1
|
Khazali M, Lechner W. Scalable quantum processors empowered by the Fermi scattering of Rydberg electrons. COMMUNICATIONS PHYSICS 2023; 6:57. [PMID: 38665413 PMCID: PMC11041703 DOI: 10.1038/s42005-023-01174-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/16/2023] [Indexed: 04/28/2024]
Abstract
Quantum computing promises exponential speed-up compared to its classical counterpart. While the neutral atom processors are the pioneering platform in terms of scalability, the dipolar Rydberg gates impose the main bottlenecks on the scaling of these devices. This article presents an alternative scheme for neutral atom quantum processing, based on the Fermi scattering of a Rydberg electron from ground-state atoms in spin-dependent lattice geometries. Instead of relying on Rydberg pair-potentials, the interaction is controlled by engineering the electron cloud of a sole Rydberg atom. The present scheme addresses the scaling obstacles in Rydberg processors by exponentially suppressing the population of short-lived states and by operating in ultra-dense atomic lattices. The restoring forces in molecule type Rydberg-Fermi potential preserve the trapping over a long interaction period. Furthermore, the proposed scheme mitigates different competing infidelity criteria, eliminates unwanted cross-talks, and significantly suppresses the operation depth in running complicated quantum algorithms.
Collapse
Affiliation(s)
- Mohammadsadegh Khazali
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran, 19395-5531 Iran
- Department of Physics, University of Tehran, 14395-547 Tehran, Iran
| | - Wolfgang Lechner
- Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria
- Parity Quantum Computing GmbH, A-6020 Innsbruck, Austria
| |
Collapse
|
2
|
Lippe C, Klas T, Bender J, Mischke P, Niederprüm T, Ott H. Experimental realization of a 3D random hopping model. Nat Commun 2021; 12:6976. [PMID: 34848721 PMCID: PMC8632899 DOI: 10.1038/s41467-021-27243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 11/05/2021] [Indexed: 11/08/2022] Open
Abstract
Scientific advance is often driven by identifying conceptually simple models underlying complex phenomena. This process commonly ignores imperfections which, however, might give rise to non-trivial collective behavior. For example, already a small amount of disorder can dramatically change the transport properties of a system compared to the underlying simple model. While systems with disordered potentials were already studied in detail, experimental investigations on systems with disordered hopping are still in its infancy. To this end, we experimentally study a dipole-dipole-interacting three-dimensional Rydberg system and map it onto a simple XY model with random couplings by spectroscopic evidence. We discuss the localization-delocalization crossover emerging in the model and present experimental signatures of it. Our results demonstrate that Rydberg systems are a useful platform to study random hopping models with the ability to access the microscopic degrees of freedom. This will allow to study transport processes and localization phenomena in random hopping models with a high level of control.
Collapse
Affiliation(s)
- Carsten Lippe
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Tanita Klas
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Jana Bender
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Patrick Mischke
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Thomas Niederprüm
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Herwig Ott
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663, Kaiserslautern, Germany.
| |
Collapse
|
3
|
Hummel F, Eiles MT, Schmelcher P. Synthetic Dimension-Induced Conical Intersections in Rydberg Molecules. PHYSICAL REVIEW LETTERS 2021; 127:023003. [PMID: 34296913 DOI: 10.1103/physrevlett.127.023003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
We observe a series of conical intersections in the potential energy curves governing both the collision between a Rydberg atom and a ground-state atom and the structure of Rydberg molecules. By employing the electronic energy of the Rydberg atom as a synthetic dimension we circumvent the von Neumann-Wigner theorem. These conical intersections can occur when the Rydberg atom's quantum defect is similar in size to the electron-ground-state atom scattering phase shift divided by π, a condition satisfied in several commonly studied atomic species. The conical intersections have an observable consequence in the rate of ultracold l-changing collisions of the type Rb(nf)+Rb(5s)→Rb(nl>3)+Rb(5s). In the vicinity of a conical intersection, this rate is strongly suppressed, and the Rydberg atom becomes nearly transparent to the ground-state atom.
Collapse
Affiliation(s)
- Frederic Hummel
- Zentrum für Optische Quantentechnologien, Fachbereich Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Matthew T Eiles
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany
| | - Peter Schmelcher
- Zentrum für Optische Quantentechnologien, Fachbereich Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
4
|
Peper M, Deiglmayr J. Heteronuclear Long-Range Rydberg Molecules. PHYSICAL REVIEW LETTERS 2021; 126:013001. [PMID: 33480774 DOI: 10.1103/physrevlett.126.013001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
We present the formation of homonuclear Cs_{2}, K_{2}, and heteronuclear CsK long-range Rydberg molecules in a dual-species magneto-optical trap for ^{39}K and ^{133}Cs by one-photon UV photoassociation. The different ground-state-density dependence of homo- and heteronuclear photoassociation rates and the detection of stable molecular ions resulting from autoionization provide an unambiguous assignment. We perform bound-bound millimeter-wave spectroscopy of long-range Rydberg molecules to access molecular states not accessible by one-photon photoassociation. Calculations based on the most recent theoretical model and atomic parameters do not reproduce the full set of data from homo- and heteronuclear long-range Rydberg molecules consistently. This shows that photoassociation and millimeter-wave spectroscopy of heteronuclear long-range Rydberg molecules provide a benchmark for the development of theoretical models.
Collapse
Affiliation(s)
- Michael Peper
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Johannes Deiglmayr
- Laboratory of Physical Chemistry, ETH Zürich, 8093 Zürich, Switzerland
- Department of Physics and Geoscience, University of Leipzig, 04109 Leipzig, Germany
| |
Collapse
|
5
|
Thomas O, Lippe C, Eichert T, Ott H. Experimental realization of a Rydberg optical Feshbach resonance in a quantum many-body system. Nat Commun 2018; 9:2238. [PMID: 29884824 PMCID: PMC5993778 DOI: 10.1038/s41467-018-04684-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/10/2018] [Indexed: 11/08/2022] Open
Abstract
Feshbach resonances are a powerful tool to tune the interaction in an ultracold atomic gas. The commonly used magnetic Feshbach resonances are specific for each species and are restricted with respect to their temporal and spatial modulation. Optical Feshbach resonances are an alternative which can overcome this limitation. Here, we show that ultra-long-range Rydberg molecules can be used to implement an optical Feshbach resonance. Tuning the on-site interaction of a degenerate Bose gas in a 3D optical lattice, we demonstrate a similar performance compared to recent realizations of optical Feshbach resonances using intercombination transitions. Our results open up a class of optical Feshbach resonances with a plenitude of available lines for many atomic species and the possibility to further increase the performance by carefully selecting the underlying Rydberg state.
Collapse
Affiliation(s)
- O Thomas
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße 46, 67663, Kaiserslautern, Germany
- Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128, Mainz, Germany
| | - C Lippe
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße 46, 67663, Kaiserslautern, Germany
| | - T Eichert
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße 46, 67663, Kaiserslautern, Germany
| | - H Ott
- Department of Physics and Research Center OPTIMAS, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße 46, 67663, Kaiserslautern, Germany.
| |
Collapse
|
6
|
Wüster S. Quantum Zeno Suppression of Intramolecular Forces. PHYSICAL REVIEW LETTERS 2017; 119:013001. [PMID: 28731744 DOI: 10.1103/physrevlett.119.013001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Indexed: 06/07/2023]
Abstract
We show that Born-Oppenheimer surfaces can intrinsically decohere, implying loss of coherence among constituent electronic basis states. We consider the example of interatomic forces due to resonant dipole-dipole interactions within a dimer of highly excited Rydberg atoms, embedded in an ultracold gas. These forces rely on a coherent superposition of two-atom electronic states, which is destroyed by continuous monitoring of the dimer state through a detection scheme utilizing the background gas atoms. We show that this intrinsic decoherence of the molecular energy surface can gradually deteriorate a repulsive dimer state, causing a mixing of attractive and repulsive character. For sufficiently strong decoherence, a Zeno-like effect causes a complete cessation of interatomic forces. We finally show how short decohering pulses can controllably redistribute population between the different molecular energy surfaces.
Collapse
Affiliation(s)
- S Wüster
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany, Department of Physics, Bilkent University, 06800 Çankaya, Ankara, Turkey and Department of Physics, Indian Institute of Science Education and Research, Bhopal, Madhya Pradesh 462 023, India
| |
Collapse
|
7
|
Tresp C, Zimmer C, Mirgorodskiy I, Gorniaczyk H, Paris-Mandoki A, Hofferberth S. Single-Photon Absorber Based on Strongly Interacting Rydberg Atoms. PHYSICAL REVIEW LETTERS 2016; 117:223001. [PMID: 27925746 DOI: 10.1103/physrevlett.117.223001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Indexed: 06/06/2023]
Abstract
We report on the realization of a free-space single-photon absorber, which deterministically absorbs exactly one photon from an input pulse. Our scheme is based on the saturation of an optically thick medium by a single photon due to Rydberg blockade. By converting one absorbed input photon into a stationary Rydberg excitation, decoupled from the light field through fast engineered dephasing, we blockade the full atomic cloud and change our optical medium from opaque to transparent. We show that this results in the subtraction of one photon from the input pulse over a wide range of input photon numbers. We investigate the change of the pulse shape and temporal photon statistics of the transmitted light pulses for different input photon numbers and compare the results to simulations. Based on the experimental results, we discuss the applicability of our single-photon absorber for number resolved photon detection schemes or quantum gate operations.
Collapse
Affiliation(s)
- C Tresp
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - C Zimmer
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - I Mirgorodskiy
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - H Gorniaczyk
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - A Paris-Mandoki
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - S Hofferberth
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
8
|
Niederprüm T, Thomas O, Eichert T, Lippe C, Pérez-Ríos J, Greene CH, Ott H. Observation of pendular butterfly Rydberg molecules. Nat Commun 2016; 7:12820. [PMID: 27703143 PMCID: PMC5059458 DOI: 10.1038/ncomms12820] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 08/04/2016] [Indexed: 11/09/2022] Open
Abstract
Engineering molecules with a tunable bond length and defined quantum states lies at the heart of quantum chemistry. The unconventional binding mechanism of Rydberg molecules makes them a promising candidate to implement such tunable molecules. A very peculiar type of Rydberg molecules are the so-called butterfly molecules, which are bound by a shape resonance in the electron-perturber scattering. Here we report the observation of these exotic molecules and employ their exceptional properties to engineer their bond length, vibrational state, angular momentum and orientation in a small electric field. Combining the variable bond length with their giant dipole moment of several hundred Debye, we observe counter-intuitive molecules which locate the average electron position beyond the internuclear distance.
Collapse
Affiliation(s)
- Thomas Niederprüm
- Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Oliver Thomas
- Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
- Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz, Germany
| | - Tanita Eichert
- Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Carsten Lippe
- Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Jesús Pérez-Ríos
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Chris H. Greene
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
| | - Herwig Ott
- Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| |
Collapse
|
9
|
Niederprüm T, Thomas O, Eichert T, Ott H. Rydberg Molecule-Induced Remote Spin Flips. PHYSICAL REVIEW LETTERS 2016; 117:123002. [PMID: 27689268 DOI: 10.1103/physrevlett.117.123002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Indexed: 06/06/2023]
Abstract
We have performed high resolution photoassociation spectroscopy of rubidium ultralong-range Rydberg molecules in the vicinity of the 25P state. Because of the hyperfine interaction in the ground state perturber atom, the emerging mixed singlet-triplet potentials contain contributions from both hyperfine states. We show that this can be used to induce remote spin flips in the perturber atom upon excitation of a Rydberg molecule. Furthermore, when the spin-orbit splitting of the Rydberg state is comparable to the hyperfine splitting in the ground state, the orbital angular momentum of the Rydberg electron is entangled with the nuclear spin of the perturber atom. Our results open new possibilities for the implementation of spin-dependent interactions for ultracold atoms in bulk systems and in optical lattices.
Collapse
Affiliation(s)
- Thomas Niederprüm
- Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Oliver Thomas
- Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
- Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz, Germany
| | - Tanita Eichert
- Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Herwig Ott
- Research Center OPTIMAS, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| |
Collapse
|
10
|
Schlagmüller M, Liebisch TC, Nguyen H, Lochead G, Engel F, Böttcher F, Westphal KM, Kleinbach KS, Löw R, Hofferberth S, Pfau T, Pérez-Ríos J, Greene CH. Probing an Electron Scattering Resonance using Rydberg Molecules within a Dense and Ultracold Gas. PHYSICAL REVIEW LETTERS 2016; 116:053001. [PMID: 26894707 DOI: 10.1103/physrevlett.116.053001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Indexed: 06/05/2023]
Abstract
We present spectroscopy of a single Rydberg atom excited within a Bose-Einstein condensate. We not only observe the density shift as discovered by Amaldi and Segrè in 1934, but a line shape that changes with the principal quantum number n. The line broadening depends precisely on the interaction potential energy curves of the Rydberg electron with the neutral atom perturbers. In particular, we show the relevance of the triplet p-wave shape resonance in the e^{-}-Rb(5S) scattering, which significantly modifies the interaction potential. With a peak density of 5.5×10^{14} cm^{-3}, and therefore an interparticle spacing of 1300 a_{0} within a Bose-Einstein condensate, the potential energy curves can be probed at these Rydberg ion-neutral atom separations. We present a simple microscopic model for the spectroscopic line shape by treating the atoms overlapped with the Rydberg orbit as zero-velocity, uncorrelated, pointlike particles, with binding energies associated with their ion-neutral separation, and good agreement is found.
Collapse
Affiliation(s)
- Michael Schlagmüller
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Tara Cubel Liebisch
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Huan Nguyen
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Graham Lochead
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Felix Engel
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Fabian Böttcher
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Karl M Westphal
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Kathrin S Kleinbach
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Robert Löw
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Sebastian Hofferberth
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Tilman Pfau
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Jesús Pérez-Ríos
- Department of Physics and Astronomy, Purdue University, 47907 West Lafayette, Indiana, USA
| | - Chris H Greene
- Department of Physics and Astronomy, Purdue University, 47907 West Lafayette, Indiana, USA
| |
Collapse
|