1
|
Peng B, Lange GF, Bennett D, Wang K, Slager RJ, Monserrat B. Photoinduced Electronic and Spin Topological Phase Transitions in Monolayer Bismuth. PHYSICAL REVIEW LETTERS 2024; 132:116601. [PMID: 38563950 DOI: 10.1103/physrevlett.132.116601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/09/2024] [Indexed: 04/04/2024]
Abstract
Ultrathin bismuth exhibits rich physics including strong spin-orbit coupling, ferroelectricity, nontrivial topology, and light-induced structural dynamics. We use ab initio calculations to show that light can induce structural transitions to four transient phases in bismuth monolayers. These light-induced phases exhibit nontrivial topological character, which we illustrate using the recently introduced concept of spin bands and spin-resolved Wilson loops. Specifically, we find that the topology changes via the closing of the electron and spin band gaps during photoinduced structural phase transitions, leading to distinct edge states. Our study provides strategies to tailor electronic and spin topology via ultrafast control of photoexcited carriers and associated structural dynamics.
Collapse
Affiliation(s)
- Bo Peng
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Gunnar F Lange
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Daniel Bennett
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Kang Wang
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| | - Robert-Jan Slager
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Bartomeu Monserrat
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom
| |
Collapse
|
2
|
Liu XB, Hu SQ, Chen D, Guan M, Chen Q, Meng S. Calibrating Out-of-Equilibrium Electron-Phonon Couplings in Photoexcited MoS 2. NANO LETTERS 2022; 22:4800-4806. [PMID: 35648107 DOI: 10.1021/acs.nanolett.2c01105] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nonequilibrium electron-phonon coupling (EPC) serves as a dominant interaction in a multitude of transient processes, including photoinduced phase transitions, coherent phonon generation, and possible light-induced superconductivity. Here we use monolayer MoS2 as a prototype to investigate the variation in electron-phonon couplings under laser excitation, on the basis of real-time time-dependent density functional theory simulations. Phonon softening, anisotropic modification of the deformation potential, and enhancement of EPC are observed, which are attributed to the reduced electronic screening and modulated potential energy surfaces by photoexcitation. Furthermore, by tracking the transient deformation potential and nonthermal electronic population, we can monitor the ultrafast time evolution of the energy exchange rate between electrons and phonons upon laser excitation. This work provides an effective strategy to investigate the nonequilibrium EPC and constructs a scaffold for understanding nonequilibrium states beyond the multitemperature models.
Collapse
Affiliation(s)
- Xin-Bao Liu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Shi-Qi Hu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Daqiang Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Mengxue Guan
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Qing Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Sheng Meng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| |
Collapse
|
3
|
Sirica N, Orth PP, Scheurer MS, Dai YM, Lee MC, Padmanabhan P, Mix LT, Teitelbaum SW, Trigo M, Zhao LX, Chen GF, Xu B, Yang R, Shen B, Hu C, Lee CC, Lin H, Cochran TA, Trugman SA, Zhu JX, Hasan MZ, Ni N, Qiu XG, Taylor AJ, Yarotski DA, Prasankumar RP. Photocurrent-driven transient symmetry breaking in the Weyl semimetal TaAs. NATURE MATERIALS 2022; 21:62-66. [PMID: 34750539 DOI: 10.1038/s41563-021-01126-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Symmetry plays a central role in conventional and topological phases of matter, making the ability to optically drive symmetry changes a critical step in developing future technologies that rely on such control. Topological materials, like topological semimetals, are particularly sensitive to a breaking or restoring of time-reversal and crystalline symmetries, which affect both bulk and surface electronic states. While previous studies have focused on controlling symmetry via coupling to the crystal lattice, we demonstrate here an all-electronic mechanism based on photocurrent generation. Using second harmonic generation spectroscopy as a sensitive probe of symmetry changes, we observe an ultrafast breaking of time-reversal and spatial symmetries following femtosecond optical excitation in the prototypical type-I Weyl semimetal TaAs. Our results show that optically driven photocurrents can be tailored to explicitly break electronic symmetry in a generic fashion, opening up the possibility of driving phase transitions between symmetry-protected states on ultrafast timescales.
Collapse
Affiliation(s)
- N Sirica
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA.
| | - P P Orth
- Ames Laboratory, Ames, IA, USA
- Department of Physics and Astronomy, Iowa State University, Ames, IA, USA
| | - M S Scheurer
- Institute for Theoretical Physics, University of Innsbruck, Innsbruck, Austria
| | - Y M Dai
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA
- Center for Superconducting Physics and Materials, National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, China
| | - M-C Lee
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - P Padmanabhan
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - L T Mix
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - S W Teitelbaum
- Department of Physics, Arizona State Univeristy, Tempe, AZ, USA
- Beus CXFEL Labs, Biodesign Institute, Arizona State Univeristy, Tempe, AZ, USA
| | - M Trigo
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - L X Zhao
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - G F Chen
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - B Xu
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - R Yang
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - B Shen
- Department of Physics and Astronomy, University of California, Los Angeles, CA, USA
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Guangzhou, China
| | - C Hu
- Department of Physics and Astronomy, University of California, Los Angeles, CA, USA
| | - C-C Lee
- Department of Physics, Tamkang University, New Taipei, Taiwan
| | - H Lin
- Institute of Physics, Academia Sinica, Taipei, Taiwan
| | - T A Cochran
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, NJ, USA
| | - S A Trugman
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - J-X Zhu
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - M Z Hasan
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy (B7), Department of Physics, Princeton University, Princeton, NJ, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - N Ni
- Department of Physics and Astronomy, University of California, Los Angeles, CA, USA
| | - X G Qiu
- Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - A J Taylor
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - D A Yarotski
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - R P Prasankumar
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, USA.
| |
Collapse
|
4
|
Amuah EB, Johnson AS, Wall SE. An achromatic pump-probe setup for broadband, few-cycle ultrafast spectroscopy in quantum materials. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:103003. [PMID: 34717375 DOI: 10.1063/5.0066760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
In this work, we present an achromatic pump-probe setup covering the visible (VIS) to near-infrared (NIR) wavelength regions (500-3000 nm) for few-cycle pulses. Both the pump and probe arms can work either in the VIS or the NIR wavelength regions, making our setup suitable for multi-color, broadband pump-probe measurements. In particular, our setup minimizes time-smearing due to the phase front curvature, an aspect of ultrafast spectroscopy that has been missing from previous works and allowing us to achieve sub-20-fs temporal resolution. We demonstrate the capabilities of our setup by performing measurements on Pr0.5Ca1.5MnO4. We pump and probe in both wavelength regions with a range of pump fluences and demonstrate how the observed dynamics depend strongly on the probe wavelength. Furthermore, the observation of a 16.5 THz phonon demonstrates the high temporal resolution of the setup.
Collapse
Affiliation(s)
- Emmanuel B Amuah
- ICFO-The Institute of Photonics Sciences, The Barcelona Institute of Science and Technology, Castelldefels, 08860 Barcelona, Spain
| | - Allan S Johnson
- ICFO-The Institute of Photonics Sciences, The Barcelona Institute of Science and Technology, Castelldefels, 08860 Barcelona, Spain
| | - Simon E Wall
- ICFO-The Institute of Photonics Sciences, The Barcelona Institute of Science and Technology, Castelldefels, 08860 Barcelona, Spain
| |
Collapse
|
5
|
O'Mahony SM, Murphy-Armando F, Murray ÉD, Querales-Flores JD, Savić I, Fahy S. Ultrafast Relaxation of Symmetry-Breaking Photo-Induced Atomic Forces. PHYSICAL REVIEW LETTERS 2019; 123:087401. [PMID: 31491230 DOI: 10.1103/physrevlett.123.087401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/24/2019] [Indexed: 06/10/2023]
Abstract
We present a first-principles method for the calculation of the temperature-dependent relaxation of symmetry-breaking atomic driving forces in photoexcited systems. We calculate the phonon-assisted decay of the photoexcited force on the low-symmetry E_{g} mode following absorption of an ultrafast pulse in Bi, Sb, and As. The force decay lifetimes for Bi and Sb are of the order of 10 fs and in agreement with recent experiments, demonstrating that electron-phonon scattering is the primary mechanism relaxing the symmetry-breaking forces. Calculations for a range of absorbed photon energies suggest that larger amplitude, symmetry-breaking atomic motion may be induced by choosing a pump photon energy which maximizes the product of the initial E_{g} force and its lifetime. The high-symmetry A_{1g} force undergoes a partial decay to a nonzero constant on similar timescales, which has not yet been measured in experiments. The average imaginary part of the electron self-energy over the photoexcited carrier distribution provides a crude indication of the decay rate of symmetry-breaking forces.
Collapse
Affiliation(s)
- Shane M O'Mahony
- Department of Physics, University College Cork, Cork T12K8AF, Ireland
- Tyndall National Institute, Cork T12R5CP, Ireland
| | | | - Éamonn D Murray
- Department of Physics and Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
| | | | - Ivana Savić
- Tyndall National Institute, Cork T12R5CP, Ireland
| | - Stephen Fahy
- Department of Physics, University College Cork, Cork T12K8AF, Ireland
- Tyndall National Institute, Cork T12R5CP, Ireland
| |
Collapse
|
6
|
Makita M, Vartiainen I, Mohacsi I, Caleman C, Diaz A, Jönsson HO, Juranić P, Medvedev N, Meents A, Mozzanica A, Opara NL, Padeste C, Panneels V, Saxena V, Sikorski M, Song S, Vera L, Willmott PR, Beaud P, Milne CJ, Ziaja-Motyka B, David C. Femtosecond phase-transition in hard x-ray excited bismuth. Sci Rep 2019; 9:602. [PMID: 30679456 PMCID: PMC6345934 DOI: 10.1038/s41598-018-36216-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 11/14/2018] [Indexed: 11/26/2022] Open
Abstract
The evolution of bismuth crystal structure upon excitation of its A1g phonon has been intensely studied with short pulse optical lasers. Here we present the first-time observation of a hard x-ray induced ultrafast phase transition in a bismuth single crystal at high intensities (~1014 W/cm2). The lattice evolution was followed using a recently demonstrated x-ray single-shot probing setup. The time evolution of the (111) Bragg peak intensity showed strong dependence on the excitation fluence. After exposure to a sufficiently intense x-ray pulse, the peak intensity dropped to zero within 300 fs, i.e. faster than one oscillation period of the A1g mode at room temperature. Our analysis indicates a nonthermal origin of a lattice disordering process, and excludes interpretations based on electron-ion equilibration process, or on thermodynamic heating process leading to plasma formation.
Collapse
Affiliation(s)
- M Makita
- Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland.
| | - I Vartiainen
- Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland
| | - I Mohacsi
- Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland.,Synchrotron SOLEIL, L'Orme des Merisiers, 91190, Saint-Aubin, France
| | - C Caleman
- CFEL, Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany.,Department of Physics and Astronomy, Uppsala University, SE-751 24, Uppsala, Sweden
| | - A Diaz
- Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland
| | - H O Jönsson
- Department of Physics and Astronomy, Uppsala University, SE-751 24, Uppsala, Sweden.,Department of Applied physics, KTH Royal Institute of Technology, SE-106 91, Stockholm, Sweden
| | - P Juranić
- Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland
| | - N Medvedev
- Institute of Physics, Czech Academy of Sciences, 182 21, Prague 8, Czech Republic.,Institute of Plasma Physics, Czech Academy of Sciences, 182 00, Prague 8, Czech Republic
| | - A Meents
- CFEL, Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany
| | - A Mozzanica
- Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland
| | - N L Opara
- Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland.,C-CINA Biozentrum, University of Basel, CH-4058, Basel, Switzerland
| | - C Padeste
- Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland
| | - V Panneels
- Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland
| | - V Saxena
- CFEL, Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany.,Institute for Plasma Research, Bhat, Gandhinagar, 382428, India
| | - M Sikorski
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
| | - S Song
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
| | - L Vera
- Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland
| | - P R Willmott
- Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland
| | - P Beaud
- Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland
| | - C J Milne
- Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland
| | - B Ziaja-Motyka
- CFEL, Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany.,Institute of Nuclear Physics, Polish Academy of Sciences, 31-342, Krakow, Poland
| | - C David
- Paul Scherrer Institut, CH-5232, Villigen PSI, Switzerland
| |
Collapse
|
7
|
Sjakste J, Tanimura K, Barbarino G, Perfetti L, Vast N. Hot electron relaxation dynamics in semiconductors: assessing the strength of the electron-phonon coupling from the theoretical and experimental viewpoints. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:353001. [PMID: 30084390 DOI: 10.1088/1361-648x/aad487] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The rapid development of the computational methods based on density functional theory, on the one hand, and of time-, energy-, and momentum-resolved spectroscopy, on the other hand, allows today an unprecedently detailed insight into the processes governing hot-electron relaxation dynamics, and, in particular, into the role of the electron-phonon coupling. Instead of focusing on the development of a particular method, theoretical or experimental, this review aims to treat the progress in the understanding of the electron-phonon coupling which can be gained from both, on the basis of recently obtained results. We start by defining several regimes of hot electron relaxation via electron-phonon coupling, with respect to the electron excitation energy. We distinguish between energy and momentum relaxation of hot electrons, and summarize, for several semiconductors of the IV and III-V groups, the orders of magnitude of different relaxation times in different regimes, on the basis of known experimental and numerical data. Momentum relaxation times of hot electrons become very short around 1 eV above the bottom of the conduction band, and such ultrafast relaxation mechanisms are measurable only in the most recent pump-probe experiments. Then, we give an overview of the recent progress in the experimental techniques allowing to obtain detailed information on the hot-electron relaxation dynamics, with the main focus on time-, energy-, and momentum-resolved photoemission experiments. The particularities of the experimental approach developed by one of us, which allows to capture time-, energy-, and momentum-resolved hot-electron distributions, as well as to measure momentum relaxation times of the order of 10 fs, are discussed. We further discuss the main advances in the calculation of the electron-phonon scattering times from first principles over the past ten years, in semiconducting materials. Ab initio techniques and efficient interpolation methods provide the possibility to calculate electron-phonon scattering times with high precision at reasonable numerical cost. We highlight the methods of analysis of the obtained numerical results, which allow to give insight into the details of the electron-phonon scattering mechanisms. Finally, we discuss the concept of hot electron ensemble which has been proposed recently to describe the hot-electron relaxation dynamics in GaAs, the applicability of this concept to other materials, and its limitations. We also mention some open problems.
Collapse
Affiliation(s)
- J Sjakste
- Laboratoire des Solides Irradiés, Ecole Polytechnique, CEA-DRF-IRAMIS, CNRS UMR 7642, 91120 Palaiseau, France
| | | | | | | | | |
Collapse
|
8
|
Wang MC, Qiao S, Jiang Z, Luo SN, Qi J. Wang et al. Reply. PHYSICAL REVIEW LETTERS 2016; 117:169702. [PMID: 27792357 DOI: 10.1103/physrevlett.117.169702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Indexed: 06/06/2023]
Affiliation(s)
- M C Wang
- The Peac Institute of Multiscale Sciences, Sichuan 610031, China
- Key Laboratory of Advanced Technologies of Materials, Southwest Jiaotong University, Sichuan 610031, China
| | - S Qiao
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Z Jiang
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - S N Luo
- The Peac Institute of Multiscale Sciences, Sichuan 610031, China
- Key Laboratory of Advanced Technologies of Materials, Southwest Jiaotong University, Sichuan 610031, China
| | - J Qi
- The Peac Institute of Multiscale Sciences, Sichuan 610031, China
- Key Laboratory of Advanced Technologies of Materials, Southwest Jiaotong University, Sichuan 610031, China
| |
Collapse
|
9
|
Makino K, Saito Y, Fons P, Kolobov AV, Nakano T, Tominaga J, Hase M. Anisotropic lattice response induced by a linearly-polarized femtosecond optical pulse excitation in interfacial phase change memory material. Sci Rep 2016; 6:19758. [PMID: 26805401 PMCID: PMC4726132 DOI: 10.1038/srep19758] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/17/2015] [Indexed: 11/29/2022] Open
Abstract
Optical excitation of matter with linearly-polarized femtosecond pulses creates a transient non-equilibrium lattice displacement along a certain direction. Here, the pump and probe pulse polarization dependence of the photo-induced ultrafast lattice dynamics in (GeTe)2/(Sb2Te3)4 interfacial phase change memory material is investigated under obliquely incident conditions. Drastic pump polarization dependence of the coherent phonon amplitude is observed when the probe polarization angle is parallel to the c–axis of the sample, while the pump polarization dependence is negligible when the probe polarization angle is perpendicular to the c–axis. The enhancement of phonon oscillation amplitude due to pump polarization rotation for a specific probe polarization angle is only found in the early time stage (≤2 ps). These results indicate that the origin of the pump and probe polarization dependence is dominantly attributable to the anisotropically-formed photo-excited carriers which cause the directional lattice dynamics.
Collapse
Affiliation(s)
- Kotaro Makino
- Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan.,CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Yuta Saito
- Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan.,CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Paul Fons
- Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan.,CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Alexander V Kolobov
- Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan.,CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Takashi Nakano
- Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan.,CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Junji Tominaga
- Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Japan.,CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Muneaki Hase
- CREST, JST, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.,Division of Applied Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, Japan
| |
Collapse
|