1
|
Chen YT, Szurek M, Hu B, de Hond J, Braverman B, Vuletic V. High finesse bow-tie cavity for strong atom-photon coupling in Rydberg arrays. OPTICS EXPRESS 2022; 30:37426-37435. [PMID: 36258331 DOI: 10.1364/oe.469644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
We report a high-finesse bow-tie cavity designed for atomic physics experiments with Rydberg atom arrays. The cavity has a finesse of 51,000 and a waist of 7.1 μm at the cesium D2 line (852 nm). With these parameters, the cavity is expected to induce strong coupling between a single atom and a single photon, corresponding to a cooperativity per traveling mode of 35 at the cavity waist. To trap and image atoms, the cavity setup utilizes two in-vacuum aspheric lenses with a numerical aperture (NA) of 0.35 and is capable of housing NA = 0.5 microscope objectives. In addition, the large atom-mirror distance (≳1.5 cm) provides good optical access and minimizes stray electric fields at the position of the atoms. This cavity setup can operate in tandem with a Rydberg array platform, creating a fully connected system for quantum simulation and computation.
Collapse
|
2
|
Ðorđević T, Samutpraphoot P, Ocola PL, Bernien H, Grinkemeyer B, Dimitrova I, Vuletić V, Lukin MD. Entanglement transport and a nanophotonic interface for atoms in optical tweezers. Science 2021; 373:1511-1514. [PMID: 34385353 DOI: 10.1126/science.abi9917] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The realization of an efficient quantum optical interface for multi-qubit systems is an outstanding challenge in science and engineering. Using two atoms in individually-controlled optical tweezers coupled to a nanofabricated photonic crystal cavity, we demonstrate entanglement generation, fast non-destructive readout, and full quantum control of atomic qubits. The entangled state is verified in free space after being transported away from the cavity by encoding the qubits into long-lived states and using dynamical decoupling. Our approach bridges quantum operations at an optical link and in free space by a coherent one-way transport, potentially enabling an integrated optical interface for atomic quantum processors.
Collapse
Affiliation(s)
- Tamara Ðorđević
- Department of Physics, Harvard University, Cambridge, MA 02138, USA.,Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Polnop Samutpraphoot
- Department of Physics, Harvard University, Cambridge, MA 02138, USA.,Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Paloma L Ocola
- Department of Physics, Harvard University, Cambridge, MA 02138, USA.,Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Hannes Bernien
- Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Brandon Grinkemeyer
- Department of Physics, Harvard University, Cambridge, MA 02138, USA.,Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Ivana Dimitrova
- Department of Physics, Harvard University, Cambridge, MA 02138, USA.,Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Vladan Vuletić
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.,Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mikhail D Lukin
- Department of Physics, Harvard University, Cambridge, MA 02138, USA. .,Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
3
|
Duan Y, Hosseini M, Beck KM, Vuletić V. Heralded Interaction Control between Quantum Systems. PHYSICAL REVIEW LETTERS 2020; 124:223602. [PMID: 32567901 DOI: 10.1103/physrevlett.124.223602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Quantum mechanical expectation values for subsets can differ substantially from those for the whole ensemble. This implies that the effect of interactions between two systems can be altered substantially by conditioning. Here, we experimentally demonstrate that, for two light fields ψ_{S} (signal) and ψ_{A} (ancilla) that have only weakly interacted with one another, subsequent measurements on the ancilla can produce substantial conditional amplification, attenuation, or phase shift of ψ_{S}. We observe conditional signal power changes over a large range of 30, and phase shift up to π/2, induced by measurements in ancilla bases that differ only slightly from one another. The method is generically applicable to a variety of systems, and allows one to modify or boost a given interaction by trading in success probability for interaction strength.
Collapse
Affiliation(s)
- Yiheng Duan
- Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Mahdi Hosseini
- Birck Nanotechnology Center, School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | | | - Vladan Vuletić
- Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
4
|
Davis EJ, Wang Z, Safavi-Naeini AH, Schleier-Smith MH. Painting Nonclassical States of Spin or Motion with Shaped Single Photons. PHYSICAL REVIEW LETTERS 2018; 121:123602. [PMID: 30296158 DOI: 10.1103/physrevlett.121.123602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Indexed: 06/08/2023]
Abstract
We propose a robust scheme for generating macroscopic superposition states of spin or motion with the aid of a single photon. Shaping the wave packet of the photon enables high-fidelity preparation of nonclassical states of matter even in the presence of photon loss. Success is heralded by photodetection, enabling the scheme to be implemented with a weak coherent field. We analyze applications to preparing Schrödinger cat states of a collective atomic spin or of a mechanical oscillator coupled to an optical resonator. The method generalizes to preparing arbitrary superpositions of coherent states, enabling full quantum control. We illustrate this versatility by showing how to prepare Dicke or Fock states, as well as superpositions in the Dicke or Fock basis.
Collapse
Affiliation(s)
- Emily J Davis
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Zhaoyou Wang
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Amir H Safavi-Naeini
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
5
|
Li SC, Dou FQ, Fu LB. Ramsey interferometry of a bosonic Josephson junction in an optical cavity. OPTICS LETTERS 2017; 42:3952-3955. [PMID: 28957169 DOI: 10.1364/ol.42.003952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
We investigate the nonlinear Ramsey interferometry of a bosonic Josephson junction coupled to an optical cavity by applying two identical pumping field pulses separated by a holding field in the time domain. When the holding field is absent, we show that the atomic Ramsey fringes are sensitive to both the cavity-pump detuning and the initial state, and their periods can encode the information on both the atom-field coupling and the atom-atom interaction. For a weak holding field, we find that the fringes characterized by the oscillation of the intra-cavity photon number can completely reflect the frequency information of the atomic interference due to the weak atom-cavity coupling. This finding allows a nondestructive observation of the atomic Ramsey fringes via the cavity transmission spectra.
Collapse
|
6
|
Welte S, Hacker B, Daiss S, Ritter S, Rempe G. Cavity Carving of Atomic Bell States. PHYSICAL REVIEW LETTERS 2017; 118:210503. [PMID: 28598645 DOI: 10.1103/physrevlett.118.210503] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Indexed: 06/07/2023]
Abstract
We demonstrate entanglement generation of two neutral atoms trapped inside an optical cavity. Entanglement is created from initially separable two-atom states through carving with weak photon pulses reflected from the cavity. A polarization rotation of the photons heralds the entanglement. We show the successful implementation of two different protocols and the generation of all four Bell states with a maximum fidelity of (90±2)%. The protocol works for any distance between cavity-coupled atoms, and no individual addressing is required. Our result constitutes an important step towards applications in quantum networks, e.g., for entanglement swapping in a quantum repeater.
Collapse
Affiliation(s)
- Stephan Welte
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany
| | - Bastian Hacker
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany
| | - Severin Daiss
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany
| | - Stephan Ritter
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany
| | - Gerhard Rempe
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany
| |
Collapse
|