1
|
Billard J, Boulay M, Cebrián S, Covi L, Fiorillo G, Green A, Kopp J, Majorovits B, Palladino K, Petricca F, Roszkowski Chair L, Schumann M. Direct detection of dark matter-APPEC committee report. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:056201. [PMID: 35193133 DOI: 10.1088/1361-6633/ac5754] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
This report provides an extensive review of the experimental programme of direct detection searches of particle dark matter. It focuses mostly on European efforts, both current and planned, but does it within a broader context of a worldwide activity in the field. It aims at identifying the virtues, opportunities and challenges associated with the different experimental approaches and search techniques. It presents scientific and technological synergies, both existing and emerging, with some other areas of particle physics, notably collider and neutrino programmes, and beyond. It addresses the issue of infrastructure in light of the growing needs and challenges of the different experimental searches. Finally, the report makes a number of recommendations from the perspective of a long-term future of the field. They are introduced, along with some justification, in the opening overview and recommendations section and are next summarised at the end of the report. Overall, we recommend that the direct search for dark matter particle interactions with a detector target should be given top priority in astroparticle physics, and in all particle physics, and beyond, as a positive measurement will provide the most unambiguous confirmation of the particle nature of dark matter in the Universe.
Collapse
Affiliation(s)
- Julien Billard
- Univ Lyon, Université Lyon 1, CNRS/IN2P3, IP2I-Lyon, F-69622, Villeurbanne, France
| | - Mark Boulay
- Department of Physics, Carleton University, Ottawa, Canada
| | - Susana Cebrián
- Centro de Astropartículas y Física de Altas Energías, Universidad de Zaragoza, Zaragoza, Spain
| | - Laura Covi
- Institute for Theoretical Physics, Georg-August University, Goettingen, Germany
| | - Giuliana Fiorillo
- Physics Department, Università degli Studi 'Federico II' di Napoli and INFN Napoli, Naples, Italy
| | - Anne Green
- School of Physics and Astronomy, University of Nottingham, Nottingham, United Kingdom
| | - Joachim Kopp
- CERN, Geneva, Switzerland and Johannes Gutenberg University, Mainz, Germany
| | | | - Kimberly Palladino
- Department of Physics, University of Wisconsin-Madison, Madison, WI, United States of America
- Department of Physics, Oxford University, Oxford, United Kingdom
| | | | - Leszek Roszkowski Chair
- Astrocent, Nicolaus Copernicus Astronomical Center PAS, Warsaw, Poland
- National Centre for Nuclear Research, Warsaw, Poland
| | - Marc Schumann
- Institute of Physics, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Abstract
In the past years, a systematic downward revision of the metallicity of the Sun has led to the “solar modeling problem”, namely the disagreement between predictions of standard solar models and inferences from helioseismology. Recent solar wind measurements of the metallicity of the Sun, however, provide once more an indication of a high-metallicity Sun. Because of the effects of possible residual fractionation, the derived value of the metallicity Z ⊙ = 0 . 0196 ± 0 . 0014 actually represents a lower limit to the true metallicity of the Sun. However, when compared with helioseismological measurements, solar models computed using these new abundances fail to restore agreement, owing to the implausibly high abundance of refractory (Mg, Si, S, Fe) elements, which correlates with a higher core temperature and hence an overproduction of solar neutrinos. Moreover, the robustness of these measurements is challenged by possible first ionization potential fractionation processes. I will discuss these solar wind measurements, which leave the “solar modeling problem” unsolved.
Collapse
|
5
|
Angloher G, Bento A, Bucci C, Canonica L, Defay X, Erb A, Feilitzsch FV, Ferreiro Iachellini N, Gorla P, Gütlein A, Hauff D, Jochum J, Kiefer M, Kluck H, Kraus H, Lanfranchi JC, Loebell J, Münster A, Pagliarone C, Petricca F, Potzel W, Pröbst F, Reindl F, Schäffner K, Schieck J, Schönert S, Seidel W, Stodolsky L, Strandhagen C, Strauss R, Tanzke A, Trinh Thi HH, Türkoğlu C, Uffinger M, Ulrich A, Usherov I, Wawoczny S, Willers M, Wüstrich M, Zöller A. Limits on Momentum-Dependent Asymmetric Dark Matter with CRESST-II. PHYSICAL REVIEW LETTERS 2016; 117:021303. [PMID: 27447498 DOI: 10.1103/physrevlett.117.021303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Indexed: 06/06/2023]
Abstract
The usual assumption in direct dark matter searches is to consider only the spin-dependent or spin-independent scattering of dark matter particles. However, especially in models with light dark matter particles O(GeV/c^{2}), operators which carry additional powers of the momentum transfer q^{2} can become dominant. One such model based on asymmetric dark matter has been invoked to overcome discrepancies in helioseismology and an indication was found for a particle with a preferred mass of 3 GeV/c^{2} and a cross section of 10^{-37} cm^{2}. Recent data from the CRESST-II experiment, which uses cryogenic detectors based on CaWO_{4} to search for nuclear recoils induced by dark matter particles, are used to constrain these momentum-dependent models. The low energy threshold of 307 eV for nuclear recoils of the detector used, allows us to rule out the proposed best fit value above.
Collapse
Affiliation(s)
- G Angloher
- Max-Planck-Institut für Physik, D-80805 München, Germany
| | - A Bento
- Departamento de Fisica, Universidade de Coimbra, P3004 516 Coimbra, Portugal
| | - C Bucci
- INFN, Laboratori Nazionali del Gran Sasso, I-67010 Assergi, Italy
| | - L Canonica
- INFN, Laboratori Nazionali del Gran Sasso, I-67010 Assergi, Italy
| | - X Defay
- Physik-Department and Excellence Cluster Universe, Technische Universität München, D-85747 Garching, Germany
| | - A Erb
- Physik-Department and Excellence Cluster Universe, Technische Universität München, D-85747 Garching, Germany
- Walther-Meißner-Institut für Tieftemperaturforschung, D-85748 Garching, Germany
| | - F V Feilitzsch
- Physik-Department and Excellence Cluster Universe, Technische Universität München, D-85747 Garching, Germany
| | | | - P Gorla
- INFN, Laboratori Nazionali del Gran Sasso, I-67010 Assergi, Italy
| | - A Gütlein
- Institut für Hochenergiephysik der Österreichischen Akademie der Wissenschaften, A-1050 Wien, Austria and Atominstitut, Vienna University of Technology, A-1020 Wien, Austria
| | - D Hauff
- Max-Planck-Institut für Physik, D-80805 München, Germany
| | - J Jochum
- Eberhard-Karls-Universität Tübingen, D-72076 Tübingen, Germany
| | - M Kiefer
- Max-Planck-Institut für Physik, D-80805 München, Germany
| | - H Kluck
- Institut für Hochenergiephysik der Österreichischen Akademie der Wissenschaften, A-1050 Wien, Austria and Atominstitut, Vienna University of Technology, A-1020 Wien, Austria
| | - H Kraus
- Department of Physics, University of Oxford, Oxford OX1 3RH, United Kingdom
| | - J-C Lanfranchi
- Physik-Department and Excellence Cluster Universe, Technische Universität München, D-85747 Garching, Germany
| | - J Loebell
- Eberhard-Karls-Universität Tübingen, D-72076 Tübingen, Germany
| | - A Münster
- Physik-Department and Excellence Cluster Universe, Technische Universität München, D-85747 Garching, Germany
| | - C Pagliarone
- INFN, Laboratori Nazionali del Gran Sasso, I-67010 Assergi, Italy
| | - F Petricca
- Max-Planck-Institut für Physik, D-80805 München, Germany
| | - W Potzel
- Physik-Department and Excellence Cluster Universe, Technische Universität München, D-85747 Garching, Germany
| | - F Pröbst
- Max-Planck-Institut für Physik, D-80805 München, Germany
| | - F Reindl
- Max-Planck-Institut für Physik, D-80805 München, Germany
| | - K Schäffner
- INFN, Laboratori Nazionali del Gran Sasso, I-67010 Assergi, Italy
| | - J Schieck
- Institut für Hochenergiephysik der Österreichischen Akademie der Wissenschaften, A-1050 Wien, Austria and Atominstitut, Vienna University of Technology, A-1020 Wien, Austria
| | - S Schönert
- Physik-Department and Excellence Cluster Universe, Technische Universität München, D-85747 Garching, Germany
| | - W Seidel
- Max-Planck-Institut für Physik, D-80805 München, Germany
| | - L Stodolsky
- Max-Planck-Institut für Physik, D-80805 München, Germany
| | - C Strandhagen
- Eberhard-Karls-Universität Tübingen, D-72076 Tübingen, Germany
| | - R Strauss
- Max-Planck-Institut für Physik, D-80805 München, Germany
| | - A Tanzke
- Max-Planck-Institut für Physik, D-80805 München, Germany
| | - H H Trinh Thi
- Physik-Department and Excellence Cluster Universe, Technische Universität München, D-85747 Garching, Germany
| | - C Türkoğlu
- Institut für Hochenergiephysik der Österreichischen Akademie der Wissenschaften, A-1050 Wien, Austria and Atominstitut, Vienna University of Technology, A-1020 Wien, Austria
| | - M Uffinger
- Eberhard-Karls-Universität Tübingen, D-72076 Tübingen, Germany
| | - A Ulrich
- Physik-Department and Excellence Cluster Universe, Technische Universität München, D-85747 Garching, Germany
| | - I Usherov
- Eberhard-Karls-Universität Tübingen, D-72076 Tübingen, Germany
| | - S Wawoczny
- Physik-Department and Excellence Cluster Universe, Technische Universität München, D-85747 Garching, Germany
| | - M Willers
- Physik-Department and Excellence Cluster Universe, Technische Universität München, D-85747 Garching, Germany
| | - M Wüstrich
- Max-Planck-Institut für Physik, D-80805 München, Germany
| | - A Zöller
- Physik-Department and Excellence Cluster Universe, Technische Universität München, D-85747 Garching, Germany
| |
Collapse
|
6
|
Bramante J. Dark Matter Ignition of Type Ia Supernovae. PHYSICAL REVIEW LETTERS 2015; 115:141301. [PMID: 26551803 DOI: 10.1103/physrevlett.115.141301] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Indexed: 06/05/2023]
Abstract
Recent studies of low redshift type Ia supernovae (SN Ia) indicate that half explode from less than Chandrasekhar mass white dwarfs, implying ignition must proceed from something besides the canonical criticality of Chandrasekhar mass SN Ia progenitors. We show that 1-100 PeV mass asymmetric dark matter, with imminently detectable nucleon scattering interactions, can accumulate to the point of self-gravitation in a white dwarf and collapse, shedding gravitational potential energy by scattering off nuclei, thereby heating the white dwarf and igniting the flame front that precedes SN Ia. We combine data on SN Ia masses with data on the ages of SN Ia-adjacent stars. This combination reveals a 2.8σ inverse correlation between SN Ia masses and ignition ages, which could result from increased capture of dark matter in 1.4 vs 1.1 solar mass white dwarfs. Future studies of SN Ia in galactic centers will provide additional tests of dark-matter-induced type Ia ignition. Remarkably, both bosonic and fermionic SN Ia-igniting dark matter also resolve the missing pulsar problem by forming black holes in ≳10 Myr old pulsars at the center of the Milky Way.
Collapse
Affiliation(s)
- Joseph Bramante
- Department of Physics, University of Notre Dame, 225 Nieuwland Hall, Notre Dame, Indiana 46556, USA
| |
Collapse
|