1
|
Xiong G, Zhang Y, Schulz C, Tse SD. Molecular Emissions from Stretched Excitation Pulse in Nanosecond Phase-Selective Laser-Induced Breakdown Spectroscopy of TiO 2 Nanoaerosols. APPLIED SPECTROSCOPY 2022; 76:569-579. [PMID: 35081776 DOI: 10.1177/00037028211072583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In phase-selective laser-induced breakdown spectroscopy (PS-LIBS), gas-borne nanoparticles are irradiated with laser pulses (∼2.4 GW/cm2) resulting in breakdown of the nanoparticle phase but not the surrounding gas phase. In this work, the effect of excitation laser-pulse duration and energy on the intensity and duration of TiO2-nanoparticle PS-LIBS emission signal is investigated. Laser pulses from a frequency-doubled neodymium-doped yttrium aluminum garnet (Nd:YAG) laser (532 nm) are stretched from 8 ns (full width at half maximum, FWHM) up to ∼30 ns at fixed pulse energy using combinations of two optical cavities. The intensity of the titanium atomic emissions at around 500 nm wavelength increases by ∼60%, with the stretched pulse and emissions at around 482 nm, attributed to TiO, enhanced over 10 times. While the atomic emissions rise with the stretched laser pulse and decay around 20 ns after the end of the laser pulse, the TiO emissions reach their peak intensity at about 20 ns later and last longer. At low laser energy (i.e., 1 mJ/pulse, or 80 MW/cm2), the TiO emissions dominate, but their increase with laser energy is lower compared to the atomic emissions. The origin of the 482 nm emission is explored by examining several different aerosol setups, including Ti-O, Ti-N, and Ti-O-N from a spark particle generator and Ti-O-N-C-H aerosol from flame synthesis. The 482 nm emissions are attributed to electronically excited TiO, likely resulting from the reaction of excited titanium atoms with surrounding oxidizing (carbonaceous and/or radical) species. The effects of pulse length are attributed to the shift of absorption from the initial interaction with the particle to the prolonged interaction with the plasma through inverse bremsstrahlung.
Collapse
Affiliation(s)
- Gang Xiong
- Department of Mechanical and Aerospace Engineering, 242612Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Yuqian Zhang
- Department of Mechanical and Aerospace Engineering, 242612Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Christof Schulz
- IVG, Institute for Combustion and Gas Dynamics - Reactive Fluids and CENIDE, Center for Nanointegration Duisburg-Essen, 27170University of Duisburg-Essen, Duisburg, Germany
| | - Stephen D Tse
- Department of Mechanical and Aerospace Engineering, 242612Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
2
|
Sipkens TA, Menser J, Dreier T, Schulz C, Smallwood GJ, Daun KJ. Laser-induced incandescence for non-soot nanoparticles: recent trends and current challenges. APPLIED PHYSICS. B, LASERS AND OPTICS 2022; 128:72. [PMID: 35308124 PMCID: PMC8921179 DOI: 10.1007/s00340-022-07769-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Laser-induced incandescence (LII) is a widely used combustion diagnostic for in situ measurements of soot primary particle sizes and volume fractions in flames, exhaust gases, and the atmosphere. Increasingly, however, it is applied to characterize engineered nanomaterials, driven by the increasing industrial relevance of these materials and the fundamental scientific insights that may be obtained from these measurements. This review describes the state of the art as well as open research challenges and new opportunities that arise from LII measurements on non-soot nanoparticles. An overview of the basic LII model, along with statistical techniques for inferring quantities-of-interest and associated uncertainties is provided, with a review of the application of LII to various classes of materials, including elemental particles, oxide and nitride materials, and non-soot carbonaceous materials, and core-shell particles. The paper concludes with a discussion of combined and complementary diagnostics, and an outlook of future research.
Collapse
Affiliation(s)
- Timothy A. Sipkens
- Metrology Research Centre, National Research Council Canada, Ottawa, K1K 2E1 Canada
| | - Jan Menser
- IVG, Institute for Combustion and Gas Dynamics – Reactive Fluids, and CENIDE, Center for Nanointegration Duisburg Essen, University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Thomas Dreier
- IVG, Institute for Combustion and Gas Dynamics – Reactive Fluids, and CENIDE, Center for Nanointegration Duisburg Essen, University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Christof Schulz
- IVG, Institute for Combustion and Gas Dynamics – Reactive Fluids, and CENIDE, Center for Nanointegration Duisburg Essen, University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Gregory J. Smallwood
- Metrology Research Centre, National Research Council Canada, Ottawa, K1K 2E1 Canada
| | - Kyle J. Daun
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, N2L 3G1 Canada
| |
Collapse
|
3
|
Sipkens TA, Menser J, Dreier T, Schulz C, Smallwood GJ, Daun KJ. Laser-induced incandescence for non-soot nanoparticles: recent trends and current challenges. APPLIED PHYSICS. B, LASERS AND OPTICS 2022; 128:72. [PMID: 35308124 DOI: 10.1007/s00340-006-2260-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/24/2022] [Indexed: 05/23/2023]
Abstract
Laser-induced incandescence (LII) is a widely used combustion diagnostic for in situ measurements of soot primary particle sizes and volume fractions in flames, exhaust gases, and the atmosphere. Increasingly, however, it is applied to characterize engineered nanomaterials, driven by the increasing industrial relevance of these materials and the fundamental scientific insights that may be obtained from these measurements. This review describes the state of the art as well as open research challenges and new opportunities that arise from LII measurements on non-soot nanoparticles. An overview of the basic LII model, along with statistical techniques for inferring quantities-of-interest and associated uncertainties is provided, with a review of the application of LII to various classes of materials, including elemental particles, oxide and nitride materials, and non-soot carbonaceous materials, and core-shell particles. The paper concludes with a discussion of combined and complementary diagnostics, and an outlook of future research.
Collapse
Affiliation(s)
- Timothy A Sipkens
- Metrology Research Centre, National Research Council Canada, Ottawa, K1K 2E1 Canada
| | - Jan Menser
- IVG, Institute for Combustion and Gas Dynamics - Reactive Fluids, and CENIDE, Center for Nanointegration Duisburg Essen, University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Thomas Dreier
- IVG, Institute for Combustion and Gas Dynamics - Reactive Fluids, and CENIDE, Center for Nanointegration Duisburg Essen, University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Christof Schulz
- IVG, Institute for Combustion and Gas Dynamics - Reactive Fluids, and CENIDE, Center for Nanointegration Duisburg Essen, University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Gregory J Smallwood
- Metrology Research Centre, National Research Council Canada, Ottawa, K1K 2E1 Canada
| | - Kyle J Daun
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, N2L 3G1 Canada
| |
Collapse
|
4
|
Sipkens TA, Menser J, Dreier T, Schulz C, Smallwood GJ, Daun KJ. Laser-induced incandescence for non-soot nanoparticles: recent trends and current challenges. APPLIED PHYSICS. B, LASERS AND OPTICS 2022. [PMID: 35308124 DOI: 10.1007/s00340-016-6551-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Laser-induced incandescence (LII) is a widely used combustion diagnostic for in situ measurements of soot primary particle sizes and volume fractions in flames, exhaust gases, and the atmosphere. Increasingly, however, it is applied to characterize engineered nanomaterials, driven by the increasing industrial relevance of these materials and the fundamental scientific insights that may be obtained from these measurements. This review describes the state of the art as well as open research challenges and new opportunities that arise from LII measurements on non-soot nanoparticles. An overview of the basic LII model, along with statistical techniques for inferring quantities-of-interest and associated uncertainties is provided, with a review of the application of LII to various classes of materials, including elemental particles, oxide and nitride materials, and non-soot carbonaceous materials, and core-shell particles. The paper concludes with a discussion of combined and complementary diagnostics, and an outlook of future research.
Collapse
Affiliation(s)
- Timothy A Sipkens
- Metrology Research Centre, National Research Council Canada, Ottawa, K1K 2E1 Canada
| | - Jan Menser
- IVG, Institute for Combustion and Gas Dynamics - Reactive Fluids, and CENIDE, Center for Nanointegration Duisburg Essen, University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Thomas Dreier
- IVG, Institute for Combustion and Gas Dynamics - Reactive Fluids, and CENIDE, Center for Nanointegration Duisburg Essen, University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Christof Schulz
- IVG, Institute for Combustion and Gas Dynamics - Reactive Fluids, and CENIDE, Center for Nanointegration Duisburg Essen, University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Gregory J Smallwood
- Metrology Research Centre, National Research Council Canada, Ottawa, K1K 2E1 Canada
| | - Kyle J Daun
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, N2L 3G1 Canada
| |
Collapse
|
5
|
Huang Q, Huang Y, Tian A, Wang N, Sun T, Xu X. Thermal Stability of Nitrate-Based Form-Stable Thermal Storage Materials with In Situ Optical Monitoring. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qiao Huang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yun Huang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Aoxue Tian
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Nafeng Wang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Tong Sun
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xianggui Xu
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
6
|
Li X, Dong M, Zhang H, Li S, Shang Y. Effect of surface roughness on capillary force during particle-wall impaction under different humidity conditions. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.05.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
7
|
Kalb J, Weller F, Irmler L, Knittel V, Graus P, Boneberg J, Schmidt-Mende L. Position-controlled laser-induced creation of rutile TiO 2 nanostructures. NANOTECHNOLOGY 2019; 30:335302. [PMID: 30986780 DOI: 10.1088/1361-6528/ab1964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
For potential applications of nanostructures, control over their position is important. In this report, we introduce two continuous wave laser-based lithography techniques which allow texturing thin TiO2 films to create a fine rutile TiO2 structure on silicon via spatially confined oxidation or a solid-liquid-solid phase transition, for initial layers, we use titanium and anatase TiO2, respectively. A frequency-doubled Nd:YAG laser at a wavelength of 532 nm is employed for the lithography process and the samples are characterized with scanning electron microscopy. The local orientation of the created rutile crystals is determined by the spatial orientation of hydrothermally grown rutile TiO2 nanorods. Depending on the technique, we obtain either randomly aligned or highly ordered nanorod ensembles. An additional chemically inert SiO2 cover layer suppresses the chemical and electronic surface properties of TiO2 and is removed locally with the laser treatment. Hence, the resulting texture provides a specific topography and crystal structure as well as a high contrast of surface properties on a nanoscale, including the position-controlled growth of TiO2 nanorods.
Collapse
|