1
|
Gh. MS, Wilhelm MJ, Dai HL. Observing mechanosensitive channels in action in living bacteria. BIOPHYSICAL REPORTS 2024; 4:100141. [PMID: 38189030 PMCID: PMC10765490 DOI: 10.1016/j.bpr.2023.100141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024]
Abstract
Mechanosensitive (MS) channels act to protect the cytoplasmic membrane (CM) of living cells from environmental changes in osmolarity. In this report, we demonstrate the use of time-resolved second-harmonic light scattering (SHS) as a means of experimentally observing the relative state (open versus closed) of MS channels in living bacteria suspended in different buffer solutions. Specifically, the state of the MS channels was selectively controlled by changing the composition of the suspension medium, inducing either a transient or persistent osmotic shock. SHS was then used to monitor transport of the SHG-active cation, malachite green, across the bacterial CM. When MS channels were forced open, malachite green cations were able to cross the CM at a rate at least two orders of magnitude faster compared with when the MS channels were closed. These observations were corroborated using both numerical model simulations and complementary fluorescence experiments, in which the propensity for the CM impermeant cation, propidium, to stain cells was shown to be contingent upon the relative state of the MS channels (i.e., cells with open MS channels fluoresced red, cells with closed MS channels did not). Application of time-resolved SHS to experimentally distinguish MS channels opened via osmotic shock versus chemical activation, as well as a general comparison with the patch-clamp method is discussed.
Collapse
Affiliation(s)
| | | | - Hai-Lung Dai
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
Kariev AM, Green ME. Water, Protons, and the Gating of Voltage-Gated Potassium Channels. MEMBRANES 2024; 14:37. [PMID: 38392664 PMCID: PMC10890431 DOI: 10.3390/membranes14020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/24/2024]
Abstract
Ion channels are ubiquitous throughout all forms of life. Potassium channels are even found in viruses. Every cell must communicate with its surroundings, so all cells have them, and excitable cells, in particular, especially nerve cells, depend on the behavior of these channels. Every channel must be open at the appropriate time, and only then, so that each channel opens in response to the stimulus that tells that channel to open. One set of channels, including those in nerve cells, responds to voltage. There is a standard model for the gating of these channels that has a section of the protein moving in response to the voltage. However, there is evidence that protons are moving, rather than protein. Water is critical as part of the gating process, although it is hard to see how this works in the standard model. Here, we review the extensive evidence of the importance of the role of water and protons in gating these channels. Our principal example, but by no means the only example, will be the Kv1.2 channel. Evidence comes from the effects of D2O, from mutations in the voltage sensing domain, as well as in the linker between that domain and the gate, and at the gate itself. There is additional evidence from computations, especially quantum calculations. Structural evidence comes from X-ray studies. The hydration of ions is critical in the transfer of ions in constricted spaces, such as the gate region and the pore of a channel; we will see how the structure of the hydrated ion fits with the structure of the channel. In addition, there is macroscopic evidence from osmotic experiments and streaming current measurements. The combined evidence is discussed in the context of a model that emphasizes the role of protons and water in gating these channels.
Collapse
Affiliation(s)
- Alisher M Kariev
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
| | - Michael E Green
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA
| |
Collapse
|
3
|
Sustained enzymatic activity and flow in crowded protein droplets. Nat Commun 2021; 12:6293. [PMID: 34725341 PMCID: PMC8560906 DOI: 10.1038/s41467-021-26532-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022] Open
Abstract
Living cells harvest energy from their environments to drive the chemical processes that enable life. We introduce a minimal system that operates at similar protein concentrations, metabolic densities, and length scales as living cells. This approach takes advantage of the tendency of phase-separated protein droplets to strongly partition enzymes, while presenting minimal barriers to transport of small molecules across their interface. By dispersing these microreactors in a reservoir of substrate-loaded buffer, we achieve steady states at metabolic densities that match those of the hungriest microorganisms. We further demonstrate the formation of steady pH gradients, capable of driving microscopic flows. Our approach enables the investigation of the function of diverse enzymes in environments that mimic cytoplasm, and provides a flexible platform for studying the collective behavior of matter driven far from equilibrium.
Collapse
|
4
|
Abstract
Hydrocarbon films confined between smooth mica surfaces have long provided an experimental playground for model studies of structure and dynamics of confined liquids. However, fundamental questions regarding the phase behavior and shear properties in this simple system remain unsolved. With ultrasensitive resolution in film thickness and shear stress, and control over the crystallographic alignment of the confining surfaces, we here investigate the shear forces transmitted across nanoscale films of dodecane down to a single molecular layer. We resolve the conditions under which liquid-solid phase transitions occur and explain friction coefficients spanning several orders of magnitude. We find that commensurate surface alignment and presence of water at the interfaces each lead to moderate or high friction, whereas friction coefficients down to [Formula: see text] are observed for a single molecular layer of dodecane trapped between crystallographically misaligned dry surfaces. This ultralow friction is attributed to sliding at the incommensurate interface between one of the mica surfaces and the laterally ordered solid molecular film, reconciling previous interpretations.
Collapse
|
5
|
Losasso V, Hsiao YW, Martelli F, Winn MD, Crain J. Modulation of Antimicrobial Peptide Potency in Stressed Lipid Bilayers. PHYSICAL REVIEW LETTERS 2019; 122:208103. [PMID: 31172786 DOI: 10.1103/physrevlett.122.208103] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Indexed: 06/09/2023]
Abstract
It is shown that the tendency of an archetypal antimicrobial peptide to insert into and perforate a simple lipid bilayer is strongly modulated by tensile stress in the membrane. The results, obtained through molecular dynamics simulations, have been demonstrated with several lipid compositions and appear to be general, although quantitative details differ. The findings imply that the potency of antimicrobial peptides may not be a purely intrinsic chemical property and, instead, depends on the mechanical state of the target membrane.
Collapse
Affiliation(s)
- Valeria Losasso
- Daresbury Laboratory, STFC, Daresbury, Warrington, England WA4 4AD, United Kingdom
| | - Ya-Wen Hsiao
- Daresbury Laboratory, STFC, Daresbury, Warrington, England WA4 4AD, United Kingdom
| | - Fausto Martelli
- IBM Research, Hartree Centre, Daresbury, England WA4 4AD, United Kingdom
| | - Martyn D Winn
- Daresbury Laboratory, STFC, Daresbury, Warrington, England WA4 4AD, United Kingdom
| | - Jason Crain
- IBM Research, Hartree Centre, Daresbury, England WA4 4AD, United Kingdom
- Dept. of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, England
| |
Collapse
|
6
|
Marbach S, Bocquet L. Osmosis, from molecular insights to large-scale applications. Chem Soc Rev 2019; 48:3102-3144. [PMID: 31114820 DOI: 10.1039/c8cs00420j] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Osmosis is a universal phenomenon occurring in a broad variety of processes and fields. It is the archetype of entropic forces, both trivial in its fundamental expression - the van 't Hoff perfect gas law - and highly subtle in its physical roots. While osmosis is intimately linked with transport across membranes, it also manifests itself as an interfacial transport phenomenon: the so-called diffusio-osmosis and -phoresis, whose consequences are presently actively explored for example for the manipulation of colloidal suspensions or the development of active colloidal swimmers. Here we give a global and unifying view of the phenomenon of osmosis and its consequences with a multi-disciplinary perspective. Pushing the fundamental understanding of osmosis allows one to propose new perspectives for different fields and we highlight a number of examples along these lines, for example introducing the concepts of osmotic diodes, active separation and far from equilibrium osmosis, raising in turn fundamental questions in the thermodynamics of separation. The applications of osmosis are also obviously considerable and span very diverse fields. Here we discuss a selection of phenomena and applications where osmosis shows great promises: osmotic phenomena in membrane science (with recent developments in separation, desalination, reverse osmosis for water purification thanks in particular to the emergence of new nanomaterials); applications in biology and health (in particular discussing the kidney filtration process); osmosis and energy harvesting (in particular, osmotic power and blue energy as well as capacitive mixing); applications in detergency and cleaning, as well as for oil recovery in porous media.
Collapse
Affiliation(s)
- Sophie Marbach
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, France.
| | | |
Collapse
|
7
|
Abstract
Ion transporters in Nature exhibit a wealth of complex transport properties such as voltage gating, activation, and mechanosensitive behavior. When combined, such processes result in advanced ionic machines achieving active ion transport, high selectivity, or signal processing. On the artificial side, there has been much recent progress in the design and study of transport in ionic channels, but mimicking the advanced functionalities of ion transporters remains as yet out of reach. A prerequisite is the development of ionic responses sensitive to external stimuli. In the present work, we report a counterintuitive and highly nonlinear coupling between electric and pressure-driven transport in a conical nanopore, manifesting as a strong pressure dependence of the ionic conductance. This result is at odds with standard linear response theory and is akin to a mechanical transistor functionality. We fully rationalize this behavior on the basis of the coupled electrohydrodynamics in the conical pore by extending the Poisson-Nernst-Planck-Stokes framework. The model is shown to capture the subtle mechanical balance occurring within an extended spatially charged zone in the nanopore. The pronounced sensitivity to mechanical forcing offers leads in tuning ion transport by mechanical stimuli. The results presented here provide a promising avenue for the design of tailored membrane functionalities.
Collapse
|
8
|
Rezaei M, Azimian AR, Pishevar AR, Bonthuis DJ. Viscous interfacial layer formation causes electroosmotic mobility reversal in monovalent electrolytes. Phys Chem Chem Phys 2018; 20:22517-22524. [DOI: 10.1039/c8cp03655a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using molecular dynamics simulations, the ion density, shear viscosity and electroosmotic mobility of an aqueous monovalent electrolyte at a charged solid surface are studied as a function of the surface charge density.
Collapse
Affiliation(s)
- Majid Rezaei
- Department of Mechanical Engineering
- Isfahan University of Technology
- 8415683111 Isfahan
- Iran
- Fachbereich Physik
| | - Ahmad Reza Azimian
- Department of Mechanical Engineering
- Isfahan University of Technology
- 8415683111 Isfahan
- Iran
| | - Ahmad Reza Pishevar
- Department of Mechanical Engineering
- Isfahan University of Technology
- 8415683111 Isfahan
- Iran
| | | |
Collapse
|
9
|
Zhdanov VP. Interpretation of amperometric kinetics of content release during contacts of vesicles with a lipid membrane. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 46:461-470. [PMID: 27942741 DOI: 10.1007/s00249-016-1189-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/21/2016] [Accepted: 11/28/2016] [Indexed: 11/25/2022]
Abstract
The exocytotic pathway of secretion of molecules from cells includes transport by vesicles, tether-mediated fusion of vesicles with the plasma membrane accompanied by pore formation, and diffusion-mediated release of their contents via a pore to the outside. In related basic biophysical studies, vesicle-content release is tracked by measuring corresponding amperometric spikes. Although experiments of this type have a long history, the understanding of the underlying physics is still elusive. The present study elucidates the likely contribution of line energy, membrane tension and bending, osmotic pressure, hydration forces, and tethers to the potential energy for fusion-related pore formation and evolution. The overdamped Langevin equation is used to describe the pore dynamics, which are in turn employed to calculate the kinetics of content release and to interpret the shape of amperometric spikes.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Section of Biological Physics, Department of Physics, Chalmers University of Technology, Göteborg, Sweden.
- Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|
10
|
Shen M, Ye F, Liu R, Chen K, Yang M, Ripoll M. Chemically driven fluid transport in long microchannels. J Chem Phys 2016; 145:124119. [DOI: 10.1063/1.4963721] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mingren Shen
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Rui Liu
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ke Chen
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Mingcheng Yang
- Beijing National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Marisol Ripoll
- Theoretical Soft-Matter and Biophysics, Institute of Complex Systems, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
11
|
Abstract
A multiscale continuum model is constructed for a mechanosensitive (MS) channel gated by tension in a lipid bilayer membrane under stresses due to fluid flows. We illustrate that for typical physiological conditions vesicle hydrodynamics driven by a fluid flow may render the membrane tension sufficiently large to gate a MS channel open. In particular, we focus on the dynamic opening/closing of a MS channel in a vesicle membrane under a planar shear flow and a pressure-driven flow across a constriction channel. Our modeling and numerical simulation results quantify the critical flow strength or flow channel geometry for intracellular transport through a MS channel. In particular, we determine the percentage of MS channels that are open or closed as a function of the relevant measure of flow strength. The modeling and simulation results imply that for fluid flows that are physiologically relevant and realizable in microfluidic configurations stress-induced intracellular transport across the lipid membrane can be achieved by the gating of reconstituted MS channels, which can be useful for designing drug delivery in medical therapy and understanding complicated mechanotransduction.
Collapse
|