1
|
Budroni MA, Rossi F. Transport-driven chemical oscillations: a review. Phys Chem Chem Phys 2024. [PMID: 39585726 DOI: 10.1039/d4cp03466j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Chemical oscillators attract transversal interest not only as useful models for understanding and controlling (bio)chemical complexity far from the equilibrium, but also as a promising means to design smart materials and power synthetic functional behaviors. We review and classify oscillatory phenomena in systems where a periodic variation in the concentration of the constitutive chemical species is induced by transport instabilities either triggered by simple reactions or without any reactive process at play. These phenomena, where the origin of the dynamical complexity is shifted from chemical to physical nonlinearities, can facilitate a variety of processes commonly encountered in chemistry and chemical engineering. We present an excursus through the main examples, discussing phenomenology, properties and modeling of different mechanisms that can lead to these kinds of oscillations. In particular, we reproduce the relevant results reported in the pertinent literature and, in parallel, propose new kinds of proof-of-concept systems substantiated by preliminary studies which can inspire new research lines. In the landscape of physically driven chemical oscillations, we devote particular attention to transport phenomena, actively or passively combined to (reactive or nonreactive) chemical species, which provide multiple pathways towards spontaneous oscillatory instabilities. Though with different specificities, the great part of these systems can be reduced to a common theoretical description. We finally overview possible perspectives in the study of physically driven oscillatory instabilities, showing how the related control can impact fundamental and applied open problems, ranging from origin of life studies to the optimization of processes with environmental relevance.
Collapse
Affiliation(s)
- M A Budroni
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, Sassari 07100, Italy.
| | - F Rossi
- Department of Physical Sciences, Earth and Environment, University of Siena, Piazzetta Enzo Tiezzi 1, 53100 Siena, Italy
| |
Collapse
|
2
|
Tanaka R, Almarcha C, Nagatsu Y, Méheust Y, Meunier P. Chemically Enhanced Convective Dissolution of CO_{2}. PHYSICAL REVIEW LETTERS 2024; 132:084002. [PMID: 38457725 DOI: 10.1103/physrevlett.132.084002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/10/2024] [Indexed: 03/10/2024]
Abstract
Convective dissolution, one of the main mechanisms for geological storage of CO_{2}, occurs when supercritical or gas CO_{2} dissolves partially into an aqueous solution, thus triggering downward convection of the denser CO_{2}-enriched liquid. Chemical reaction in the liquid can greatly enhance the process. Here, experimental measurements of convective flow inside a cylinder filled with a sodium hydroxide (NaOH) solution show that the plume's velocity can be increased tenfold as compared to a situation with no NaOH. This tremendous effect is predicted by a model with no adjusting parameters.
Collapse
Affiliation(s)
- R Tanaka
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - C Almarcha
- Aix Marseille Université, CNRS, Centrale Marseille, IRPHE UMR 7342, 13384 Marseille, France
| | - Y Nagatsu
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan
| | - Y Méheust
- Université Rennes, CNRS, Géosciences Rennes, UMR 6118, 35000 Rennes, France
| | - P Meunier
- Aix Marseille Université, CNRS, Centrale Marseille, IRPHE UMR 7342, 13384 Marseille, France
| |
Collapse
|
3
|
Kabbadj S, Rongy L, De Wit A. Effect of variable solubility on reactive dissolution in partially miscible systems. Phys Rev E 2023; 107:065109. [PMID: 37464620 DOI: 10.1103/physreve.107.065109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/07/2023] [Indexed: 07/20/2023]
Abstract
When two partially miscible systems are put in contact, one phase, A, can dissolve into the other one with a given solubility. Chemical reactions in the host phase can impact this dissolution by consuming A and by generating products that impact the solubility of A. Here, we study theoretically the optimal conditions for transfer of a reactant A in a host phase containing a species B when a bimolecular A + B → C reaction generates a product C that linearly decreases the solubility of A. We have quantified numerically the influence of this variable solubility on the reaction-diffusion (RD) concentration profiles of all species in the host phase, on the temporal evolution of the position of the reaction front, and on the flux of A through the interface. We have also computed the analytical asymptotic concentration profiles, solutions at long times of the RD governing equations. For a fixed negative effect of C on the solubility of A, an increase in the initial concentration of reactant B or an increase in the diffusion rate of species B and C results in a larger flux of A and hence a larger amount of A dissolved in the host solution at a given time. However, when the influence of C on the solubility increases, the mass transfer decreases. Our results help understand to what extent a chemical reaction can optimize the reactive transfer of a solute to a host phase with application to, among other things, the geological sequestration of carbon dioxide in an aquifer.
Collapse
Affiliation(s)
- S Kabbadj
- Nonlinear Physical Chemistry Unit, Université libre de Bruxelles, CP231, Boulevard du Triomphe, 1050 Bruxelles, Belgium
| | - L Rongy
- Nonlinear Physical Chemistry Unit, Université libre de Bruxelles, CP231, Boulevard du Triomphe, 1050 Bruxelles, Belgium
| | - A De Wit
- Nonlinear Physical Chemistry Unit, Université libre de Bruxelles, CP231, Boulevard du Triomphe, 1050 Bruxelles, Belgium
| |
Collapse
|
4
|
Valletti N, Budroni MA, Albanese P, Marchettini N, Sanchez-Dominguez M, Lagzi I, Rossi F. Hydrodynamically-enhanced transfer of dense non-aqueous phase liquids into an aqueous reservoir. WATER RESEARCH 2023; 231:119608. [PMID: 36709564 DOI: 10.1016/j.watres.2023.119608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
The use of surfactants represents a viable strategy to boost the removal yield of Dense Non-Aqueous Phase Liquids (DNAPLs) from groundwater and to shorten the operational timing of the remediation process. Surfactants, in general, help in reducing the interfacial tension at the DNAPL/water interface and enhance the solubility of the pollutant in the water phase through the formation of dispersed systems, such as micelles and emulsions. In this paper, we show that a suitable choice of a surfactant, in this case belonging to the bio-degradable class of ethoxylated alcohols, allows for the formation of hydrodynamic interfacial instabilities that further enhances the dissolution rate of the organic pollutant into the water phase. In a stratified configuration (denser organic phase at the bottom and lighter water phase on top), the instabilities appear as upward-pointing fingers that originate from the inversion of the local density at the interface. This inversion stems from the synergetic coupling of two effects promoted by the ethoxylated surfactant: i) the enhanced co-solubility of the DNAPL into the water (and viceversa), and (ii) the differential diffusion of the DNAPL and the surfactant in the aqueous phase. By dissolving into the DNAPL, the surfactant also reduces locally the surface tension at the liquid-liquid interface, thereby inducing transversal Marangoni flows. In our work, we carefully evaluated the effects of the concentration of different surfactants (two different ethoxylated alcohols, sodium dodecylsulphate, cetyltrimethyl ammonium bromide, N-tetradecyl-N, N-dimethylamine oxide and bis(2-ethylhexyl) sulfosuccinate sodium salt) on the onset of the instabilities in 3 different DNAPLs/water stratifications, namely chloroform, trichloroethylene and tetrachloroethylene, with a special emphasis on the trichloroethylene/water system. By means of a theoretical model and nonlinear simulations, supported by surface tension, density and diffusivity measurements, we could provide a solid explanation to the observed phenomena and we found that the type of the dispersed system, the solubility of the DNAPL into the water phase, the solubility of the surfactant in the organic phase, as well as the relative diffusion and density of the surfactant and the DNAPL in the aqueous phase, are all key parameters for the onset of the instabilities. These results can be exploited in the most common remediation techniques.
Collapse
Affiliation(s)
- Nadia Valletti
- Department of Earth, Environmental and Physical Sciences, University of Siena, Pian dei Mantellini 44, 53100 Siena, Italy
| | - Marcello A Budroni
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Paola Albanese
- Department of Earth, Environmental and Physical Sciences, University of Siena, Pian dei Mantellini 44, 53100 Siena, Italy
| | - Nadia Marchettini
- Department of Earth, Environmental and Physical Sciences, University of Siena, Pian dei Mantellini 44, 53100 Siena, Italy
| | - Margarita Sanchez-Dominguez
- Grupo de Quimica Coloidal e Interfacial Aplicada a Nanomateriales y Formulaciones, Centro de Investigacion en Materiales Avanzados, S.C. (CIMAV), Unidad Monterrey, Alianza Norte 202, Parque de Investigacion e Innovacion Tecnologica, Apodaca 66628, Mexico
| | - Istvan Lagzi
- Department of Physics, Institute of Physics, Budapest University of Technology and Economics, Muegyetem rkp. 3., H-1111 Budapest, Hungary; ELKH-BME Condensed Matter Research Group, Budapest University of Technology and Economics, Muegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Federico Rossi
- Department of Earth, Environmental and Physical Sciences, University of Siena, Pian dei Mantellini 44, 53100 Siena, Italy.
| |
Collapse
|
5
|
Maharana SN, Sahu KC, Mishra M. Stability of a layered reactive channel flow. Proc Math Phys Eng Sci 2023. [DOI: 10.1098/rspa.2022.0689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
We analyse the linear stability of a reactive plane Poiseuille flow, where a reactant fluid
A
overlies another reactant
B
in a layered fashion within a two-dimensional channel. Both reactants are miscible and have the same viscosity, while upon reaction, they produce either a less or more-viscous product fluid
C
. The reaction kinetics is of simple
A
+
B
→
C
type, and the production of
C
occurs across the initial contact line of reactants
A
and
B
in a mixed zone of small and finite width. All three fluids have the same density. We demonstrate the effects of various controlling parameters such as the log-mobility ratio, Damköhler number, Schmidt number, Reynolds number, position and thicknesses of the reactive zone on the stability characteristics. We show that a tiny viscosity stratification by the reaction destabilizes the flow at a moderate (10–1000) and even at low Reynolds numbers (0.01–1). The maximum growth occurs for shorter waves than for the Tollmien–Schlichting eigenmode, and the ranges of unstable wavenumbers are wider than that known for non-reactive channel flow systems. In most cases, the instability occurs due to the overlap of the critical layer with the viscosity-stratified layer. Surprisingly for some parameters, it is observed that the reaction can make
σ
M
decrease with increasing Reynolds number.
Collapse
Affiliation(s)
- Surya Narayan Maharana
- Department of Mathematics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| | - Kirti Chandra Sahu
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, Telangana 502 284, India
| | - Manoranjan Mishra
- Department of Mathematics, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001, India
| |
Collapse
|
6
|
Nguindjel ADC, de Visser PJ, Winkens M, Korevaar PA. Spatial programming of self-organizing chemical systems using sustained physicochemical gradients from reaction, diffusion and hydrodynamics. Phys Chem Chem Phys 2022; 24:23980-24001. [PMID: 36172850 PMCID: PMC9554936 DOI: 10.1039/d2cp02542f] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022]
Abstract
Living organisms employ chemical self-organization to build structures, and inspire new strategies to design synthetic systems that spontaneously take a particular form, via a combination of integrated chemical reactions, assembly pathways and physicochemical processes. However, spatial programmability that is required to direct such self-organization is a challenge to control. Thermodynamic equilibrium typically brings about a homogeneous solution, or equilibrium structures such as supramolecular complexes and crystals. This perspective addresses out-of-equilibrium gradients that can be driven by coupling chemical reaction, diffusion and hydrodynamics, and provide spatial differentiation in the self-organization of molecular, ionic or colloidal building blocks in solution. These physicochemical gradients are required to (1) direct the organization from the starting conditions (e.g. a homogeneous solution), and (2) sustain the organization, to prevent it from decaying towards thermodynamic equilibrium. We highlight four different concepts that can be used as a design principle to establish such self-organization, using chemical reactions as a driving force to sustain the gradient and, ultimately, program the characteristics of the gradient: (1) reaction-diffusion coupling; (2) reaction-convection; (3) the Marangoni effect and (4) diffusiophoresis. Furthermore, we outline their potential as attractive pathways to translate chemical reactions and molecular/colloidal assembly into organization of patterns in solution, (dynamic) self-assembled architectures and collectively moving swarms at the micro-, meso- and macroscale, exemplified by recent demonstrations in the literature.
Collapse
Affiliation(s)
| | - Pieter J de Visser
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| | - Mitch Winkens
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| | - Peter A Korevaar
- Institute for Molecules and Materials, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
7
|
Budroni MA, Rossi F, Rongy L. From Transport Phenomena to Systems Chemistry: Chemohydrodynamic Oscillations in A+B→C Systems. CHEMSYSTEMSCHEM 2021. [DOI: 10.1002/syst.202100023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Marcello A. Budroni
- Department of Chemistry and Pharmacy University of Sassari Via Vienna 2 Sassari 07100 Italy
| | - Federico Rossi
- Department of Physical Science, Earth and Environment University of Siena Pian dei Mantellini 44-53100 Siena SI Italy
| | - Laurence Rongy
- Nonlinear Physical Chemistry Unit Faculté des Sciences Université libre de Bruxelles (ULB) CP231, 1050 Brussels Belgium
| |
Collapse
|
8
|
Hewitt DR. Vigorous convection in porous media. Proc Math Phys Eng Sci 2020; 476:20200111. [PMID: 32821241 DOI: 10.1098/rspa.2020.0111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/03/2020] [Indexed: 11/12/2022] Open
Abstract
The problem of convection in a fluid-saturated porous medium is reviewed with a focus on 'vigorous' convective flow, when the driving buoyancy forces are large relative to any dissipative forces in the system. This limit of strong convection is applicable in numerous settings in geophysics and beyond, including geothermal circulation, thermohaline mixing in the subsurface and heat transport through the lithosphere. Its manifestations range from 'black smoker' chimneys at mid-ocean ridges to salt-desert patterns to astrological plumes, and it has received a great deal of recent attention because of its important role in the long-term stability of geologically sequestered CO2. In this review, the basic mathematical framework for convection in porous media governed by Darcy's Law is outlined, and its validity and limitations discussed. The main focus of the review is split between 'two-sided' and 'one-sided' systems: the former mimics the classical Rayleigh-Bénard set-up of a cell heated from below and cooled from above, allowing for detailed examination of convective dynamics and fluxes; the latter involves convection from one boundary only, which evolves in time through a series of regimes. Both set-ups are reviewed, accounting for theoretical, numerical and experimental studies in each case, and studies that incorporate additional physical effects are discussed. Future research in this area and various associated modelling challenges are also discussed.
Collapse
Affiliation(s)
- D R Hewitt
- Department of Mathematics, University College London, London, UK
| |
Collapse
|
9
|
Escala DM, Muñuzuri AP. Interface Fingering Instability Triggered by a Density-Coupled Oscillatory Chemical Reaction via Precipitation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:13769-13781. [PMID: 31560207 DOI: 10.1021/acs.langmuir.9b02092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A density fingering hydrodynamic instability is triggered by a chemical reaction at the interface between two fluids. The density instability is controlled by the density gradient between both solutions, while the excitability of the bubble-free Belousov-Zhabotinsky-1,4-cyclohexanedione (BZ-CHD) oscillatory chemical reaction controls the importance of the chemistry in the system. Both parameters are thoroughly analyzed, and the mechanism underlying the instability is unveiled. The experimental observations lead us to modify the existing and accepted models for the BZ-CHD reaction within this context. The important role played by precipitation is considered in this context and included into the model. The modified kinetic model once coupled with fluid dynamics along with the precipitation mechanism was able to reproduce the experimental observations.
Collapse
Affiliation(s)
- Dario M Escala
- Group of Nonlinear Physics, Facultad de Físicas , Universidade de Santiago de Compostela , Campus Sur , 15782 Santiago de Compostela , Spain
| | - Alberto P Muñuzuri
- Group of Nonlinear Physics, Facultad de Físicas , Universidade de Santiago de Compostela , Campus Sur , 15782 Santiago de Compostela , Spain
| |
Collapse
|
10
|
Ding Y, Cartwright JHE, Cardoso SSS. Intrinsic concentration cycles and high ion fluxes in self-assembled precipitate membranes. Interface Focus 2019; 9:20190064. [PMID: 31641435 DOI: 10.1098/rsfs.2019.0064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 09/11/2019] [Indexed: 11/12/2022] Open
Abstract
Concentration cycles are important for bonding of basic molecular building components at the emergence of life. We demonstrate that oscillations occur intrinsically in precipitation reactions when coupled with fluid mechanics in self-assembled precipitate membranes, such as at submarine hydrothermal vents. We show that, moreover, the flow of ions across one pore in such a prebiotic membrane is larger than that across one ion channel in a modern biological cell membrane, suggesting that proto-biological processes could be sustained by osmotic flow in a less efficient prebiotic environment. Oscillations in nanoreactors at hydrothermal vents may be just right for these warm little pores to be the cradle of life.
Collapse
Affiliation(s)
- Yang Ding
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Julyan H E Cartwright
- Instituto Andaluz de Ciencias de la Tierra, CSIC-Universidad de Granada, E-18100 Armilla, Granada, Spain.,Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, E-18071 Granada, Spain
| | - Silvana S S Cardoso
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Jotkar M, Rongy L, De Wit A. Chemically-driven convective dissolution. Phys Chem Chem Phys 2019; 21:19054-19064. [PMID: 31468054 DOI: 10.1039/c9cp03044a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
When a solute A dissolves in a host phase with a given solubility, the resulting density stratification is stable towards convection if the density profile increases monotonically along the gravity field. We theoretically and numerically study the convective destabilization by reaction of this dissolution when A reacts with a solute B present in the host phase to produce C via an A + B→C type of reaction. In this reactive case, composition changes can give rise to non-monotonic density profiles with a local maximum. A convective instability can then be triggered locally in the zone where the denser product overlies the less dense bulk solution. First, we perform a linear stability analysis to identify the critical conditions for this reaction-driven convective instability. Second, we perform nonlinear simulations and compare the critical values of the control parameters for the onset of convection in these simulations with those predicted by linear stability analysis. We further show that the asymptotic dissolution flux of A can be increased in the convective regime by increasing the difference ΔRCB = RC-RB between the Rayleigh numbers of the product C and reactant B above a critical value and by increasing the ratio β = B0/A0 between the initial concentration B0 of reactant B and the solubility A0 of A. Our results indicate that chemical reactions can not only initiate convective mixing but can also give rise to large dissolution fluxes, which is advantageous for various geological applications.
Collapse
Affiliation(s)
- M Jotkar
- Université libre de Bruxelles (ULB), Faculté des Sciences, Nonlinear Physical Chemistry Unit, C.P. 231, 1050 Brussels, Belgium.
| | - L Rongy
- Université libre de Bruxelles (ULB), Faculté des Sciences, Nonlinear Physical Chemistry Unit, C.P. 231, 1050 Brussels, Belgium.
| | - A De Wit
- Université libre de Bruxelles (ULB), Faculté des Sciences, Nonlinear Physical Chemistry Unit, C.P. 231, 1050 Brussels, Belgium.
| |
Collapse
|
12
|
Steinbock O, Wackerbauer R, Horváth D. Nonlinear Chemical Dynamics and Its Interdisciplinary Impact: Dedicated to Ken Showalter on the Occasion of his 70th Birthday. CHAOS (WOODBURY, N.Y.) 2019; 29:080401. [PMID: 31472519 DOI: 10.1063/1.5120508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 05/22/2023]
Affiliation(s)
- Oliver Steinbock
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306-4390, USA
| | - Renate Wackerbauer
- Department of Physics, University of Alaska, Fairbanks, Alaska 99775-5920, USA
| | - Dezső Horváth
- Department of Applied and Environmental Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged H-6720, Hungary
| |
Collapse
|
13
|
Budroni MA, Upadhyay V, Rongy L. Making a Simple A+B→C Reaction Oscillate by Coupling to Hydrodynamic Effect. PHYSICAL REVIEW LETTERS 2019; 122:244502. [PMID: 31322378 DOI: 10.1103/physrevlett.122.244502] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Indexed: 05/07/2023]
Abstract
We present a new mechanism through which chemical oscillations and waves can be induced in batch conditions with a simple A+B→C reaction in the absence of any nonlinear chemical feedback or external trigger. Two reactants A and B, initially separated in space, react upon diffusive contact and the product actively fuels in situ convective Marangoni flows by locally increasing the surface tension at the mixing interface. These flows combine in turn with the reaction-diffusion dynamics, inducing damped spatiotemporal oscillations of the chemical concentrations and the velocity field. By means of numerical simulations, we single out the detailed mechanism and minimal conditions for the onset of this periodic behavior. We show how the antagonistic coupling with buoyancy convection, due to concurrent chemically induced density changes, can control the oscillation properties, sustaining or suppressing this phenomenon depending on the relative strength of buoyancy- and surface-tension-driven forces. The oscillatory instability is characterized in the relevant parametric space spanned by the reactor height, the Marangoni (Ma_{i}) and the Rayleigh (Ra_{i}) numbers of the ith chemical species, the latter ruling the surface tension and buoyancy contributions to convection, respectively.
Collapse
Affiliation(s)
- M A Budroni
- Nonlinear Physical Chemistry Unit, Faculté des Sciences, Université libre de Bruxelles (ULB), CP231, 1050 Brussels, Belgium
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, Sassari 07100, Italy
| | - V Upadhyay
- Nonlinear Physical Chemistry Unit, Faculté des Sciences, Université libre de Bruxelles (ULB), CP231, 1050 Brussels, Belgium
| | - L Rongy
- Nonlinear Physical Chemistry Unit, Faculté des Sciences, Université libre de Bruxelles (ULB), CP231, 1050 Brussels, Belgium
| |
Collapse
|
14
|
Ueki T, Iijima J, Tagawa S, Nagatsu Y. Unpredictable Dynamics of Polymeric Reacting Flow by Comparison between Pre- and Post-Reaction Fluid Properties: Hydrodynamics Involving Molecular Diagnosis via ATR-FTIR Spectroscopy. J Phys Chem B 2019; 123:4587-4593. [PMID: 31060354 DOI: 10.1021/acs.jpcb.9b02057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In reacting flows, changes in fluid properties induced by the chemical reaction can alter the flow dynamics. Generally, these changes in fluid properties are evaluated by comparison between their pre- and post-reaction properties. If a fluid property such as viscosity decreases between pre- and post-reaction, we expect a decrease in viscosity to occur in the reacting flow. However, this study demonstrates a reacting polymeric liquid flow where a remarkable increase in the viscoelasticity temporally occurs despite the viscosity slightly decreasing after the reaction. We elucidated the underlying reaction mechanism, which involves a structural change in the side functional group (carboxyl) in polyacrylamide at ultrahigh molecular weights ( Mw > 106) with ultralow concentrations ([polymer] < 1 wt %) by using ATR-FTIR spectroscopy. This study demonstrates the existence of a reacting flow in which examination of microscopic molecular structure is required to understand the macroscopic flow dynamics. The findings will be valuable not only for industrial application such as reactor designs and rheology control but also for opening a new research area: chemically reacting flow involving the diagnosis of molecule structure.
Collapse
Affiliation(s)
- Toshimasa Ueki
- Department of Chemical Engineering , Tokyo University of Agriculture and Technology , Naka-cho 2-24-16, Koganei-shi, Tokyo 184-8588 , Japan
| | - Jun Iijima
- Division of Chemistry, Department of Liberal Arts and Sciences , Nihon University School of Medicine , 30-1, Oyaguchikami-cho, Itabashi-ku, Tokyo 173-8610 , Japan
| | - Satoshi Tagawa
- Department of Chemical Engineering , Tokyo University of Agriculture and Technology , Naka-cho 2-24-16, Koganei-shi, Tokyo 184-8588 , Japan
| | - Yuichiro Nagatsu
- Department of Chemical Engineering , Tokyo University of Agriculture and Technology , Naka-cho 2-24-16, Koganei-shi, Tokyo 184-8588 , Japan
| |
Collapse
|
15
|
Jotkar M, De Wit A, Rongy L. Enhanced convective dissolution due to an A + B → C reaction: control of the non-linear dynamics via solutal density contributions. Phys Chem Chem Phys 2019; 21:6432-6442. [PMID: 30839024 DOI: 10.1039/c8cp07642a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chemical reactions can have a significant impact on convective dissolution in partially miscible stratifications in porous media and are able to enhance the asymptotic flux with respect to the non-reactive case. We numerically study such reactive convective dissolution when the dissolving species A increases the density of the host phase upon dissolution and reacts with a reactant B present in the host phase to produce C by an A + B → C reaction. Upon varying the difference ΔRCB = RC-RB between the Rayleigh numbers of the product C and the reactant B, we identify four regimes with distinct dynamics when the diffusion coefficients are the same. When ΔRCB < 0, the density profiles are non-monotonic and the non-linear dynamics are seen to depend on the relative values of the density at the interface and the initial density of the host phase. For ΔRCB > 0, the monotonic density profiles are destabilizing with respect to the non-reactive case above a certain critical value ΔRcr. We analyze quantitatively the influence of varying ΔRCB and the ratio β = B0/A0 of the initial concentration of B and the solubility of A on the asymptotic steady flux, the wavelength of the fingers and the position of the reaction front. In the context of CO2 geological sequestration, understanding how such reactions can enhance the dissolution flux is crucial for improving the efficiency and safety of the process.
Collapse
Affiliation(s)
- M Jotkar
- Université libre de Bruxelles (ULB), Faculté des Sciences, Nonlinear Physical Chemistry Unit, C.P. 231, 1050 Brussels, Belgium.
| | - A De Wit
- Université libre de Bruxelles (ULB), Faculté des Sciences, Nonlinear Physical Chemistry Unit, C.P. 231, 1050 Brussels, Belgium.
| | - L Rongy
- Université libre de Bruxelles (ULB), Faculté des Sciences, Nonlinear Physical Chemistry Unit, C.P. 231, 1050 Brussels, Belgium.
| |
Collapse
|
16
|
Comments on the paper “effect of impurities on the onset and the growth of gravitational instabilities in a geological CO2 storage process: Linear and nonlinear analyses” M.C. Kim, K.H. Song (2017). Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Abstract
When a solute A dissolves into a host fluid containing a reactant B, an A + B → C reaction can influence the convection developing because of unstable density gradients in the gravity field. When A increases density and all three chemical species A, B and C diffuse at the same rate, the reactive case can lead to two different types of density profiles, i.e., a monotonically decreasing one from the interface to the bulk and a non-monotonic profile with a minimum. We study numerically here the nonlinear reactive convective dissolution dynamics in the more general case where the three solutes can diffuse at different rates. We show that differential diffusion can add new dynamic effects like the simultaneous presence of two different convection zones in the host phase when a non-monotonic profile with both a minimum and a maximum develops. Double diffusive instabilities can moreover affect the morphology of the convective fingers. Analysis of the mixing zone, the reaction rate, the total amount of stored A and the dissolution flux further shows that varying the diffusion coefficients of the various species has a quantitative effect on convection.
Collapse
|
18
|
Ghoshal P, Cardoso SSS. Reactive convective-dissolution in a porous medium: stability and nonlinear dynamics. Phys Chem Chem Phys 2018; 20:21617-21628. [PMID: 30101260 DOI: 10.1039/c8cp03064b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigate the effects of a dissolution reaction, A(aq) + B(s) → C(aq), on the gravitational instability and nonlinear dynamic behaviour of a diffusive boundary layer in a porous medium. Our linear stability and numerical results reveal that, unexpectedly, even when the density contribution of the soluble product C is smaller than that of the dissolved solute A, the chemical reaction can destabilize the layer and accelerate the onset of convection. However, for a very light product, the reaction stabilizes the layer. We show that these widely disparate characteristics of the reactive-diffusive layer are outcomes of the nonlinear competition between two reaction effects, the destabilizing sharpening of the solute concentration gradient and associated increase in the solute diffusive flux, and the stabilizing replacement of the solute by a less dense product near the interface.
Collapse
Affiliation(s)
- Parama Ghoshal
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, UK.
| | | |
Collapse
|
19
|
Gopalakrishnan SS, Carballido-Landeira J, Knaepen B, De Wit A. Control of Rayleigh-Taylor instability onset time and convective velocity by differential diffusion effects. Phys Rev E 2018; 98:011101. [PMID: 30110793 DOI: 10.1103/physreve.98.011101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Indexed: 05/07/2023]
Abstract
Fingering instabilities of a miscible interface between two fluids in a gravitational field can develop due to adverse density gradients as in the well-known Rayleigh-Taylor (RT) and double-diffusive (DD) instabilities. In the absence of differential diffusion, the mixing rate and the onset time of the RT instability developing when a denser solution of a given solute A overlies a less dense solution of a solute B are respectively proportional and inversely proportional to the initial density difference Δρ_{0} between the two superposed layers. We show here both experimentally and theoretically for porous media flows that when the mechanisms of RT and DD instabilities are combined, the properties of the convective growth of the fingers are controlled by the dynamic density jump Δρ_{m} of the nonmonotonic density profile induced by the differential diffusion effects. In particular, the onset time and mixing rate can be controlled by varying the ratio of the diffusion coefficients of the solutes.
Collapse
Affiliation(s)
- S S Gopalakrishnan
- Nonlinear Physical Chemistry Unit, Université libre de Bruxelles (ULB), CP231, 1050 Brussels, Belgium
- Service de Physique Statistique et des Plasmas, Université libre de Bruxelles (ULB), CP231, 1050 Brussels, Belgium
| | - J Carballido-Landeira
- Nonlinear Physical Chemistry Unit, Université libre de Bruxelles (ULB), CP231, 1050 Brussels, Belgium
| | - B Knaepen
- Service de Physique Statistique et des Plasmas, Université libre de Bruxelles (ULB), CP231, 1050 Brussels, Belgium
| | - A De Wit
- Nonlinear Physical Chemistry Unit, Université libre de Bruxelles (ULB), CP231, 1050 Brussels, Belgium
| |
Collapse
|
20
|
Jafari Raad SM, Hassanzadeh H. Onset of density-driven instabilities in fractured aquifers. Phys Rev E 2018; 97:043109. [PMID: 29758725 DOI: 10.1103/physreve.97.043109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Indexed: 11/07/2022]
Abstract
Linear stability analysis is conducted to study the onset of density-driven convection involved in solubility trapping of CO_{2} in fractured aquifers. The effect of physical properties of a fracture network on the stability of a diffusive boundary layer in a saturated fractured porous media is investigated using the dual porosity concept. Linear stability analysis results show that both fracture interporosity flow and fracture storativity play an important role in the stability behavior of the system. It is shown that a diffusive boundary layer under the gravity field in fractured porous media with lower fracture storativity and/or higher fracture interporosity flow coefficient is more stable. We present scaling relations for the onset of convective instability in fractured aquifers with single and variable matrix block size distribution. These findings improve our understanding of density-driven flow in fractured aquifers and are important in the estimation of potential storage capacity, risk assessment, and storage site characterization and screening.
Collapse
Affiliation(s)
- Seyed Mostafa Jafari Raad
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Hassan Hassanzadeh
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
21
|
Cherezov I, Cardoso SS, Kim MC. Acceleration of convective dissolution by an instantaneous chemical reaction: A comparison of experimental and numerical results. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Chao Y, Mak SY, Ma Q, Wu J, Ding Z, Xu L, Shum HC. Emergence of Droplets at the Nonequilibrium All-Aqueous Interface in a Vertical Hele-Shaw Cell. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:3030-3036. [PMID: 29465242 DOI: 10.1021/acs.langmuir.7b04168] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The interfacial phenomena at liquid-liquid interfaces remain the subject of constant fascination in science and technology. Here, we show that fingers forming at the interface of nonequilibrium all-aqueous systems can spontaneously break into an array of droplets. The dynamic formation of droplets at the water-water (w/w) interface is observed when a less dense aqueous phase, for instance, the dextran solution, is placed on a denser aqueous phase, the polyethylene glycol solution, in a vertical Hele-Shaw cell. Because of the gradual diffusion of water from the upper phase into the lower phase, a dense layer appears at the nonequilibrium w/w interface. As a result, a periodic array of fingers emerge and sink. Remarkably, these fingers break up and an array of droplets are emitted from the interface. We characterize the wavelength of fingering by measuring the average distance between the dominant fingers. By varying the initial concentrations of the two nonequilibrium aqueous phases, we identify experimentally a phase diagram with a wide parameter space in which finger breaking occurs. Finally, plenty of droplets, spontaneously formed when one phase is continuously deposited onto another aqueous phase, further confirm the robustness of our experimental results. Our work suggests a simple yet efficient approach with a potential upscalability to generate all-aqueous droplets.
Collapse
Affiliation(s)
- Youchuang Chao
- Department of Mechanical Engineering , The University of Hong Kong , Pokfulam Road , Hong Kong , China
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI) , Shenzhen , Guangdong 518000 , China
| | - Sze Yi Mak
- Department of Mechanical Engineering , The University of Hong Kong , Pokfulam Road , Hong Kong , China
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI) , Shenzhen , Guangdong 518000 , China
| | - Qingming Ma
- Department of Mechanical Engineering , The University of Hong Kong , Pokfulam Road , Hong Kong , China
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI) , Shenzhen , Guangdong 518000 , China
| | - Jing Wu
- Department of Mechanical Engineering , The University of Hong Kong , Pokfulam Road , Hong Kong , China
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI) , Shenzhen , Guangdong 518000 , China
| | - Zijing Ding
- Department of Mechanical Engineering , The University of Hong Kong , Pokfulam Road , Hong Kong , China
| | - Lei Xu
- Department of Physics , The Chinese University of Hong Kong , Hong Kong , China
| | - Ho Cheung Shum
- Department of Mechanical Engineering , The University of Hong Kong , Pokfulam Road , Hong Kong , China
- HKU-Shenzhen Institute of Research and Innovation (HKU-SIRI) , Shenzhen , Guangdong 518000 , China
| |
Collapse
|
23
|
Fernandez D, Binda L, Zalts A, El Hasi C, D'Onofrio A. Lateral movements in Rayleigh-Taylor instabilities due to frontiers. Numerical analysis. CHAOS (WOODBURY, N.Y.) 2018; 28:013108. [PMID: 29390633 DOI: 10.1063/1.4995396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Numerical simulations were performed for Rayleigh-Taylor (RT) hydrodynamic instabilities when a frontier is present. The frontier formed by the interface between two fluids prevents the free movement of the fingers created by the instability. As a consequence, transversal movements at the rear of the fingers are observed in this area. These movements produce collapse of the fingers (two or more fingers join in one finger) or oscillations in the case that there is no collapse. The transversal velocity of the fingers, the amplitude of the oscillations, and the wave number of the RT instabilities as a function of the Rayleigh number (Ra) were studied near the frontier. We verified numerically that in classical RT instabilities, without a frontier, these lateral movements do not occur; only with a physical frontier, the transversal displacements of the fingers appear. The transverse displacement velocity and the initial wave number increase with Ra. This leads to the collapse of the fingers, diminishing the wave number of the instabilities at the interface. Instead, no significant changes in the amplitude of the oscillations are observed modifying Ra. The numerical results are independent of the type or origin of the frontier (gas-liquid, liquid-liquid, or solid-liquid). The numerical results are in good agreement with the experimental results reported by Binda et al. [Chaos 28, 013107 (2018)]. Based on these results, it was possible to determine the cause of the transverse displacements, which had not been explained until now.
Collapse
Affiliation(s)
- D Fernandez
- Instituto de Ciencias, Universidad Nacional de General Sarmiento, Juan M. Gutiérrez 1150, B1613GSX Los Polvorines, Provincia de Buenos Aires, Argentina
| | - L Binda
- Instituto de Ciencias, Universidad Nacional de General Sarmiento, Juan M. Gutiérrez 1150, B1613GSX Los Polvorines, Provincia de Buenos Aires, Argentina
| | - A Zalts
- Instituto de Ciencias, Universidad Nacional de General Sarmiento, Juan M. Gutiérrez 1150, B1613GSX Los Polvorines, Provincia de Buenos Aires, Argentina
| | - C El Hasi
- Instituto de Ciencias, Universidad Nacional de General Sarmiento, Juan M. Gutiérrez 1150, B1613GSX Los Polvorines, Provincia de Buenos Aires, Argentina
| | - A D'Onofrio
- Grupo de Medios Porosos, Facultad de Ingeniería, Universidad de Buenos Aires, Av. Paseo Colón 850, 1063 Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
24
|
Loodts V, Knaepen B, Rongy L, De Wit A. Enhanced steady-state dissolution flux in reactive convective dissolution. Phys Chem Chem Phys 2017; 19:18565-18579. [PMID: 28686243 DOI: 10.1039/c7cp01372h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemical reactions can accelerate, slow down or even be at the very origin of the development of dissolution-driven convection in partially miscible stratifications when they impact the density profile in the host fluid phase. We numerically analyze the dynamics of this reactive convective dissolution in the fully developed non-linear regime for a phase A dissolving into a host layer containing a dissolved reactant B. We show for a general A + B → C reaction in solution, that the dynamics vary with the Rayleigh numbers of the chemical species, i.e. with the nature of the chemicals in the host phase. Depending on whether the reaction slows down, accelerates or is at the origin of the development of convection, the spatial distributions of species A, B or C, the dissolution flux and the reaction rate are different. We show that chemical reactions can enhance the steady-state flux as they consume A and can induce more intense convection than in the non-reactive case. This result is important in the context of CO2 geological sequestration where quantifying the storage rate of CO2 dissolving into the host oil or aqueous phase is crucial to assess the efficiency and the safety of the project.
Collapse
Affiliation(s)
- V Loodts
- Université libre de Bruxelles (ULB), Faculté des Sciences, Nonlinear Physical Chemistry Unit, CP231, 1050 Brussels, Belgium.
| | | | | | | |
Collapse
|
25
|
Binda L, El Hasi C, Zalts A, D'Onofrio A. Experimental analysis of density fingering instability modified by precipitation. CHAOS (WOODBURY, N.Y.) 2017; 27:053111. [PMID: 28576107 DOI: 10.1063/1.4983670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We analyze the effect of precipitate formation on the development of density induced hydrodynamic instabilities. In this case, the precipitate is BaCO3, obtained by reaction of CO2 with aqueous BaCl2. CO2(g) dissolution increases the local density of the aqueous phase, triggering Rayleigh-Taylor instabilities and BaCO3 formation. It was observed that at first the precipitate was formed at the finger front. As the particles became bigger, they began to fall down from the front. These particles were used as tracers using PIV technique to visualize the particle streamlines and to obtain the velocity of that movement. This falling produced a downward flow that might increase the mixing zone. Contrary to expectations, it was observed that the finger length decreased, indicating that for the mixing zone development, the consumption of CO2 to form the precipitate is more important than the downward flow. The mixing zone length was recovered by increasing the availability of the reactant (higher CO2 partial pressure), compensating the CO2 used for BaCO3 formation. Mixing zone development rates reached constant values at shorter times when the precipitate is absent than when it is present. An analysis of the nonlinear regime with and without the precipitate is performed.
Collapse
Affiliation(s)
- L Binda
- Grupo de Medios Porosos, Facultad de Ingeniería, Universidad de Buenos Aires, Av. Paseo Colón 850, C1063ACV Ciudad Autónoma de Buenos Aires, Argentina
| | - C El Hasi
- Instituto de Ciencias, Universidad Nacional de General Sarmiento, Juan M. Gutiérrez 1150, B1613GSX, Los Polvorines, Provincia de Buenos Aires, Argentina
| | - A Zalts
- Instituto de Ciencias, Universidad Nacional de General Sarmiento, Juan M. Gutiérrez 1150, B1613GSX, Los Polvorines, Provincia de Buenos Aires, Argentina
| | - A D'Onofrio
- Grupo de Medios Porosos, Facultad de Ingeniería, Universidad de Buenos Aires, Av. Paseo Colón 850, C1063ACV Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
26
|
Budroni MA, Thomas C, De Wit A. Chemical control of dissolution-driven convection in partially miscible systems: nonlinear simulations and experiments. Phys Chem Chem Phys 2017; 19:7936-7946. [DOI: 10.1039/c6cp08434f] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Numerical simulations combined with experimental results from two laboratory-scale model systems show how to control convective dissolution by chemical reactions.
Collapse
Affiliation(s)
- M. A. Budroni
- Université libre de Bruxelles (ULB)
- Nonlinear Physical Chemistry Unit
- Faculté des Sciences
- CP231
- 1050 Brussels
| | - C. Thomas
- Université libre de Bruxelles (ULB)
- Nonlinear Physical Chemistry Unit
- Faculté des Sciences
- CP231
- 1050 Brussels
| | - A. De Wit
- Université libre de Bruxelles (ULB)
- Nonlinear Physical Chemistry Unit
- Faculté des Sciences
- CP231
- 1050 Brussels
| |
Collapse
|
27
|
Experimental and numerical analysis of buoyancy-induced instability during CO2 absorption in NaHCO3–Na2CO3 aqueous solutions. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2016.04.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Ghoshal P, Kim MC, Cardoso SSS. Reactive-convective dissolution in a porous medium: the storage of carbon dioxide in saline aquifers. Phys Chem Chem Phys 2016; 19:644-655. [PMID: 27918023 DOI: 10.1039/c6cp06010b] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We quantify the destabilising effect of a first-order chemical reaction on the fingering instability of a diffusive boundary layer in a porous medium. Using scaling, we show that the dynamics of such a reactive boundary layer is fully determined by two dimensionless groups: Da/Ra2, which measures the timescale for convection compared to those for reaction and diffusion; and βC/βA, which reflects the density change induced by the product relative to that of the diffusing solute. Linear stability and numerical results for βC/βA in the range 0-10 and Da/Ra2 in the range 0-0.01 are presented. It is shown that the chemical reaction increases the growth rate of a transverse perturbation and favours large wavenumbers compared to the inert system. Higher βC/βA and Da/Ra2 not only accelerate the onset of convection, but crucially also double the transport of the solute compared to the inert system. Application of our findings to the storage of carbon dioxide in carbonate saline aquifers reveals that chemical equilibrium curtails this increase of CO2 flux to 50%.
Collapse
Affiliation(s)
- Parama Ghoshal
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, Cambridge, UK. and Department of Chemical Engineering, Jadavpur University, Kolkata-700032, India
| | - Min Chan Kim
- Department of Chemical Engineering, Jeju National University, Jeju-63243, Republic of Korea
| | - Silvana S S Cardoso
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, Cambridge, UK.
| |
Collapse
|
29
|
Pramanik S, Mishra M. Fingering instability and mixing of a blob in porous media. Phys Rev E 2016; 94:043106. [PMID: 27841573 DOI: 10.1103/physreve.94.043106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Indexed: 11/07/2022]
Abstract
The curvature of the unstable part of the miscible interface between a circular blob and the ambient fluid in two-dimensional homogeneous porous media depends on the viscosity of the fluids. The influence of the interface curvature on the fingering instability and mixing of a miscible blob within a rectilinear displacement is investigated numerically. The fluid velocity in porous media is governed by Darcy's law, coupled with a convection-diffusion equation that determines the evolution of the solute concentration controlling the viscosity of the fluids. Numerical simulations are performed using a Fourier pseudospectral method to determine the dynamics of a miscible blob (circular or square). It is shown that for a less viscous circular blob, there exist three different instability regions without any finite R-window for viscous fingering, unlike the case of a more viscous circular blob. Critical blob radius for the onset of instability is smaller for a less viscous blob as compared to its more viscous counterpart. Fingering enhances spreading and mixing of miscible fluids. Hence a less viscous blob mixes with the ambient fluid quicker than the more viscous one. Furthermore, we show that mixing increases with the viscosity contrast for a less viscous blob, while for a more viscous one mixing depends nonmonotonically on the viscosity contrast. For a more viscous blob mixing depends nonmonotonically on the dispersion anisotropy, while it decreases monotonically with the anisotropic dispersion coefficient for a less viscous blob. We also show that the dynamics of a more viscous square blob is qualitatively similar to that of a circular one, except the existence of the lump-shaped instability region in the R-Pe plane. We have shown that the Rayleigh-Taylor instability in a circular blob (heavier or lighter than the ambient fluid) is independent of the interface curvature.
Collapse
Affiliation(s)
- Satyajit Pramanik
- Department of Mathematics, Indian Institute of Technology Ropar, Rupnagar 140001, India
| | - Manoranjan Mishra
- Department of Mathematics, Indian Institute of Technology Ropar, Rupnagar 140001, India
| |
Collapse
|
30
|
Kim MC, Wylock C. Linear and nonlinear analyses of the effect of chemical reaction on the onset of buoyancy-driven instability in a CO2absorption process in a porous medium or Hele-Shaw cell. CAN J CHEM ENG 2016. [DOI: 10.1002/cjce.22694] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Min Chan Kim
- Department of Chemical Engineering; Jeju National University; 690-756 Republic of Korea
| | - Christophe Wylock
- Universitaé Libre de Bruxelles (ULB); Transfers, Interfaces and Processes (TIPs), av. F.D. Roosevelt 50; CP 165/67 1050 Belgium
| |
Collapse
|
31
|
De Wit A. Chemo-hydrodynamic patterns in porous media. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:rsta.2015.0419. [PMID: 27597788 PMCID: PMC5014293 DOI: 10.1098/rsta.2015.0419] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/24/2016] [Indexed: 05/07/2023]
Abstract
Chemical reactions can interplay with hydrodynamic flows to generate chemo-hydrodynamic instabilities affecting the spatio-temporal evolution of the concentration of the chemicals. We review here such instabilities for porous media flows. We describe the influence of chemical reactions on viscous fingering, buoyancy-driven fingering in miscible systems, convective dissolution as well as precipitation patterns. Implications for environmental systems are discussed.This article is part of the themed issue 'Energy and the subsurface'.
Collapse
Affiliation(s)
- A De Wit
- Nonlinear Physical Chemistry Unit, Université Libre de Bruxelles, CP 231, 1050 Brussels, Belgium
| |
Collapse
|
32
|
Loodts V, Trevelyan PMJ, Rongy L, De Wit A. Density profiles around A+B→C reaction-diffusion fronts in partially miscible systems: A general classification. Phys Rev E 2016; 94:043115. [PMID: 27841615 DOI: 10.1103/physreve.94.043115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Indexed: 06/06/2023]
Abstract
Various spatial density profiles can develop in partially miscible stratifications when a phase A dissolves with a finite solubility into a host phase containing a dissolved reactant B. We investigate theoretically the impact of an A+B→C reaction on such density profiles in the host phase and classify them in a parameter space spanned by the ratios of relative contributions to density and diffusion coefficients of the chemical species. While the density profile is either monotonically increasing or decreasing in the nonreactive case, reactions combined with differential diffusivity can create eight different types of density profiles featuring up to two extrema in density, at the reaction front or below it. We use this framework to predict various possible hydrodynamic instability scenarios inducing buoyancy-driven convection around such reaction fronts when they propagate parallel to the gravity field.
Collapse
Affiliation(s)
- V Loodts
- Université libre de Bruxelles (ULB), Faculté des Sciences, Nonlinear Physical Chemistry Unit, Campus de la Plaine - Boulevard du Triomphe CP231 1050 Bruxelles, Belgium
| | - P M J Trevelyan
- Division of Mathematics and Statistics, University of South Wales, Pontypridd CF37 1DL, United Kingdom
| | - L Rongy
- Université libre de Bruxelles (ULB), Faculté des Sciences, Nonlinear Physical Chemistry Unit, Campus de la Plaine - Boulevard du Triomphe CP231 1050 Bruxelles, Belgium
| | - A De Wit
- Université libre de Bruxelles (ULB), Faculté des Sciences, Nonlinear Physical Chemistry Unit, Campus de la Plaine - Boulevard du Triomphe CP231 1050 Bruxelles, Belgium
| |
Collapse
|
33
|
Cherezov I, Cardoso SSS. Acceleration of convective dissolution by chemical reaction in a Hele-Shaw cell. Phys Chem Chem Phys 2016; 18:23727-36. [PMID: 27510413 DOI: 10.1039/c6cp03327j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New laboratory experiments quantify the destabilising effect of a second-order chemical reaction on the fingering instability of a diffusive boundary layer in a Hele-Shaw cell. We show that, for a given chemical system, the dynamics of such a reactive boundary layer is fully determined by two dimensionless groups, Da/Ra(2), which measures the timescale for convection compared to those for reaction and diffusion, and CBo', which reflects the excess of the environmental reactant species relative to the diffusing solute. Results of a systematic study varying CBo' in the range 0-0.1 are presented. It is shown that the chemical reaction increases the growth rate of a perturbation and favours small wavelengths compared to the inert system. A higher concentration of CBo' not only accelerates the onset of convection, but crucially also increases the transport of the solute by up to 150% compared to the inert system. This increase in solute transfer has important practical implications, such as in the storage of carbon dioxide in saline aquifers.
Collapse
Affiliation(s)
- Ilia Cherezov
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 3RA, UK.
| | | |
Collapse
|
34
|
Budroni MA, Lemaigre L, Escala DM, Muñuzuri AP, De Wit A. Spatially Localized Chemical Patterns around an A + B → Oscillator Front. J Phys Chem A 2016; 120:851-60. [DOI: 10.1021/acs.jpca.5b10802] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. A. Budroni
- Department
of Chemistry and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - L. Lemaigre
- Université libre de Bruxelles (ULB), Nonlinear
Physical Chemistry Unit, Faculté
des Sciences, CP231, 1050 Brussels, Belgium
| | - D. M. Escala
- Nonlinear
Physics Group, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - A. P. Muñuzuri
- Nonlinear
Physics Group, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - A. De Wit
- Université libre de Bruxelles (ULB), Nonlinear
Physical Chemistry Unit, Faculté
des Sciences, CP231, 1050 Brussels, Belgium
| |
Collapse
|
35
|
Budroni MA. Cross-diffusion-driven hydrodynamic instabilities in a double-layer system: General classification and nonlinear simulations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:063007. [PMID: 26764804 DOI: 10.1103/physreve.92.063007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Indexed: 05/07/2023]
Abstract
Cross diffusion, whereby a flux of a given species entrains the diffusive transport of another species, can trigger buoyancy-driven hydrodynamic instabilities at the interface of initially stable stratifications. Starting from a simple three-component case, we introduce a theoretical framework to classify cross-diffusion-induced hydrodynamic phenomena in two-layer stratifications under the action of the gravitational field. A cross-diffusion-convection (CDC) model is derived by coupling the fickian diffusion formalism to Stokes equations. In order to isolate the effect of cross-diffusion in the convective destabilization of a double-layer system, we impose a starting concentration jump of one species in the bottom layer while the other one is homogeneously distributed over the spatial domain. This initial configuration avoids the concurrence of classic Rayleigh-Taylor or differential-diffusion convective instabilities, and it also allows us to activate selectively the cross-diffusion feedback by which the heterogeneously distributed species influences the diffusive transport of the other species. We identify two types of hydrodynamic modes [the negative cross-diffusion-driven convection (NCC) and the positive cross-diffusion-driven convection (PCC)], corresponding to the sign of this operational cross-diffusion term. By studying the space-time density profiles along the gravitational axis we obtain analytical conditions for the onset of convection in terms of two important parameters only: the operational cross-diffusivity and the buoyancy ratio, giving the relative contribution of the two species to the global density. The general classification of the NCC and PCC scenarios in such parameter space is supported by numerical simulations of the fully nonlinear CDC problem. The resulting convective patterns compare favorably with recent experimental results found in microemulsion systems.
Collapse
Affiliation(s)
- M A Budroni
- Department of Chemistry and Pharmacy, University of Sassari, Sassari, Italy
| |
Collapse
|
36
|
Raad SMJ, Hassanzadeh H. Onset of dissolution-driven instabilities in fluids with nonmonotonic density profile. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:053023. [PMID: 26651795 DOI: 10.1103/physreve.92.053023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Indexed: 05/23/2023]
Abstract
Analog systems have recently been used in several experiments in the context of convective mixing of CO(2). We generalize the nonmonotonic density dependence of the growth of instabilities and provide a scaling relation for the onset of instability. The results of linear stability analysis and direct numerical simulations show that these fluids do not resemble the dynamics of CO(2)-water convective instabilities. A typical analog system, such as water-propylene glycol, is found to be less unstable than CO(2)-water. These results provide a basis for further research and proper selection of analog systems and are essential to the interpretation of experiments.
Collapse
Affiliation(s)
- Seyed Mostafa Jafari Raad
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | - Hassan Hassanzadeh
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
37
|
Loodts V, Rongy L, De Wit A. Chemical control of dissolution-driven convection in partially miscible systems: theoretical classification. Phys Chem Chem Phys 2015; 17:29814-23. [PMID: 26486608 DOI: 10.1039/c5cp03082j] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dissolution-driven convection occurs in the host phase of a partially miscible system when a buoyantly unstable density stratification develops upon dissolution. Reactions can impact such convection by changing the composition and thus the density of the host phase. Here we study the influence of A + B → C reactions on such convective dissolution when A is the dissolving species and B a reactant initially in solution in the host phase. We perform a linear stability analysis of related reaction-diffusion density profiles to compare the growth rate of the instability in the reactive case to its non reactive counterpart when all species diffuse at the same rate. We classify the stabilizing or destabilizing influence of reactions on the buoyancy-driven convection in a parameter space spanned by the solutal Rayleigh numbers RA,B,C of chemical species A, B, C and by the ratio β of initial concentrations of the reactants. For RA > 0, the non reactive dissolution of A in the host phase is buoyantly unstable. In that case, we show that the reaction is enhancing convection provided C is sufficiently denser than B. Increasing the ratio β of initial reactant concentrations increases the effect of chemistry but does not significantly impact the stabilizing/destabilizing classification. When the non reactive case is buoyantly stable (RA≤ 0), reactions can create in time an unstable density stratification and trigger convection if RC > RB. Our theoretical approach allows classifying previous results in a unifying picture and developing strategies for the chemical control of convective dissolution.
Collapse
Affiliation(s)
- V Loodts
- Université libre de Bruxelles (ULB), Faculté des Sciences, Nonlinear Physical Chemistry Unit, CP231, 1050 Brussels, Belgium.
| | | | | |
Collapse
|
38
|
Chui JYY, de Anna P, Juanes R. Interface evolution during radial miscible viscous fingering. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:041003. [PMID: 26565159 DOI: 10.1103/physreve.92.041003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Indexed: 06/05/2023]
Abstract
We study experimentally the miscible radial displacement of a more viscous fluid by a less viscous one in a horizontal Hele-Shaw cell. For the range of tested injection rates and viscosity ratios we observe two regimes for the evolution of the fluid-fluid interface. At early times the interface length increases linearly with time, which is typical of the Saffman-Taylor instability for this radial configuration. However, as time increases, the interface growth slows down and scales as ∼t(1/2), as one expects in a stable displacement, indicating that the overall flow instability has shut down. Surprisingly, the crossover time between these two regimes decreases with increasing injection rate. We propose a theoretical model that is consistent with our experimental results, explains the origin of this second regime, and predicts the scaling of the crossover time with injection rate and the mobility ratio. The key determinant of the observed scalings is the competition between advection and diffusion time scales at the displacement front, suggesting that our analysis can be applied to other interfacial-evolution problems such as the Rayleigh-Bénard-Darcy instability.
Collapse
Affiliation(s)
- Jane Y Y Chui
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Pietro de Anna
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| | - Ruben Juanes
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
39
|
Loodts V, Rongy L, De Wit A. Impact of pressure, salt concentration, and temperature on the convective dissolution of carbon dioxide in aqueous solutions. CHAOS (WOODBURY, N.Y.) 2014; 24:043120. [PMID: 25554040 DOI: 10.1063/1.4896974] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The convective dissolution of carbon dioxide (CO2) in salted water is theoretically studied to determine how parameters such as CO2 pressure, salt concentration, and temperature impact the short-time characteristics of the buoyancy-driven instability. On the basis of a parameter-free dimensionless model, we perform a linear stability analysis of the time-dependent concentration profiles of CO2 diffusing into the aqueous solution. We explicit the procedure to transform the predicted dimensionless growth rate and wavelength of the convective pattern into dimensional ones for typical laboratory-scale experiments in conditions close to room temperature and atmospheric pressure. This allows to investigate the implicit influence of the experimental parameters on the characteristic length and time scales of the instability. We predict that increasing CO2 pressure, or decreasing salt concentration or temperature destabilizes the system with regard to convection, leading to a faster dissolution of CO2 into salted water.
Collapse
Affiliation(s)
- V Loodts
- Nonlinear Physical Chemistry Unit, Faculté des Sciences, Université libre de Bruxelles (ULB), CP231, 1050 Brussels, Belgium
| | - L Rongy
- Nonlinear Physical Chemistry Unit, Faculté des Sciences, Université libre de Bruxelles (ULB), CP231, 1050 Brussels, Belgium
| | - A De Wit
- Nonlinear Physical Chemistry Unit, Faculté des Sciences, Université libre de Bruxelles (ULB), CP231, 1050 Brussels, Belgium
| |
Collapse
|