external signals. However, it is a great challenge to precisely estimate the energy dissipation in such systems. Here, based on the stochastic normal form theory (SNFT), we calculate the Pearson correlation coefficient between the oscillatory amplitude and phase, and a trade-off relation between transport efficiency and phase sensitivity can then be derived, which serves as a tighter form than the estimator resulting from the conventional thermodynamic uncertainty relation (TUR). Our findings demonstrate that a more precise energy dissipation estimation can be obtained by enhancing the sensitivity of the biochemical oscillations. Moreover, the internal noise and amplitude power effects have also been discovered.
Collapse
Affiliation(s)
- Zhiyu Cao
- Department of Chemical Physics and Hefei National Laboratory for Physical Sciences at Microscales, iChEM, University of Science and Technology of China, University of Science and Technology of China Department of Chemical Physics, China
| | - Zhonghuai Hou
- Department of Chemical Physics, University of Science and Technology of China Hefei National Laboratory for Physical Sciences at the Microscale, China
| |
Collapse
|
2
|
Uriu K, Tei H. Complementary phase responses via functional differentiation of dual negative feedback loops. PLoS Comput Biol 2021; 17:e1008774. [PMID: 33684114 PMCID: PMC7971863 DOI: 10.1371/journal.pcbi.1008774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/18/2021] [Accepted: 02/05/2021] [Indexed: 11/18/2022] Open
Abstract
Multiple feedback loops are often found in gene regulations for various cellular functions. In mammalian circadian clocks, oscillations of Period1 (Per1) and Period2 (Per2) expression are caused by interacting negative feedback loops (NFLs) whose protein products with similar molecular functions repress each other. However, Per1 expression peaks earlier than Per2 in the pacemaker tissue, raising the question of whether the peak time difference reflects their different dynamical functions. Here, we address this question by analyzing phase responses of the circadian clock caused by light-induced transcription of both Per1 and Per2 mRNAs. Through mathematical analyses of dual NFLs, we show that phase advance is mainly driven by light inputs to the repressor with an earlier expression peak as Per1, whereas phase delay is driven by the other repressor with a later peak as Per2. Due to the complementary contributions to phase responses, the ratio of light-induced transcription rates between Per1 and Per2 determines the magnitude and direction of phase shifts at each time of day. Specifically, stronger Per1 light induction than Per2 results in a phase response curve (PRC) with a larger phase advance zone than delay zone as observed in rats and hamsters, whereas stronger Per2 induction causes a larger delay zone as observed in mice. Furthermore, the ratio of light-induced transcription rates required for entrainment is determined by the relation between the circadian and light-dark periods. Namely, if the autonomous period of a circadian clock is longer than the light-dark period, a larger light-induced transcription rate of Per1 than Per2 is required for entrainment, and vice versa. In short, the time difference between Per1 and Per2 expression peaks can differentiate their dynamical functions. The resultant complementary contributions to phase responses can determine entrainability of the circadian clock to the light-dark cycle.
Collapse
Affiliation(s)
- Koichiro Uriu
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
- * E-mail:
| | - Hajime Tei
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
3
|
Hasegawa Y, Van Vu T. Uncertainty relations in stochastic processes: An information inequality approach. Phys Rev E 2019; 99:062126. [PMID: 31330674 DOI: 10.1103/physreve.99.062126] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Indexed: 06/10/2023]
Abstract
The thermodynamic uncertainty relation is an inequality stating that it is impossible to attain higher precision than the bound defined by entropy production. In statistical inference theory, information inequalities assert that it is infeasible for any estimator to achieve an error smaller than the prescribed bound. Inspired by the similarity between the thermodynamic uncertainty relation and the information inequalities, we apply the latter to systems described by Langevin equations, and we derive the bound for the fluctuation of thermodynamic quantities. When applying the Cramér-Rao inequality, the obtained inequality reduces to the fluctuation-response inequality. We find that the thermodynamic uncertainty relation is a particular case of the Cramér-Rao inequality, in which the Fisher information is the total entropy production. Using the equality condition of the Cramér-Rao inequality, we find that the stochastic total entropy production is the only quantity that can attain equality in the thermodynamic uncertainty relation. Furthermore, we apply the Chapman-Robbins inequality and obtain a relation for the lower bound of the ratio between the variance and the sensitivity of systems in response to arbitrary perturbations.
Collapse
Affiliation(s)
- Yoshihiko Hasegawa
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Tan Van Vu
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
4
|
A saturated reaction in repressor synthesis creates a daytime dead zone in circadian clocks. PLoS Comput Biol 2019; 15:e1006787. [PMID: 30779745 PMCID: PMC6396941 DOI: 10.1371/journal.pcbi.1006787] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 03/01/2019] [Accepted: 01/14/2019] [Indexed: 11/19/2022] Open
Abstract
Negative feedback loops (NFLs) for circadian clocks include light-responsive reactions that allow the clocks to shift their phase depending on the timing of light signals. Phase response curves (PRCs) for light signals in various organisms include a time interval called a dead zone where light signals cause no phase shift during daytime. Although the importance of the dead zone for robust light entrainment is known, how the dead zone arises from the biochemical reactions in an NFL underlying circadian gene expression rhythms remains unclear. In addition, the observation that the light-responsive reactions in the NFL vary between organisms raises the question as to whether the mechanism for dead zone formation is common or distinct between different organisms. Here we reveal by mathematical modeling that the saturation of a biochemical reaction in repressor synthesis in an NFL is a common mechanism of daytime dead zone generation. If light signals increase the degradation of a repressor protein, as in Drosophila, the saturation of repressor mRNA transcription nullifies the effect of light signals, generating a dead zone. In contrast, if light signals induce the transcription of repressor mRNA, as in mammals, the saturation of repressor translation can generate a dead zone by cancelling the influence of excess amount of mRNA induced by light signals. Each of these saturated reactions is located next to the light-responsive reaction in the NFL, suggesting a design principle for daytime dead zone generation. Light-entrainable circadian clocks form behavioral and physiological rhythms in organisms. The light-entrainment properties of these clocks have been studied by measuring phase shifts caused by light pulses administered at different times. The phase response curves of various organisms include a time window called the dead zone where the phase of the clock does not respond to light pulses. However, the mechanism underlying the dead zone generation remains unclear. We show that the saturation of biochemical reactions in feedback loops for circadian oscillations generates a dead zone. The proposed mechanism is generic, as it functions in different models of the circadian clocks and biochemical oscillators. Our analysis indicates that light-entrainment properties are determined by biochemical reactions at the single-cell level.
Collapse
|
5
|
Vu TV, Hasegawa Y. An algebraic method to calculate parameter regions for constrained steady-state distribution in stochastic reaction networks. CHAOS (WOODBURY, N.Y.) 2019; 29:023123. [PMID: 30823706 DOI: 10.1063/1.5047579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/25/2019] [Indexed: 06/09/2023]
Abstract
Steady state is an essential concept in reaction networks. Its stability reflects fundamental characteristics of several biological phenomena such as cellular signal transduction and gene expression. Because biochemical reactions occur at the cellular level, they are affected by unavoidable fluctuations. Although several methods have been proposed to detect and analyze the stability of steady states for deterministic models, these methods cannot be applied to stochastic reaction networks. In this paper, we propose an algorithm based on algebraic computations to calculate parameter regions for constrained steady-state distribution of stochastic reaction networks, in which the means and variances satisfy some given inequality constraints. To evaluate our proposed method, we perform computer simulations for three typical chemical reactions and demonstrate that the results obtained with our method are consistent with the simulation results.
Collapse
Affiliation(s)
- Tan Van Vu
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yoshihiko Hasegawa
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
6
|
Monti M, Lubensky DK, Ten Wolde PR. Optimal entrainment of circadian clocks in the presence of noise. Phys Rev E 2018; 97:032405. [PMID: 29776095 DOI: 10.1103/physreve.97.032405] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Indexed: 01/17/2023]
Abstract
Circadian clocks are biochemical oscillators that allow organisms to estimate the time of the day. These oscillators are inherently noisy due to the discrete nature of the reactants and the stochastic character of their interactions. To keep these oscillators in sync with the daily day-night rhythm in the presence of noise, circadian clocks must be coupled to the dark-light cycle. In this paper, we study the entrainment of phase oscillators as a function of the intrinsic noise in the system. Using stochastic simulations, we compute the optimal coupling strength, intrinsic frequency, and shape of the phase-response curve, that maximize the mutual information between the phase of the clock and time. We show that the optimal coupling strength and intrinsic frequency increase with the noise, but that the shape of the phase-response curve varies nonmonotonically with the noise: in the low-noise regime, it features a dead zone that increases in width as the noise increases, while in the high-noise regime, the width decreases with the noise. These results arise from a tradeoff between maximizing stability-noise suppression-and maximizing linearity of the input-output, i.e., time-phase, relation. We also show that three analytic approximations-the linear-noise approximation, the phase-averaging method, and linear-response theory-accurately describe different regimes of the coupling strength and the noise.
Collapse
Affiliation(s)
- Michele Monti
- AMOLF, Science Park 104, 1098 XE Amsterdam, The Netherlands
| | - David K Lubensky
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| | | |
Collapse
|
7
|
Modeling Reveals a Key Mechanism for Light-Dependent Phase Shifts of Neurospora Circadian Rhythms. Biophys J 2018; 115:1093-1102. [PMID: 30139524 DOI: 10.1016/j.bpj.2018.07.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 07/11/2018] [Accepted: 07/24/2018] [Indexed: 12/14/2022] Open
Abstract
Light shifts and synchronizes the phase of the circadian clock to daily environments, which is critical for maintaining the daily activities of an organism. It has been proposed that such light-dependent phase shifts are triggered by light-induced upregulation of a negative element of the core circadian clock (i.e., frq, Per1/2) in many organisms, including fungi. However, we find, using systematic mathematical modeling of the Neurospora crassa circadian clock, that the upregulation of the frq gene expression alone is unable to reproduce the observed light-dependent phase responses. Indeed, we find that the depression of the transcriptional activator white-collar-1, previously shown to be promoted by FRQ and VVD, is a key molecular mechanism for accurately simulating light-induced phase response curves for wild-type and mutant strains of Neurospora. Our findings elucidate specific molecular pathways that can be utilized to control phase resetting of circadian rhythms.
Collapse
|
8
|
Hasegawa Y. Multidimensional biochemical information processing of dynamical patterns. Phys Rev E 2018; 97:022401. [PMID: 29548224 DOI: 10.1103/physreve.97.022401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Indexed: 06/08/2023]
Abstract
Cells receive signaling molecules by receptors and relay information via sensory networks so that they can respond properly depending on the type of signal. Recent studies have shown that cells can extract multidimensional information from dynamical concentration patterns of signaling molecules. We herein study how biochemical systems can process multidimensional information embedded in dynamical patterns. We model the decoding networks by linear response functions, and optimize the functions with the calculus of variations to maximize the mutual information between patterns and output. We find that, when the noise intensity is lower, decoders with different linear response functions, i.e., distinct decoders, can extract much information. However, when the noise intensity is higher, distinct decoders do not provide the maximum amount of information. This indicates that, when transmitting information by dynamical patterns, embedding information in multiple patterns is not optimal when the noise intensity is very large. Furthermore, we explore the biochemical implementations of these decoders using control theory and demonstrate that these decoders can be implemented biochemically through the modification of cascade-type networks, which are prevalent in actual signaling pathways.
Collapse
Affiliation(s)
- Yoshihiko Hasegawa
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
9
|
Berry SE, Gilchrist J, Merritt DJ. Homeostatic and circadian mechanisms of bioluminescence regulation differ between a forest and a facultative cave species of glowworm, Arachnocampa. JOURNAL OF INSECT PHYSIOLOGY 2017; 103:1-9. [PMID: 28899751 DOI: 10.1016/j.jinsphys.2017.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/01/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
Glowworms, members of the keroplatid fly genus, Arachnocampa, glow to attract prey. Here we describe substantial differences in the bioluminescence regulatory systems of two species; one is a troglophile with populations both in caves and outside of caves in wet forest (Arachnocampa tasmaniensis) and the other has no known cave populations (Arachnocampa flava). We find that A. tasmaniensis is ready to initiate bioluminescence at any time darkness is encountered. In contrast, A. flava shows a homeostatic control of bioluminescence; it is unlikely to initiate bioluminescence when exposed to dark pulses during the photophase and it does so with a long latency. Another difference between the two species is that A. tasmaniensis individuals synchronize their bioluminescence in the dark zone of caves under the control of the circadian system and A. flava individuals do not synchronize to each other, rather their circadian control system entrains to the light:dark cycle to promote nocturnal bioluminescence. Consequently, we produced a phase-response curve in response to photic entrainment under constant darkness for both species. The shape of the phase-response curves differs between the two species as does the overall sensitivity to the identical entrainment conditions. The phase-response curve of A. tasmaniensis facilitates synchronization whereas that of A. flava facilitates nocturnal glowing. The two-species comparison highlights possible pathways of divergence of circadian control of physiological functions that could be associated with the extreme ecological differences experienced in cave and surface habitats.
Collapse
Affiliation(s)
- Sarah E Berry
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia,.
| | - Joshua Gilchrist
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | - David J Merritt
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
10
|
Shirasaka S, Watanabe N, Kawamura Y, Nakao H. Optimizing stability of mutual synchronization between a pair of limit-cycle oscillators with weak cross coupling. Phys Rev E 2017; 96:012223. [PMID: 29347076 DOI: 10.1103/physreve.96.012223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Indexed: 12/22/2022]
Abstract
We consider optimization of the linear stability of synchronized states between a pair of weakly coupled limit-cycle oscillators with cross coupling, where different components of state variables of the oscillators are allowed to interact. On the basis of the phase reduction theory, we derive the coupling matrix between different components of the oscillator states that maximizes the linear stability of the synchronized state under given constraints on the overall coupling intensity and the stationary phase difference. The improvement in the linear stability is illustrated by using several types of limit-cycle oscillators as examples.
Collapse
Affiliation(s)
- Sho Shirasaka
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo 153-8904, Japan
| | - Nobuhiro Watanabe
- Department of Systems and Control Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan
| | - Yoji Kawamura
- Department of Mathematical Science and Advanced Technology, Japan Agency for Marine-Earth Science and Technology, Yokohama 236-0001, Japan
| | - Hiroya Nakao
- Department of Systems and Control Engineering, Tokyo Institute of Technology, Tokyo 152-8552, Japan.,Department of Mechanical Engineering, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
11
|
Paijmans J, Lubensky DK, Ten Wolde PR. Period Robustness and Entrainability of the Kai System to Changing Nucleotide Concentrations. Biophys J 2017; 113:157-173. [PMID: 28700914 PMCID: PMC5510911 DOI: 10.1016/j.bpj.2017.05.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 05/01/2017] [Accepted: 05/30/2017] [Indexed: 10/19/2022] Open
Abstract
Circadian clocks must be able to entrain to time-varying signals to keep their oscillations in phase with the day-night rhythm. On the other hand, they must also exhibit input compensation: their period must remain approximately one day in different constant environments. The posttranslational oscillator of the Kai system can be entrained by transient or oscillatory changes in the ATP fraction, yet is insensitive to constant changes in this fraction. We study in three different models of this system how these two seemingly conflicting criteria are met. We find that one of these (our recently published Paijmans model) exhibits the best tradeoff between input compensation and entrainability: on the footing of equal phase-response curves, it exhibits the strongest input compensation. Performing stochastic simulations at the level of individual hexamers allows us to identify a new, to our knowledge, mechanism, which is employed by the Paijmans model to achieve input compensation: at lower ATP fraction, the individual hexamers make a shorter cycle in the phosphorylation state space, which compensates for the slower pace at which they traverse the cycle.
Collapse
Affiliation(s)
- Joris Paijmans
- AMOLF, Amsterdam, the Netherlands, University of Michigan, Ann Arbor, Michigan
| | - David K Lubensky
- Department of Physics, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
12
|
Hasegawa Y. Variational superposed Gaussian approximation for time-dependent solutions of Langevin equations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:042912. [PMID: 25974567 DOI: 10.1103/physreve.91.042912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Indexed: 06/04/2023]
Abstract
We propose a variational superposed Gaussian approximation (VSGA) for dynamical solutions of Langevin equations subject to applied signals, determining time-dependent parameters of superposed Gaussian distributions by the variational principle. We apply the proposed VSGA to systems driven by a chaotic signal, where the conventional Fourier method cannot be adopted, and calculate the time evolution of probability density functions (PDFs) and moments. Both white and colored Gaussian noises terms are included to describe fluctuations. Our calculations show that time-dependent PDFs obtained by VSGA agree excellently with those obtained by Monte Carlo simulations. The correlation between the chaotic input signal and the mean response are also calculated as a function of the noise intensity, which confirms the occurrence of aperiodic stochastic resonance with both white and colored noises.
Collapse
Affiliation(s)
- Yoshihiko Hasegawa
- Department of Information and Communication Engineering, Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|