1
|
Barbieri M, Venditti I, Battocchio C, Berardi V, Bruni F, Gianani I. Observing thermal lensing with quantum light. OPTICS LETTERS 2024; 49:1257-1260. [PMID: 38426987 DOI: 10.1364/ol.513656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/04/2024] [Indexed: 03/02/2024]
Abstract
The introduction of quantum methods in spectroscopy can provide enhanced performance and technical advantages in the management of noise. We investigate the application of quantum illumination in a pump and probe experiment. Thermal lensing in a suspension of gold nanorods is explored using a classical beam as the pump and the emission from parametric downconversion as the probe. We obtain an insightful description of the behavior of the suspension under pumping with a method known to provide good noise rejection. Our findings are a further step toward investigating the effects of quantum light in complex plasmonic media.
Collapse
|
2
|
Xu L, Zhou M, Tao R, Zhong Z, Wang B, Cao Z, Xia H, Wang Q, Zhan H, Zhang A, Yu S, Xu N, Dong Y, Ren C, Zhang L. Resource-Efficient Direct Characterization of General Density Matrix. PHYSICAL REVIEW LETTERS 2024; 132:030201. [PMID: 38307054 DOI: 10.1103/physrevlett.132.030201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/27/2023] [Indexed: 02/04/2024]
Abstract
Sequential weak measurements allow for the direct extraction of individual density-matrix elements, rather than relying on global reconstruction of the entire density matrix, which opens a new avenue for the characterization of quantum systems. Nevertheless, extending the sequential scheme to multiqudit quantum systems is challenging due to the requirement of multiple coupling processes for each qudit and the lack of appropriate precision evaluation. To address these issues, we propose a resource-efficient scheme (RES) that directly characterizes the density matrix of general multiqudit systems while optimizing measurements and establishing a feasible estimation analysis. In the RES, an efficient observable of the quantum system is constructed such that a single meter state coupled to each qudit is sufficient to extract the corresponding density-matrix element. An appropriate model based on the statistical distribution of errors is utilized to evaluate the precision and feasibility of the scheme. We have experimentally applied the RES to the direct characterization of general single-photon qutrit states and two-photon entangled states. The results show that the RES outperforms sequential schemes in terms of efficiency and precision in both weak- and strong-coupling scenarios. This Letter sheds new light on the practical characterization of large-scale quantum systems and the investigation of their nonclassical properties.
Collapse
Affiliation(s)
- Liang Xu
- College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou, 310018, China
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Research Center for Quantum Sensing, Zhejiang Lab, Hangzhou 310000, China
| | - Mingti Zhou
- College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou, 310018, China
- Research Center for Quantum Sensing, Zhejiang Lab, Hangzhou 310000, China
| | - Runxia Tao
- College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou, 310018, China
- Research Center for Quantum Sensing, Zhejiang Lab, Hangzhou 310000, China
| | - Zhipeng Zhong
- Research Center for Quantum Sensing, Zhejiang Lab, Hangzhou 310000, China
| | - Ben Wang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Zhiyong Cao
- School of Electronic Control, Chang'an University, Xi'an 710064, China
| | - Hongkuan Xia
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Qianyi Wang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Hao Zhan
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Aonan Zhang
- Quantum Optics and Laser Science, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, United Kingdom
| | - Shang Yu
- Quantum Optics and Laser Science, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2AZ, United Kingdom
| | - Nanyang Xu
- Research Center for Quantum Sensing, Zhejiang Lab, Hangzhou 310000, China
| | - Ying Dong
- College of Metrology & Measurement Engineering, China Jiliang University, Hangzhou, 310018, China
- Research Center for Quantum Sensing, Zhejiang Lab, Hangzhou 310000, China
| | - Changliang Ren
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
| | - Lijian Zhang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
3
|
Qin D, Chen J, Lu N. A Novel Density of States (DOS) for Disordered Organic Semiconductors. MICROMACHINES 2023; 14:1361. [PMID: 37512673 PMCID: PMC10383803 DOI: 10.3390/mi14071361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023]
Abstract
In this work, we proposed a novel theory of DOS for disordered organic semiconductors based on the frontier orbital theory and probability statistics. The proposed DOS has been verified by comparing with other DOS alternatives and experimental data, and the mobility calculated by the proposed DOS is closer to experimental data than traditional DOS. Moreover, we also provide a detailed method to choose the DOS parameter for better use of the proposed DOS. This paper also contains a prediction for the DOS parameters, and it has been verified by the experimental data. More importantly, the physical meaning of the proposed DOS parameter has been explained by equilibrium energy theory and transport energy theory to make this proposed model more rational. Compared with the improved DOS based on Gaussian and exponential DOS, this work is a new attempt to combine probabilistic theory with physical theory related to DOS in disordered organic semiconductors, showing great significance for the further investigation of the properties of DOS.
Collapse
Affiliation(s)
- Dong Qin
- School of Information Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jiezhi Chen
- School of Information Science and Engineering, Shandong University, Qingdao 266237, China
| | - Nianduan Lu
- State Key Lab of Fabrication Technologies for Integrated Circuits & Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
4
|
Ho LB. No-go result for quantum postselection measurements of a rank-
m
degenerate subspace. PHYSICAL REVIEW A 2023; 107:042204. [DOI: 10.1103/physreva.107.042204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
5
|
Xu L, Xu H, Jiang T, Xu F, Zheng K, Wang B, Zhang A, Zhang L. Direct Characterization of Quantum Measurements Using Weak Values. PHYSICAL REVIEW LETTERS 2021; 127:180401. [PMID: 34767426 DOI: 10.1103/physrevlett.127.180401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/28/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
The time-symmetric formalism endows the weak measurement and its outcome, the weak value, with many unique features. In particular, it allows a direct tomography of quantum states without resorting to complicated reconstruction algorithms and provides an operational meaning to wave functions and density matrices. Here, we propose and experimentally demonstrate the direct tomography of a measurement apparatus by taking the backward direction of weak measurement formalism. Our protocol works rigorously with the arbitrary measurement strength, which offers improved accuracy and precision. The precision can be further improved by taking into account the completeness condition of the measurement operators, which also ensures the feasibility of our protocol for the characterization of the arbitrary quantum measurement. Our work provides new insight on the symmetry between quantum states and measurements, as well as an efficient method to characterize a measurement apparatus.
Collapse
Affiliation(s)
- Liang Xu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Research Center for Quantum Sensing, Zhejiang Lab, Hangzhou 310000, China
| | - Huichao Xu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Purple Mountain Laboratories, Nanjing, Jiangsu 211111, China
| | - Tao Jiang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Feixiang Xu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Kaimin Zheng
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Ben Wang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Aonan Zhang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Lijian Zhang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation, College of Engineering and Applied Sciences, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
6
|
Zhou Y, Zhao J, Hay D, McGonagle K, Boyd RW, Shi Z. Direct Tomography of High-Dimensional Density Matrices for General Quantum States of Photons. PHYSICAL REVIEW LETTERS 2021; 127:040402. [PMID: 34355938 DOI: 10.1103/physrevlett.127.040402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Quantum-state tomography is the conventional method used to characterize density matrices for general quantum states. However, the data acquisition time generally scales linearly with the dimension of the Hilbert space, hindering the possibility of dynamic monitoring of a high-dimensional quantum system. Here, we demonstrate a direct tomography protocol to measure density matrices of photons in the position basis through the use of a polarization-resolving camera, where the dimension of density matrices can be as large as 580×580 in our experiment. The use of the polarization-resolving camera enables parallel measurements in the position and polarization basis and as a result, the data acquisition time of our protocol does not increase with the dimension of the Hilbert space and is solely determined by the camera exposure time (on the order of 10 ms). Our method is potentially useful for the real-time monitoring of the dynamics of quantum states and paves the way for the development of high-dimensional, time-efficient quantum metrology techniques.
Collapse
Affiliation(s)
- Yiyu Zhou
- The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
| | - Jiapeng Zhao
- The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
| | - Darrick Hay
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| | - Kendrick McGonagle
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| | - Robert W Boyd
- The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Zhimin Shi
- Department of Physics, University of South Florida, Tampa, Florida 33620, USA
| |
Collapse
|
7
|
Chen MC, Li Y, Liu RZ, Wu D, Su ZE, Wang XL, Li L, Liu NL, Lu CY, Pan JW. Directly Measuring a Multiparticle Quantum Wave Function via Quantum Teleportation. PHYSICAL REVIEW LETTERS 2021; 127:030402. [PMID: 34328769 DOI: 10.1103/physrevlett.127.030402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
We propose a new method to directly measure a general multiparticle quantum wave function, a single matrix element in a multi-particle density matrix, by quantum teleportation. The density matrix element is embedded in a virtual logical qubit and is nondestructively teleported to a single physical qubit for readout. We experimentally implement this method to directly measure the wave function of a photonic mixed quantum state beyond a single photon using a single observable for the first time. Our method also provides an exponential advantage over the standard quantum state tomography in measurement complexity to fully characterize a sparse multiparticle quantum state.
Collapse
Affiliation(s)
- Ming-Cheng Chen
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China and CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuan Li
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China and CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Run-Ze Liu
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China and CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dian Wu
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China and CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zu-En Su
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China and CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xi-Lin Wang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China and CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Li Li
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China and CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Nai-Le Liu
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China and CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chao-Yang Lu
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China and CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian-Wei Pan
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China and CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
8
|
Ogawa K, Okazaki T, Kobayashi H, Nakanishi T, Tomita A. Direct measurement of ultrafast temporal wavefunctions. OPTICS EXPRESS 2021; 29:19403-19416. [PMID: 34266050 DOI: 10.1364/oe.423969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/30/2021] [Indexed: 06/13/2023]
Abstract
The large capacity and robustness of information encoding in the temporal mode of photons is important in quantum information processing, in which characterizing temporal quantum states with high usability and time resolution is essential. We propose and demonstrate a direct measurement method of temporal complex wavefunctions for weak light at a single-photon level with subpicosecond time resolution. Our direct measurement is realized by ultrafast metrology of the interference between the light under test and self-generated monochromatic reference light; no external reference light or complicated post-processing algorithms are required. Hence, this method is versatile and potentially widely applicable for temporal state characterization.
Collapse
|
9
|
Ho LB. Systematic errors in direct state measurements with quantum controlled measurements. JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS 2020; 53:115501. [DOI: 10.1088/1361-6455/ab7881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
10
|
Qu W, Jin S, Sun J, Jiang L, Wen J, Xiao Y. Sub-Hertz resonance by weak measurement. Nat Commun 2020; 11:1752. [PMID: 32273502 PMCID: PMC7145818 DOI: 10.1038/s41467-020-15557-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/16/2020] [Indexed: 11/08/2022] Open
Abstract
Weak measurement (WM) with state pre- and post-selection can amplify otherwise undetectable small signals and thus has potential in precision measurement applications. Although frequency measurements offer the hitherto highest precision due to the stable narrow atomic transitions, it remains a long-standing interest to develop new schemes to further escalate their performance. Here, we demonstrate a WM-enhanced correlation spectroscopy technique capable of narrowing the resonance linewidth down to 0.1 Hz in a room-temperature atomic vapour cell. The potential of this technique for precision measurement is demonstrated through weak magnetic-field sensing. By judiciously pre- and post-selecting frequency-modulated input and output optical states in a nearly orthogonal manner, a sensitivity of 7 fT Hz-1/2 at a low frequency near DC is achieved using only one laser beam with 15 µW of power. Additionally, our results extend the WM framework to a non-Hermitian Hamiltonian and shed new light on metrology and bio-magnetic field sensing.
Collapse
Affiliation(s)
- Weizhi Qu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China
| | - Shenchao Jin
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China
| | - Jian Sun
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China
| | - Liang Jiang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Jianming Wen
- Department of Physics, Kennesaw state University, Marietta, GA, 30060, USA.
| | - Yanhong Xiao
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, 200433, Shanghai, China.
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, 030006, Taiyuan, Shanxi, China.
| |
Collapse
|
11
|
Zhang S, Zhou Y, Mei Y, Liao K, Wen YL, Li J, Zhang XD, Du S, Yan H, Zhu SL. δ-Quench Measurement of a Pure Quantum-State Wave Function. PHYSICAL REVIEW LETTERS 2019; 123:190402. [PMID: 31765181 DOI: 10.1103/physrevlett.123.190402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Indexed: 06/10/2023]
Abstract
The measurement of a quantum state wave function not only acts as a fundamental part in quantum physics but also plays an important role in developing practical quantum technologies. Conventional quantum state tomography has been widely used to estimate quantum wave functions, which usually requires complicated measurement techniques. The recent weak-value-based quantum measurement circumvents this resource issue but relies on an extra pointer space. Here, we theoretically propose and then experimentally demonstrate a direct and efficient measurement strategy based on a δ-quench probe: by quenching its complex probability amplitude one by one (δ quench) in the given basis, we can directly obtain the quantum wave function of a pure ensemble by projecting the quenched state onto a postselection state. We confirm its power by experimentally measuring photonic complex temporal wave functions. This new method is versatile and can find applications in quantum information science and engineering.
Collapse
Affiliation(s)
- Shanchao Zhang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, GPETR Center for Quantum Precision Measurement and SPTE, South China Normal University, Guangzhou 510006, China
| | - Yiru Zhou
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, GPETR Center for Quantum Precision Measurement and SPTE, South China Normal University, Guangzhou 510006, China
| | - Yefeng Mei
- Department of Physics & William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong S.A.R., China
| | - Kaiyu Liao
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, GPETR Center for Quantum Precision Measurement and SPTE, South China Normal University, Guangzhou 510006, China
| | - Yong-Li Wen
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
| | - Jianfeng Li
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, GPETR Center for Quantum Precision Measurement and SPTE, South China Normal University, Guangzhou 510006, China
| | - Xin-Ding Zhang
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, GPETR Center for Quantum Precision Measurement and SPTE, South China Normal University, Guangzhou 510006, China
| | - Shengwang Du
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, GPETR Center for Quantum Precision Measurement and SPTE, South China Normal University, Guangzhou 510006, China
- Department of Physics & William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong S.A.R., China
| | - Hui Yan
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, GPETR Center for Quantum Precision Measurement and SPTE, South China Normal University, Guangzhou 510006, China
| | - Shi-Liang Zhu
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, GPETR Center for Quantum Precision Measurement and SPTE, South China Normal University, Guangzhou 510006, China
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
| |
Collapse
|
12
|
Pan WW, Xu XY, Kedem Y, Wang QQ, Chen Z, Jan M, Sun K, Xu JS, Han YJ, Li CF, Guo GC. Direct Measurement of a Nonlocal Entangled Quantum State. PHYSICAL REVIEW LETTERS 2019; 123:150402. [PMID: 31702297 DOI: 10.1103/physrevlett.123.150402] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/24/2019] [Indexed: 06/10/2023]
Abstract
Entanglement and the wave function description are two of the core concepts that make quantum mechanics such a unique theory. A method to directly measure the wave function, using weak values, was demonstrated by Lundeen et al. [Nature 474, 188 (2011)]. However, it is not applicable to a scenario of two disjoint systems, where nonlocal entanglement can be a crucial element, since that requires obtaining weak values of nonlocal observables. Here, for the first time, we propose a method to directly measure a nonlocal wave function of a bipartite system, using modular values. The method is experimentally implemented for a photon pair in a hyperentangled state, i.e., entangled both in polarization and momentum degrees of freedom.
Collapse
Affiliation(s)
- Wei-Wei Pan
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Xiao-Ye Xu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Yaron Kedem
- Department of Physics, Stockholm University, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Qin-Qin Wang
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Zhe Chen
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Munsif Jan
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Kai Sun
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Jin-Shi Xu
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Yong-Jian Han
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Chuan-Feng Li
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Guang-Can Guo
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, People's Republic of China
- Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, People's Republic of China
| |
Collapse
|
13
|
Chen JS, Hu MJ, Hu XM, Liu BH, Huang YF, Li CF, Guo CG, Zhang YS. Experimental realization of sequential weak measurements of non-commuting Pauli observables. OPTICS EXPRESS 2019; 27:6089-6097. [PMID: 30876202 DOI: 10.1364/oe.27.006089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
Sequential weak measurements of non-commuting observables are not only fundamentally interesting in terms of quantum measurement but also show potential in various applications. Previously reported methods, however, can only make limited sequential weak measurements experimentally. In this article, we propose the realization of sequential measurements of non-commuting Pauli observables and experimentally demonstrate for the first time the measurement of sequential weak values of three non-commuting Pauli observables using genuine single photons.
Collapse
|
14
|
Calderaro L, Foletto G, Dequal D, Villoresi P, Vallone G. Direct Reconstruction of the Quantum Density Matrix by Strong Measurements. PHYSICAL REVIEW LETTERS 2018; 121:230501. [PMID: 30576212 DOI: 10.1103/physrevlett.121.230501] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Indexed: 06/09/2023]
Abstract
New techniques based on weak measurements have recently been introduced to the field of quantum state reconstruction. Some of them allow the direct measurement of each matrix element of an unknown density operator and need only O(d) different operations, compared to d^{2} linearly independent projectors in the case of standard quantum state tomography, for the reconstruction of an arbitrary mixed state. However, due to the weakness of these couplings, these protocols are approximated and prone to large statistical errors. We propose a method which is similar to the weak measurement protocols but works regardless of the coupling strength: our protocol is not approximated and thus improves the accuracy and precision of the results with respect to weak measurement schemes. We experimentally apply it to the polarization state of single photons and compare the results to those of preexisting methods for different values of the coupling strength. Our results show that our method outperforms previous proposals in terms of accuracy and statistical errors.
Collapse
Affiliation(s)
- Luca Calderaro
- Dipartimento di Ingegneria dell'Informazione, Università di Padova, via Gradenigo 6B, 35131 Padova, Italy
- Centro di Ateneo di Studi e Attività Spaziali "Giuseppe Colombo", Università di Padova, via Venezia 15, 35131 Padova, Italy
| | - Giulio Foletto
- Dipartimento di Ingegneria dell'Informazione, Università di Padova, via Gradenigo 6B, 35131 Padova, Italy
| | - Daniele Dequal
- Matera Laser Ranging Observatory, Agenzia Spaziale Italiana, Matera 75100, Italy
| | - Paolo Villoresi
- Dipartimento di Ingegneria dell'Informazione, Università di Padova, via Gradenigo 6B, 35131 Padova, Italy
- Istituto di Fotonica e Nanotecnologie, CNR, via Trasea 7, 35131 Padova, Italy
| | - Giuseppe Vallone
- Dipartimento di Ingegneria dell'Informazione, Università di Padova, via Gradenigo 6B, 35131 Padova, Italy
- Istituto di Fotonica e Nanotecnologie, CNR, via Trasea 7, 35131 Padova, Italy
| |
Collapse
|
15
|
Denkmayr T, Geppert H, Lemmel H, Waegell M, Dressel J, Hasegawa Y, Sponar S. Experimental Demonstration of Direct Path State Characterization by Strongly Measuring Weak Values in a Matter-Wave Interferometer. PHYSICAL REVIEW LETTERS 2017; 118:010402. [PMID: 28106455 DOI: 10.1103/physrevlett.118.010402] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Indexed: 06/06/2023]
Abstract
A method was recently proposed and experimentally realized for characterizing a quantum state by directly measuring its complex probability amplitudes in a particular basis using so-called weak values. Recently, Vallone and Dequal [Phys. Rev. Lett. 116, 040502 (2016)PRLTAO0031-900710.1103/PhysRevLett.116.040502] showed theoretically that weak measurements are not a necessary condition to determine the weak value. Here, we report a measurement scheme used in a matter-wave interferometric experiment in which the neutron path system's quantum state was characterized via direct measurements, using both strong and weak interactions. Experimental evidence is given that strong interactions outperform weak ones for tomographic accuracy. Our results are not limited to neutron interferometry, but can be used in a wide range of quantum systems.
Collapse
Affiliation(s)
| | | | - Hartmut Lemmel
- AtomInstitut, TU Wien, Stadionallee 2, 1020 Vienna, Austria
- Institut Laue-Langevin, 6, Rue Jules Horowitz, 38042 Grenoble Cedex 9, France
| | - Mordecai Waegell
- Institute for Quantum Studies, Chapman University, Orange, California 92866, USA
| | - Justin Dressel
- Institute for Quantum Studies, Chapman University, Orange, California 92866, USA
- Schmid College of Science and Technology, Chapman University, Orange, California 92866, USA
| | - Yuji Hasegawa
- AtomInstitut, TU Wien, Stadionallee 2, 1020 Vienna, Austria
| | - Stephan Sponar
- AtomInstitut, TU Wien, Stadionallee 2, 1020 Vienna, Austria
| |
Collapse
|
16
|
Thekkadath GS, Giner L, Chalich Y, Horton MJ, Banker J, Lundeen JS. Direct Measurement of the Density Matrix of a Quantum System. PHYSICAL REVIEW LETTERS 2016; 117:120401. [PMID: 27689255 DOI: 10.1103/physrevlett.117.120401] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Indexed: 06/06/2023]
Abstract
One drawback of conventional quantum state tomography is that it does not readily provide access to single density matrix elements since it requires a global reconstruction. Here, we experimentally demonstrate a scheme that can be used to directly measure individual density matrix elements of general quantum states. The scheme relies on measuring a sequence of three observables, each complementary to the last. The first two measurements are made weak to minimize the disturbance they cause to the state, while the final measurement is strong. We perform this joint measurement on polarized photons in pure and mixed states to directly measure their density matrix. The weak measurements are achieved using two walk-off crystals, each inducing a polarization-dependent spatial shift that couples the spatial and polarization degrees of freedom of the photons. This direct measurement method provides an operational meaning to the density matrix and promises to be especially useful for large dimensional states.
Collapse
Affiliation(s)
- G S Thekkadath
- Department of Physics and Max Planck Centre for Extreme and Quantum Photonics, University of Ottawa, 25 Templeton Street, Ottawa, Ontario K1N 6N5, Canada
| | - L Giner
- Department of Physics and Max Planck Centre for Extreme and Quantum Photonics, University of Ottawa, 25 Templeton Street, Ottawa, Ontario K1N 6N5, Canada
| | - Y Chalich
- Department of Physics and Max Planck Centre for Extreme and Quantum Photonics, University of Ottawa, 25 Templeton Street, Ottawa, Ontario K1N 6N5, Canada
| | - M J Horton
- Department of Physics and Max Planck Centre for Extreme and Quantum Photonics, University of Ottawa, 25 Templeton Street, Ottawa, Ontario K1N 6N5, Canada
| | - J Banker
- Department of Physics and Max Planck Centre for Extreme and Quantum Photonics, University of Ottawa, 25 Templeton Street, Ottawa, Ontario K1N 6N5, Canada
| | - J S Lundeen
- Department of Physics and Max Planck Centre for Extreme and Quantum Photonics, University of Ottawa, 25 Templeton Street, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|