1
|
Punia R, Goel G. Free Energy Surface and Molecular Mechanism of Slow Structural Transitions in Lipid Bilayers. J Chem Theory Comput 2023; 19:8245-8257. [PMID: 37947833 DOI: 10.1021/acs.jctc.3c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Lipid membrane remodeling, crucial for many cellular processes, is governed by the coupling of membrane structure and shape fluctuations. Given the importance of the ∼ nm length scale, details of the transition intermediates for conformational change are not fully captured by a continuum-mechanical description. Slow dynamics and the lack of knowledge of reaction coordinates (RCs) for biasing methods pose a challenge for all-atom (AA) simulations. Here, we map system dynamics on Langevin dynamics in a normal mode space determined from an elastic network model representation for the lipid-water Hamiltonian. AA molecular dynamics (MD) simulations are used to determine model parameters, and Langevin dynamics predictions for bilayer structural, mechanical, and dynamic properties are validated against MD simulations and experiments. Transferability to describe the dynamics of a larger lipid bilayer and a heterogeneous membrane-protein system is assessed. A set of generic RCs for pore formation in two tensionless bilayers is obtained by coupling Langevin dynamics to the underlying energy landscape for membrane deformations. Structure evolution is carried out by AA MD, wherein the generic RCs are used in a path metadynamics or an umbrella sampling simulation to determine the thermodynamics of pore formation and its molecular determinants, such as the role of distinct bilayer motions, lipid solvation, and lipid packing.
Collapse
Affiliation(s)
- Rajat Punia
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Gaurav Goel
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
2
|
Ambattu LA, Yeo LY. Sonomechanobiology: Vibrational stimulation of cells and its therapeutic implications. BIOPHYSICS REVIEWS 2023; 4:021301. [PMID: 38504927 PMCID: PMC10903386 DOI: 10.1063/5.0127122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/27/2023] [Indexed: 03/21/2024]
Abstract
All cells possess an innate ability to respond to a range of mechanical stimuli through their complex internal machinery. This comprises various mechanosensory elements that detect these mechanical cues and diverse cytoskeletal structures that transmit the force to different parts of the cell, where they are transcribed into complex transcriptomic and signaling events that determine their response and fate. In contrast to static (or steady) mechanostimuli primarily involving constant-force loading such as compression, tension, and shear (or forces applied at very low oscillatory frequencies (≤ 1 Hz) that essentially render their effects quasi-static), dynamic mechanostimuli comprising more complex vibrational forms (e.g., time-dependent, i.e., periodic, forcing) at higher frequencies are less well understood in comparison. We review the mechanotransductive processes associated with such acoustic forcing, typically at ultrasonic frequencies (> 20 kHz), and discuss the various applications that arise from the cellular responses that are generated, particularly for regenerative therapeutics, such as exosome biogenesis, stem cell differentiation, and endothelial barrier modulation. Finally, we offer perspectives on the possible existence of a universal mechanism that is common across all forms of acoustically driven mechanostimuli that underscores the central role of the cell membrane as the key effector, and calcium as the dominant second messenger, in the mechanotransduction process.
Collapse
Affiliation(s)
- Lizebona August Ambattu
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne VIC 3000, Australia
| | - Leslie Y. Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne VIC 3000, Australia
| |
Collapse
|
3
|
Rasouli R, Villegas KM, Tabrizian M. Acoustofluidics - changing paradigm in tissue engineering, therapeutics development, and biosensing. LAB ON A CHIP 2023; 23:1300-1338. [PMID: 36806847 DOI: 10.1039/d2lc00439a] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
For more than 70 years, acoustic waves have been used to screen, diagnose, and treat patients in hundreds of medical devices. The biocompatible nature of acoustic waves, their non-invasive and contactless operation, and their compatibility with wide visualization techniques are just a few of the many features that lead to the clinical success of sound-powered devices. The development of microelectromechanical systems and fabrication technologies in the past two decades reignited the spark of acoustics in the discovery of unique microscale bio applications. Acoustofluidics, the combination of acoustic waves and fluid mechanics in the nano and micro-realm, allowed researchers to access high-resolution and controllable manipulation and sensing tools for particle separation, isolation and enrichment, patterning of cells and bioparticles, fluid handling, and point of care biosensing strategies. This versatility and attractiveness of acoustofluidics have led to the rapid expansion of platforms and methods, making it also challenging for users to select the best acoustic technology. Depending on the setup, acoustic devices can offer a diverse level of biocompatibility, throughput, versatility, and sensitivity, where each of these considerations can become the design priority based on the application. In this paper, we aim to overview the recent advancements of acoustofluidics in the multifaceted fields of regenerative medicine, therapeutic development, and diagnosis and provide researchers with the necessary information needed to choose the best-suited acoustic technology for their application. Moreover, the effect of acoustofluidic systems on phenotypic behavior of living organisms are investigated. The review starts with a brief explanation of acoustofluidic principles, the different working mechanisms, and the advantages or challenges of commonly used platforms based on the state-of-the-art design features of acoustofluidic technologies. Finally, we present an outlook of potential trends, the areas to be explored, and the challenges that need to be overcome in developing acoustofluidic platforms that can echo the clinical success of conventional ultrasound-based devices.
Collapse
Affiliation(s)
- Reza Rasouli
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
| | - Karina Martinez Villegas
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
| | - Maryam Tabrizian
- Department of Biomedical Engineering, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada.
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Ambattu LA, Ramesan S, Dekiwadia C, Hanssen E, Li H, Yeo LY. High frequency acoustic cell stimulation promotes exosome generation regulated by a calcium-dependent mechanism. Commun Biol 2020; 3:553. [PMID: 33020585 PMCID: PMC7536404 DOI: 10.1038/s42003-020-01277-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 09/07/2020] [Indexed: 02/07/2023] Open
Abstract
Exosomes are promising disease diagnostic markers and drug delivery vehicles, although their use in practice is limited by insufficient homogeneous quantities that can be produced. We reveal that exposing cells to high frequency acoustic irradiation stimulates their generation without detriment to cell viability by exploiting their innate membrane repair mechanism, wherein the enhanced recruitment of calcium ions from the extracellular milieu into the cells triggers an ESCRT pathway known to orchestrate exosomal production. Given the high post-irradiation cell viabilities (≈95%), we are able to recycle the cells through iterative irradiation and post-excitation incubation steps, which facilitate high throughput production of a homogeneous population of exosomes-a particular challenge for translating exosome therapy into clinical practice. In particular, we show that approximately eight- to ten-fold enrichment in the number of exosomes produced can be achieved with just 7 cycles over 280 mins, equivalent to a yield of around 1.7-2.1-fold/h.
Collapse
Affiliation(s)
- Lizebona August Ambattu
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Shwathy Ramesan
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility, RMIT University, Melbourne, VIC, 3000, Australia
| | - Eric Hanssen
- Advanced Microscopy Facility, Bio21 Molecular Science & Biotechnology Institute, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Haiyan Li
- School of Biomedical Engineering & Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Leslie Y Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
5
|
Rezk AR, Ahmed H, Ramesan S, Yeo LY. High Frequency Sonoprocessing: A New Field of Cavitation-Free Acoustic Materials Synthesis, Processing, and Manipulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 8:2001983. [PMID: 33437572 PMCID: PMC7788597 DOI: 10.1002/advs.202001983] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/17/2020] [Indexed: 04/14/2023]
Abstract
Ultrasound constitutes a powerful means for materials processing. Similarly, a new field has emerged demonstrating the possibility for harnessing sound energy sources at considerably higher frequencies (10 MHz to 1 GHz) compared to conventional ultrasound (⩽3 MHz) for synthesizing and manipulating a variety of bulk, nanoscale, and biological materials. At these frequencies and the typical acoustic intensities employed, cavitation-which underpins most sonochemical or, more broadly, ultrasound-mediated processes-is largely absent, suggesting that altogether fundamentally different mechanisms are at play. Examples include the crystallization of novel morphologies or highly oriented structures; exfoliation of 2D quantum dots and nanosheets; polymer nanoparticle synthesis and encapsulation; and the possibility for manipulating the bandgap of 2D semiconducting materials or the lipid structure that makes up the cell membrane, the latter resulting in the ability to enhance intracellular molecular uptake. These fascinating examples reveal how the highly nonlinear electromechanical coupling associated with such high-frequency surface vibration gives rise to a variety of static and dynamic charge generation and transfer effects, in addition to molecular ordering, polarization, and assembly-remarkably, given the vast dimensional separation between the acoustic wavelength and characteristic molecular length scales, or between the MHz-order excitation frequencies and typical THz-order molecular vibration frequencies.
Collapse
Affiliation(s)
- Amgad R. Rezk
- Micro/Nanophysics Research LaboratorySchool of EngineeringRMIT UniversityMelbourneVIC3000Australia
| | - Heba Ahmed
- Micro/Nanophysics Research LaboratorySchool of EngineeringRMIT UniversityMelbourneVIC3000Australia
| | - Shwathy Ramesan
- Micro/Nanophysics Research LaboratorySchool of EngineeringRMIT UniversityMelbourneVIC3000Australia
| | - Leslie Y. Yeo
- Micro/Nanophysics Research LaboratorySchool of EngineeringRMIT UniversityMelbourneVIC3000Australia
| |
Collapse
|
6
|
Burian M, Marmiroli B, Radeticchio A, Morello C, Naumenko D, Biasiol G, Amenitsch H. Picosecond pump-probe X-ray scattering at the Elettra SAXS beamline. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:51-59. [PMID: 31868736 PMCID: PMC6927520 DOI: 10.1107/s1600577519015728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
A new setup for picosecond pump-probe X-ray scattering at the Austrian SAXS beamline at Elettra-Sincrotrone Trieste is presented. A high-power/high-repetion-rate laser has been installed on-site, delivering UV/VIS/IR femtosecond-pulses in-sync with the storage ring. Data acquisition is achieved by gating a multi-panel detector, capable of discriminating the single X-ray pulse in the dark-gap of the Elettra hybrid filling mode. Specific aspects of laser- and detection-synchronization, on-line beam steering as well protocols for spatial and temporal overlap of laser and X-ray beam are also described. The capabilities of the setup are demonstrated by studying transient heat-transfer in an In/Al/GaAs superlattice structure and results are confirmed by theoretical calculations.
Collapse
Affiliation(s)
- Max Burian
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/V, 8010 Graz, Austria
| | - Benedetta Marmiroli
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/V, 8010 Graz, Austria
| | - Andrea Radeticchio
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/V, 8010 Graz, Austria
| | - Christian Morello
- Elettra-Sincrotrone Trieste SCpA, Strada Statale 14, km 163.5, Basovizza, TS 34149, Italy
| | - Denys Naumenko
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/V, 8010 Graz, Austria
| | - Giorgio Biasiol
- Laboratorio TASC, CNR-IOM at Area Science Park, Strada Statale 14, km 163.5, Basovizza, TS 34149, Italy
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, Stremayrgasse 9/V, 8010 Graz, Austria
| |
Collapse
|
7
|
Ramesan S, Rezk AR, Yeo LY. High frequency acoustic permeabilisation of drugs through tissue for localised mucosal delivery. LAB ON A CHIP 2018; 18:3272-3284. [PMID: 30225496 DOI: 10.1039/c8lc00355f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The majority of infectious diseases enter the body through mucosal membranes that line the ocular, nasal, oral, vaginal and rectal surfaces. As infections can be effectively prevented by instigating a local immune response in the immunocyte-rich regions of the mucosa, an efficacious route of vaccine administration is to directly target their delivery to these surfaces. It is nevertheless challenging to provide sufficient driving force to penetrate both the mucus lining as well as the epithelial barrier of the mucosal surfaces, which are designed to effectively keep foreign entities out, but not excessively such that the therapeutic agent penetrates deeper into the vascularised submucosal regions where they are mostly taken up by the systemic circulation, thus resulting in a far weaker immune response. In this work, we demonstrate the possibility of controllably localising and hence maximising the delivery of both small and large molecule model therapeutic agents in the mucosa of a porcine buccal model using high frequency acoustics. Unlike their low (kHz order) frequency bulk ultrasonic counterpart, these high frequency (>10 MHz) surface waves do not generate cavitation, which leads to large molecular penetration depths beyond the 100 μm order thick mucosal layer, and which has been known to cause considerable cellular/tissue damage and hence scarring. Through system parameters such as the acoustic irradiation frequency, power and exposure duration, we show that it is possible to tune the penetration depth such that over 95% of the delivered drug are localised within the mucosal layer, whilst preserving their structural integrity.
Collapse
Affiliation(s)
- Shwathy Ramesan
- Micro/Nanophysics Research Laboratory, RMIT University, Melbourne, VIC 3000, Australia.
| | | | | |
Collapse
|
8
|
Zakhvataev VE. Nonequilibrium dynamic structure factor of a lipid bilayer in the presence of an in-plane temperature gradient. Phys Rev E 2018; 98:022404. [PMID: 30253585 DOI: 10.1103/physreve.98.022404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Indexed: 01/02/2023]
Abstract
There is rapidly increasing evidence that nanoscale temperature heterogeneities are involved in important biological processes. Combining nanoheating and nanoscale thermosensors forms the basis of emerging unique methods of cell therapy, tissue engineering, and regenerative medicine. Understanding corresponding phenomena seems to require a mesoscopic nonequilibrium hydrodynamic theory. In this paper, a Langevin-type model of dynamics of phonon modes propagating along a bilayer lipid membrane in the presence of an in-plane temperature gradient is proposed. Corresponding quantitative estimates for the Brillouin components of the nonequilibrium dynamic structure factor and the equal-time longitudinal momentum-density correlation function for a lipid bilayer are obtained. The analysis reveals that for typical values of parameters of lipid bilayer, the longitudinal temperature gradient of the order of 5qK for wave numbers q from 0.01 to 1nm^{-1} induces significant asymmetry of the Brillouin components of the dynamic structure factor and long-range spatial correlations in the plane of the bilayer. The corresponding membrane temperature gradients seem to be typical or achievable for cellular processes responsible for intracellular temperature variations and such external physical impacts as high-intensity electromagnetic pulses or heating of membrane-associated nanoparticles.
Collapse
Affiliation(s)
- V E Zakhvataev
- Federal Research Center, "Krasnoyarsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences," Krasnoyarsk 660036, Russia and Siberian Federal University, Krasnoyarsk 660041, Russia
| |
Collapse
|
9
|
Ramesan S, Rezk AR, Dekiwadia C, Cortez-Jugo C, Yeo LY. Acoustically-mediated intracellular delivery. NANOSCALE 2018; 10:13165-13178. [PMID: 29964280 DOI: 10.1039/c8nr02898b] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Recent breakthroughs in gene editing have necessitated practical ex vivo methods to rapidly and efficiently re-engineer patient-harvested cells. Many physical membrane-disruption or pore-forming techniques for intracellular delivery, however, result in poor cell viability, while most carrier-mediated techniques suffer from suboptimal endosomal escape and hence cytoplasmic or nuclear targeting. In this work, we show that short exposure of cells to high frequency (>10 MHz) acoustic excitation facilitates temporal reorganisation of the lipid structure in the cell membrane that enhances translocation of gold nanoparticles and therapeutic molecules into the cell within just ten minutes. Due to its transient nature, rapid cell self-healing is observed, leading to high cellular viabilities (>97%). Moreover, the internalised cargo appears to be uniformly distributed throughout the cytosol, circumventing the need for strategies to facilitate endosomal escape. In the case of siRNA delivery, the method is seen to enhance gene silencing by over twofold, demonstrating its potential for enhancing therapeutic delivery into cells.
Collapse
Affiliation(s)
- Shwathy Ramesan
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.
| | - Amgad R Rezk
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility, RMIT University, Melbourne, VIC 3000, Australia
| | - Christina Cortez-Jugo
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology & Department of Chemical and Biomolecular Engineering, University of Melbourne, Parkville, VIC 3010, Australia
| | - Leslie Y Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne, VIC 3000, Australia.
| |
Collapse
|
10
|
Zakhvataev VE. Localized density pulses in lipid membranes on the piсosecond time scale. Biophysics (Nagoya-shi) 2017. [DOI: 10.1134/s0006350917030253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
11
|
Marquardt D, Heberle FA, Nickels JD, Pabst G, Katsaras J. On scattered waves and lipid domains: detecting membrane rafts with X-rays and neutrons. SOFT MATTER 2015; 11:9055-72. [PMID: 26428538 PMCID: PMC4719199 DOI: 10.1039/c5sm01807b] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/21/2015] [Indexed: 05/28/2023]
Abstract
In order to understand the biological role of lipids in cell membranes, it is necessary to determine the mesoscopic structure of well-defined model membrane systems. Neutron and X-ray scattering are non-invasive, probe-free techniques that have been used extensively in such systems to probe length scales ranging from angstroms to microns, and dynamics occurring over picosecond to millisecond time scales. Recent developments in the area of phase separated lipid systems mimicking membrane rafts will be presented, and the underlying concepts of the different scattering techniques used to study them will be discussed in detail.
Collapse
Affiliation(s)
- Drew Marquardt
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, Humboldtstr. 50/III, Graz, Austria. and BioTechMed-Graz, Graz, Austria
| | - Frederick A Heberle
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA. and Joint Institute for Neutron Sciences, Oak Ridge, Tennessee 37831, USA
| | - Jonathan D Nickels
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA. and Joint Institute for Neutron Sciences, Oak Ridge, Tennessee 37831, USA
| | - Georg Pabst
- University of Graz, Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, Humboldtstr. 50/III, Graz, Austria. and BioTechMed-Graz, Graz, Austria
| | - John Katsaras
- Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA. and Joint Institute for Neutron Sciences, Oak Ridge, Tennessee 37831, USA
| |
Collapse
|