1
|
Moon J, Lee Y, Ihee H. Time-resolved serial femtosecond crystallography for investigating structural dynamics of chemical systems. Chem Commun (Camb) 2024; 60:9472-9482. [PMID: 39118495 DOI: 10.1039/d4cc03185g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Time-resolved serial femtosecond crystallography (TR-SFX) has emerged as a crucial tool for studying the structural dynamics of proteins. In principle, TR-SFX has the potential to be a powerful tool not only for studying proteins but also for investigating chemical reactions. However, non-protein systems generally face challenges in indexing due to sparse Bragg spots and encounter difficulties in effectively exciting target molecules. Nevertheless, successful TR-SFX studies on chemical systems have been recently reported in a few instances, boding well for the application of TR-SFX to study chemical reactions in the future. In this context, we review the static SFX and TR-SFX studies conducted on chemical systems reported to date and suggest prospects for future research directions.
Collapse
Affiliation(s)
- Jungho Moon
- Center for Advanced Reaction Dynamics (CARD), Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Yunbeom Lee
- Center for Advanced Reaction Dynamics (CARD), Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | - Hyotcherl Ihee
- Center for Advanced Reaction Dynamics (CARD), Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
2
|
Warias JE, Petersdorf L, Hövelmann SC, Giri RP, Lemke C, Festersen S, Greve M, Mandin P, LeBideau D, Bertram F, Magnussen OM, Murphy BM. The laser pump X-ray probe system at LISA P08 PETRA III. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:779-790. [PMID: 38843001 PMCID: PMC11226150 DOI: 10.1107/s1600577524003400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 04/17/2024] [Indexed: 07/06/2024]
Abstract
Understanding and controlling the structure and function of liquid interfaces is a constant challenge in biology, nanoscience and nanotechnology, with applications ranging from molecular electronics to controlled drug release. X-ray reflectivity and grazing incidence diffraction provide invaluable probes for studying the atomic scale structure at liquid-air interfaces. The new time-resolved laser system at the LISA liquid diffractometer situated at beamline P08 at the PETRA III synchrotron radiation source in Hamburg provides a laser pump with X-ray probe. The femtosecond laser combined with the LISA diffractometer allows unique opportunities to investigate photo-induced structural changes at liquid interfaces on the pico- and nanosecond time scales with pump-probe techniques. A time resolution of 38 ps has been achieved and verified with Bi. First experiments include laser-induced effects on salt solutions and liquid mercury surfaces with static and varied time scales measurements showing the proof of concept for investigations at liquid surfaces.
Collapse
Affiliation(s)
- Jonas Erik Warias
- Institute of Experimental and Applied PhysicsKiel UniversityLeibnizstrasse 1924118KielGermany
| | - Lukas Petersdorf
- Institute of Experimental and Applied PhysicsKiel UniversityLeibnizstrasse 1924118KielGermany
- Ruprecht-Haensel Laboratory, Olshausenstrasse 40, 24098Kiel, Germany
| | - Svenja Carolin Hövelmann
- Institute of Experimental and Applied PhysicsKiel UniversityLeibnizstrasse 1924118KielGermany
- Ruprecht-Haensel Laboratory, Olshausenstrasse 40, 24098Kiel, Germany
- Deutsches Elektronen-Synchrotron DESYNotkestrasse 8522607HamburgGermany
| | - Rajendra Prasad Giri
- Institute of Experimental and Applied PhysicsKiel UniversityLeibnizstrasse 1924118KielGermany
| | - Christoph Lemke
- Institute of Experimental and Applied PhysicsKiel UniversityLeibnizstrasse 1924118KielGermany
| | - Sven Festersen
- Institute of Experimental and Applied PhysicsKiel UniversityLeibnizstrasse 1924118KielGermany
| | - Matthias Greve
- Institute of Experimental and Applied PhysicsKiel UniversityLeibnizstrasse 1924118KielGermany
| | | | | | - Florian Bertram
- Deutsches Elektronen-Synchrotron DESYNotkestrasse 8522607HamburgGermany
| | - Olaf Magnus Magnussen
- Institute of Experimental and Applied PhysicsKiel UniversityLeibnizstrasse 1924118KielGermany
- Ruprecht-Haensel Laboratory, Olshausenstrasse 40, 24098Kiel, Germany
| | - Bridget Mary Murphy
- Institute of Experimental and Applied PhysicsKiel UniversityLeibnizstrasse 1924118KielGermany
- Ruprecht-Haensel Laboratory, Olshausenstrasse 40, 24098Kiel, Germany
| |
Collapse
|
3
|
Dodia M, Rouxel JR, Cho D, Zhang Y, Keefer D, Bonn M, Nagata Y, Mukamel S. Water Solvent Reorganization upon Ultrafast Resonant Stimulated X-ray Raman Excitation of a Metalloporphyrin Dimer. J Chem Theory Comput 2024; 20:4254-4264. [PMID: 38727197 DOI: 10.1021/acs.jctc.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
We propose an X-ray Raman pump-X-ray diffraction probe scheme to follow solvation dynamics upon charge migration in a solute molecule. The X-ray Raman pump selectively prepares a valence electronic wavepacket in the solute, while the probe provides information about the entire molecular ensemble. A combination of molecular dynamics and ab initio quantum chemistry simulations is applied to a Zn-Ni porphyrin dimer in water. Using time-resolved X-ray diffraction and pair distribution functions, we extracted solvation shell dynamics.
Collapse
Affiliation(s)
- Mayank Dodia
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Jérémy R Rouxel
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Daeheum Cho
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yu Zhang
- Ames National Laboratory, Iowa State University, Ames, Iowa 50011, United States
| | - Daniel Keefer
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Yuki Nagata
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
4
|
Chen LX, Yano J. Deciphering Photoinduced Catalytic Reaction Mechanisms in Natural and Artificial Photosynthetic Systems on Multiple Temporal and Spatial Scales Using X-ray Probes. Chem Rev 2024; 124:5421-5469. [PMID: 38663009 DOI: 10.1021/acs.chemrev.3c00560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Utilization of renewable energies for catalytically generating value-added chemicals is highly desirable in this era of rising energy demands and climate change impacts. Artificial photosynthetic systems or photocatalysts utilize light to convert abundant CO2, H2O, and O2 to fuels, such as carbohydrates and hydrogen, thus converting light energy to storable chemical resources. The emergence of intense X-ray pulses from synchrotrons, ultrafast X-ray pulses from X-ray free electron lasers, and table-top laser-driven sources over the past decades opens new frontiers in deciphering photoinduced catalytic reaction mechanisms on the multiple temporal and spatial scales. Operando X-ray spectroscopic methods offer a new set of electronic transitions in probing the oxidation states, coordinating geometry, and spin states of the metal catalytic center and photosensitizers with unprecedented energy and time resolution. Operando X-ray scattering methods enable previously elusive reaction steps to be characterized on different length scales and time scales. The methodological progress and their application examples collected in this review will offer a glimpse into the accomplishments and current state in deciphering reaction mechanisms for both natural and synthetic systems. Looking forward, there are still many challenges and opportunities at the frontier of catalytic research that will require further advancement of the characterization techniques.
Collapse
Affiliation(s)
- Lin X Chen
- Chemical Science and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Junko Yano
- Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
5
|
Lee Y, Oang KY, Kim D, Ihee H. A comparative review of time-resolved x-ray and electron scattering to probe structural dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2024; 11:031301. [PMID: 38706888 PMCID: PMC11065455 DOI: 10.1063/4.0000249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
The structure of molecules, particularly the dynamic changes in structure, plays an essential role in understanding physical and chemical phenomena. Time-resolved (TR) scattering techniques serve as crucial experimental tools for studying structural dynamics, offering direct sensitivity to molecular structures through scattering signals. Over the past decade, the advent of x-ray free-electron lasers (XFELs) and mega-electron-volt ultrafast electron diffraction (MeV-UED) facilities has ushered TR scattering experiments into a new era, garnering significant attention. In this review, we delve into the basic principles of TR scattering experiments, especially focusing on those that employ x-rays and electrons. We highlight the variations in experimental conditions when employing x-rays vs electrons and discuss their complementarity. Additionally, cutting-edge XFELs and MeV-UED facilities for TR x-ray and electron scattering experiments and the experiments performed at those facilities are reviewed. As new facilities are constructed and existing ones undergo upgrades, the landscape for TR x-ray and electron scattering experiments is poised for further expansion. Through this review, we aim to facilitate the effective utilization of these emerging opportunities, assisting researchers in delving deeper into the intricate dynamics of molecular structures.
Collapse
Affiliation(s)
| | - Key Young Oang
- Radiation Center for Ultrafast Science, Korea Atomic Energy Research Institute (KAERI), Daejeon 34057, South Korea
| | | | | |
Collapse
|
6
|
Lee Y, Ki H, Im D, Eom S, Gu J, Lee S, Kim J, Cha Y, Lee KW, Zerdane S, Levantino M, Ihee H. Cerium Photocatalyst in Action: Structural Dynamics in the Presence of Substrate Visualized via Time-Resolved X-ray Liquidography. J Am Chem Soc 2023; 145:23715-23726. [PMID: 37856865 PMCID: PMC10623567 DOI: 10.1021/jacs.3c08166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Indexed: 10/21/2023]
Abstract
[Ce(III)Cl6]3-, with its earth-abundant metal element, is a promising photocatalyst facilitating carbon-halogen bond activation. Still, the structure of the reaction intermediate has yet to be explored. Here, we applied time-resolved X-ray liquidography (TRXL), which allows for direct observation of the structural details of reaction intermediates, to investigate the photocatalytic reaction of [Ce(III)Cl6]3-. Structural analysis of the TRXL data revealed that the excited state of [Ce(III)Cl6]3- has Ce-Cl bonds that are shorter than those of the ground state and that the Ce-Cl bond further contracts upon oxidation. In addition, this study represents the first application of TRXL to both photocatalyst-only and photocatalyst-and-substrate samples, providing insights into the substrate's influence on the photocatalyst's reaction dynamics. This study demonstrates the capability of TRXL in elucidating the reaction dynamics of photocatalysts under various conditions and highlights the importance of experimental determination of the structures of reaction intermediates to advance our understanding of photocatalytic mechanisms.
Collapse
Affiliation(s)
- Yunbeom Lee
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hosung Ki
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Donghwan Im
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seunghwan Eom
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jain Gu
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Seonggon Lee
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jungmin Kim
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yongjun Cha
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kyung Won Lee
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Serhane Zerdane
- European
Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Matteo Levantino
- European
Synchrotron Radiation Facility (ESRF), 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Hyotcherl Ihee
- Center
for Advanced Reaction Dynamics, Institute
for Basic Science (IBS), Daejeon, 34141, Republic
of Korea
- Department
of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
7
|
Kurta RP, van Driel TB, Dohn AO, Berberich TB, Nelson S, Zaluzhnyy IA, Mukharamova N, Lapkin D, Zederkof DB, Seaberg M, Pedersen KS, Kjær KS, Rippy GI, Biasin E, Møller KB, Gelisio L, Haldrup K, Vartanyants IA, Nielsen MM. Exploring fingerprints of ultrafast structural dynamics in molecular solutions with an X-ray laser. Phys Chem Chem Phys 2023; 25:23417-23434. [PMID: 37486006 DOI: 10.1039/d3cp01257c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
We apply ultrashort X-ray laser pulses to track optically excited structural dynamics of [Ir2(dimen)4]2+ molecules in solution. In our exploratory study we determine angular correlations in the scattered X-rays, which comprise a complex fingerprint of the ultrafast dynamics. Model-assisted analysis of the experimental correlation data allows us to elucidate various aspects of the photoinduced changes in the excited molecular ensembles. We unambiguously identify that in our experiment the photoinduced transition dipole moments in [Ir2(dimen)4]2+ molecules are oriented perpendicular to the Ir-Ir bond. The analysis also shows that the ground state conformer of [Ir2(dimen)4]2+ with a larger Ir-Ir distance is mostly responsible for the formation of the excited state. We also reveal that the ensemble of solute molecules can be characterized with a substantial structural heterogeneity due to solvent influence. The proposed X-ray correlation approach offers an alternative path for studies of ultrafast structural dynamics of molecular ensembles in the liquid and gas phases.
Collapse
Affiliation(s)
- Ruslan P Kurta
- European XFEL, Holzkoppel 4, D-22869 Schenefeld, Germany.
| | - Tim B van Driel
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Asmus O Dohn
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Lyngby, Denmark.
- Science Institute and Faculty of Physical Sciences, University of Iceland VR-III, 107 Reykjavík, Iceland
| | | | - Silke Nelson
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Ivan A Zaluzhnyy
- Department of Physics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, USA
| | | | - Dmitry Lapkin
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | - Diana B Zederkof
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Lyngby, Denmark.
| | - Matthew Seaberg
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Kasper S Pedersen
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Lyngby, Denmark
| | - Kasper S Kjær
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Geoffery Ian Rippy
- Department of Materials Science and Engineering, University of California Davis, 1 Shields Ave, Davis, CA 95616, USA
| | - Elisa Biasin
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Klaus B Møller
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Lyngby, Denmark
| | - Luca Gelisio
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | - Kristoffer Haldrup
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Lyngby, Denmark.
| | - Ivan A Vartanyants
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, D-22607 Hamburg, Germany
| | - Martin M Nielsen
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Lyngby, Denmark.
| |
Collapse
|
8
|
Canton SE, Biednov M, Pápai M, Lima FA, Choi T, Otte F, Jiang Y, Frankenberger P, Knoll M, Zalden P, Gawelda W, Rahaman A, Møller KB, Milne C, Gosztola DJ, Zheng K, Retegan M, Khakhulin D. Ultrafast Jahn-Teller Photoswitching in Cobalt Single-Ion Magnets. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206880. [PMID: 37196414 PMCID: PMC10375196 DOI: 10.1002/advs.202206880] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/24/2023] [Indexed: 05/19/2023]
Abstract
Single-ion magnets (SIMs) constitute the ultimate size limit in the quest for miniaturizing magnetic materials. Several bottlenecks currently hindering breakthroughs in quantum information and communication technologies could be alleviated by new generations of SIMs displaying multifunctionality. Here, ultrafast optical absorption spectroscopy and X-ray emission spectroscopy are employed to track the photoinduced spin-state switching of the prototypical complex [Co(terpy)2 ]2+ (terpy = 2,2':6',2″-terpyridine) in solution phase. The combined measurements and their analysis supported by density functional theory (DFT), time-dependent-DFT (TD-DFT) and multireference quantum chemistry calculations reveal that the complex undergoes a spin-state transition from a tetragonally elongated doublet state to a tetragonally compressed quartet state on the femtosecond timescale, i.e., it sustains ultrafast Jahn-Teller (JT) photoswitching between two different spin multiplicities. Adding new Co-based complexes as possible contenders in the search for JT photoswitching SIMs will greatly widen the possibilities for implementing magnetic multifunctionality and eventually controlling ultrafast magnetization with optical photons.
Collapse
Affiliation(s)
- Sophie E. Canton
- European XFELHolzkoppel 422869SchenefeldGermany
- Department of ChemistryTechnical University of DenmarkKongensLyngbyDK‐2800Denmark
| | | | - Mátyás Pápai
- Department of ChemistryTechnical University of DenmarkKongensLyngbyDK‐2800Denmark
- Wigner Research Centre for PhysicsP.O. Box 49BudapestH‐1525Hungary
| | | | - Tae‐Kyu Choi
- European XFELHolzkoppel 422869SchenefeldGermany
- XFEL DivisionPohang Accelerator LaboratoryJigok‐ro 127‐80Pohang37673Republic of Korea
| | | | | | | | | | | | - Wojciech Gawelda
- European XFELHolzkoppel 422869SchenefeldGermany
- Departamento de QuímicaUniversidad Autónoma de MadridMadrid28049Spain
- IMDEA‐NanocienciaCalle Faraday 9Madrid28049Spain
- Faculty of PhysicsAdam Mickiewicz UniversityPoznan61‐614Poland
| | - Ahibur Rahaman
- Department of ChemistryTechnical University of DenmarkKongensLyngbyDK‐2800Denmark
- Chemical Physics and NanoLundLund UniversityBox 124Lund22100Sweden
| | - Klaus B. Møller
- Department of ChemistryTechnical University of DenmarkKongensLyngbyDK‐2800Denmark
| | | | - David J. Gosztola
- Center for Nanoscale MaterialsArgonne National Laboratory9700 South Cass AvenueLemontIL60439USA
| | - Kaibo Zheng
- Department of ChemistryTechnical University of DenmarkKongensLyngbyDK‐2800Denmark
- Chemical Physics and NanoLundLund UniversityBox 124Lund22100Sweden
| | - Marius Retegan
- European Synchrotron Radiation Facility71 Avenue des MartyrsGrenoble38000France
| | | |
Collapse
|
9
|
Yang C, Ladd-Parada M, Nam K, Jeong S, You S, Späh A, Pathak H, Eklund T, Lane TJ, Lee JH, Eom I, Kim M, Amann-Winkel K, Perakis F, Nilsson A, Kim KH. Melting domain size and recrystallization dynamics of ice revealed by time-resolved x-ray scattering. Nat Commun 2023; 14:3313. [PMID: 37316494 DOI: 10.1038/s41467-023-38551-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/03/2023] [Indexed: 06/16/2023] Open
Abstract
The phase transition between water and ice is ubiquitous and one of the most important phenomena in nature. Here, we performed time-resolved x-ray scattering experiments capturing the melting and recrystallization dynamics of ice. The ultrafast heating of ice I is induced by an IR laser pulse and probed with an intense x-ray pulse which provided us with direct structural information on different length scales. From the wide-angle x-ray scattering (WAXS) patterns, the molten fraction, as well as the corresponding temperature at each delay, were determined. The small-angle x-ray scattering (SAXS) patterns, together with the information extracted from the WAXS analysis, provided the time-dependent change of the size and the number of liquid domains. The results show partial melting (~13%) and superheating of ice occurring at around 20 ns. After 100 ns, the average size of the liquid domains grows from about 2.5 nm to 4.5 nm by the coalescence of approximately six adjacent domains. Subsequently, we capture the recrystallization of the liquid domains, which occurs on microsecond timescales due to the cooling by heat dissipation and results to a decrease of the average liquid domain size.
Collapse
Affiliation(s)
- Cheolhee Yang
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Marjorie Ladd-Parada
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91, Stockholm, Sweden
- Chemistry Department, Glyscoscience Division, Kungliga Tekniska Högskola, Roslagstullsbacken 21, 11421, Stockholm, Sweden
| | - Kyeongmin Nam
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Sangmin Jeong
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Seonju You
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Alexander Späh
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Harshad Pathak
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Tobias Eklund
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Thomas J Lane
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - Jae Hyuk Lee
- Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Intae Eom
- Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Minseok Kim
- Pohang Accelerator Laboratory, POSTECH, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Katrin Amann-Winkel
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Anders Nilsson
- Department of Physics, AlbaNova University Center, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Kyung Hwan Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea.
| |
Collapse
|
10
|
Reinhard M, Gallo A, Guo M, Garcia-Esparza AT, Biasin E, Qureshi M, Britz A, Ledbetter K, Kunnus K, Weninger C, van Driel T, Robinson J, Glownia JM, Gaffney KJ, Kroll T, Weng TC, Alonso-Mori R, Sokaras D. Ferricyanide photo-aquation pathway revealed by combined femtosecond Kβ main line and valence-to-core x-ray emission spectroscopy. Nat Commun 2023; 14:2443. [PMID: 37147295 PMCID: PMC10163258 DOI: 10.1038/s41467-023-37922-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/30/2023] [Indexed: 05/07/2023] Open
Abstract
Reliably identifying short-lived chemical reaction intermediates is crucial to elucidate reaction mechanisms but becomes particularly challenging when multiple transient species occur simultaneously. Here, we report a femtosecond x-ray emission spectroscopy and scattering study of the aqueous ferricyanide photochemistry, utilizing the combined Fe Kβ main and valence-to-core emission lines. Following UV-excitation, we observe a ligand-to-metal charge transfer excited state that decays within 0.5 ps. On this timescale, we also detect a hitherto unobserved short-lived species that we assign to a ferric penta-coordinate intermediate of the photo-aquation reaction. We provide evidence that bond photolysis occurs from reactive metal-centered excited states that are populated through relaxation of the charge transfer excited state. Beyond illuminating the elusive ferricyanide photochemistry, these results show how current limitations of Kβ main line analysis in assigning ultrafast reaction intermediates can be circumvented by simultaneously using the valence-to-core spectral range.
Collapse
Affiliation(s)
- Marco Reinhard
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| | | | - Meiyuan Guo
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | | | - Elisa Biasin
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | | | | | - Kathryn Ledbetter
- Department of Physics, Stanford University, Stanford, CA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | | | - Clemens Weninger
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- MAX IV Laboratory, Lund University, Lund, Sweden
| | - Tim van Driel
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | | | | | | | - Thomas Kroll
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Tsu-Chien Weng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | | | | |
Collapse
|
11
|
Ki H, Gu J, Cha Y, Lee KW, Ihee H. Projection to extract the perpendicular component (PEPC) method for extracting kinetics from time-resolved data. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2023; 10:034103. [PMID: 37388296 PMCID: PMC10306411 DOI: 10.1063/4.0000189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 05/22/2023] [Indexed: 07/01/2023]
Abstract
Time-resolved x-ray liquidography (TRXL) is a potent method for investigating the structural dynamics of chemical and biological reactions in the liquid phase. It has enabled the extraction of detailed structural aspects of various dynamic processes, the molecular structures of intermediates, and kinetics of reactions across a wide range of systems, from small molecules to proteins and nanoparticles. Proper data analysis is key to extracting the information of the kinetics and structural dynamics of the studied system encrypted in the TRXL data. In typical TRXL data, the signals from solute scattering, solvent scattering, and solute-solvent cross scattering are mixed in the q-space, and the solute kinetics and solvent hydrodynamics are mixed in the time domain, thus complicating the data analysis. Various methods developed so far generally require prior knowledge of the molecular structures of candidate species involved in the reaction. Because such information is often unavailable, a typical data analysis often involves tedious trial and error. To remedy this situation, we have developed a method named projection to extract the perpendicular component (PEPC), capable of removing the contribution of solvent kinetics from TRXL data. The resulting data then contain only the solute kinetics, and, thus, the solute kinetics can be easily determined. Once the solute kinetics is determined, the subsequent data analysis to extract the structural information can be performed with drastically improved convenience. The application of the PEPC method is demonstrated with TRXL data from the photochemistry of two molecular systems: [Au(CN)2-]3 in water and CHI3 in cyclohexane.
Collapse
Affiliation(s)
| | | | | | | | - H. Ihee
- Author to whom correspondence should be addressed:
| |
Collapse
|
12
|
Nam Y, Song H, Freixas VM, Keefer D, Fernandez-Alberti S, Lee JY, Garavelli M, Tretiak S, Mukamel S. Monitoring vibronic coherences and molecular aromaticity in photoexcited cyclooctatetraene with an X-ray probe: a simulation study. Chem Sci 2023; 14:2971-2982. [PMID: 36937575 PMCID: PMC10016608 DOI: 10.1039/d2sc04335a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Understanding conical intersection (CI) dynamics and subsequent conformational changes is key for exploring and controlling photo-reactions in aromatic molecules. Monitoring of their time-resolved dynamics remains a formidable experimental challenge. In this study, we simulate the photoinduced S3 to S1 non-adiabatic dynamics of cyclooctatetraene (COT), involving multiple CIs with relaxation times in good agreement with experiment. We further investigate the possibility to directly probe the CI passages in COT by off-resonant X-ray Raman spectroscopy (TRUECARS) and time-resolved X-ray diffraction (TRXD). We find that these signals sensitively monitor key chemical features during the ultrafast dynamics. First, we distinguish two CIs by using TRUECARS signals with their appearances at different Raman shifts. Second, we demonstrate that TRXD, where X-ray photons scatter off electron densities, can resolve ultrafast changes in the aromaticity of COT. It can further distinguish between planar and non-planar geometries explored during the dynamics, as e.g. two different tetraradical-type CIs. The knowledge gained from these measurements can give unique insight into fundamental chemical properties that dynamically change during non-adiabatic passages.
Collapse
Affiliation(s)
- Yeonsig Nam
- Department of Chemistry, University of California Irvine California 92697-2025 USA
| | - Huajing Song
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - Victor M Freixas
- Departamento de Ciencia y Tecnologia, Universidad Nacional de Quilmes/CONICET B1876BXD Bernal Argentina
| | - Daniel Keefer
- Department of Chemistry, University of California Irvine California 92697-2025 USA
| | | | - Jin Yong Lee
- Department of Chemistry, Sungkyunkwan University Suwon 16419 Korea
| | - Marco Garavelli
- Dipartimento di Chimica Industriale "Toso Montanari,", Universita' degli Studi di Bologna I-40136 Bologna Italy
| | - Sergei Tretiak
- Physics and Chemistry of Materials, Theoretical Division, Los Alamos National Laboratory Los Alamos New Mexico 87545 USA
| | - Shaul Mukamel
- Department of Chemistry, University of California Irvine California 92697-2025 USA
| |
Collapse
|
13
|
Katayama T, Choi TK, Khakhulin D, Dohn AO, Milne CJ, Vankó G, Németh Z, Lima FA, Szlachetko J, Sato T, Nozawa S, Adachi SI, Yabashi M, Penfold TJ, Gawelda W, Levi G. Atomic-scale observation of solvent reorganization influencing photoinduced structural dynamics in a copper complex photosensitizer. Chem Sci 2023; 14:2572-2584. [PMID: 36908966 PMCID: PMC9993854 DOI: 10.1039/d2sc06600a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Photochemical reactions in solution are governed by a complex interplay between transient intramolecular electronic and nuclear structural changes and accompanying solvent rearrangements. State-of-the-art time-resolved X-ray solution scattering has emerged in the last decade as a powerful technique to observe solute and solvent motions in real time. However, disentangling solute and solvent dynamics and how they mutually influence each other remains challenging. Here, we simultaneously measure femtosecond X-ray emission and scattering to track both the intramolecular and solvation structural dynamics following photoexcitation of a solvated copper photosensitizer. Quantitative analysis assisted by molecular dynamics simulations reveals a two-step ligand flattening strongly coupled to the solvent reorganization, which conventional optical methods could not discern. First, a ballistic flattening triggers coherent motions of surrounding acetonitrile molecules. In turn, the approach of acetonitrile molecules to the copper atom mediates the decay of intramolecular coherent vibrations and induces a further ligand flattening. These direct structural insights reveal that photoinduced solute and solvent motions can be intimately intertwined, explaining how the key initial steps of light harvesting are affected by the solvent on the atomic time and length scale. Ultimately, this work takes a step forward in understanding the microscopic mechanisms of the bidirectional influence between transient solvent reorganization and photoinduced solute structural dynamics.
Collapse
Affiliation(s)
- Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute Kouto 1-1-1, Sayo Hyogo 679-5198 Japan.,RIKEN SPring-8 Center 1-1-1 Kouto, Sayo Hyogo 679-5148 Japan
| | - Tae-Kyu Choi
- XFEL Division, Pohang Accelerator Laboratory Jigok-ro 127-80 Pohang 37673 Republic of Korea
| | | | - Asmus O Dohn
- Science Institute, University of Iceland 107 Reykjavík Iceland .,DTU Physics, Technical University of Denmark Kongens Lyngby Denmark
| | | | - György Vankó
- Wigner Research Centre for Physics, Hungarian Academy of Sciences H-1525 Budapest Hungary
| | - Zoltán Németh
- Wigner Research Centre for Physics, Hungarian Academy of Sciences H-1525 Budapest Hungary
| | | | - Jakub Szlachetko
- SOLARIS National Synchrotron Radiation Centre, Jagiellonian University PL-30392 Kraków Poland
| | - Tokushi Sato
- European XFEL Holzkoppel 4, Schenefeld 22869 Germany
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) 1-1 Oho Tsukuba Ibaraki 305-0801 Japan.,Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies 1-1 Oho Tsukuba Ibaraki 305-0801 Japan
| | - Shin-Ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) 1-1 Oho Tsukuba Ibaraki 305-0801 Japan.,Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies 1-1 Oho Tsukuba Ibaraki 305-0801 Japan
| | - Makina Yabashi
- RIKEN SPring-8 Center 1-1-1 Kouto, Sayo Hyogo 679-5148 Japan
| | - Thomas J Penfold
- Chemistry-School of Natural and Environmental Sciences, Newcastle University Newcastle Upon-Tyne NE1 7RU UK
| | - Wojciech Gawelda
- Departamento de Química, Universidad Autónoma de Madrid, Campus Cantoblanco 28047 Madrid Spain.,IMDEA-Nanociencia, Campus Cantoblanco C/Faraday 9 28049 Madrid Spain.,Faculty of Physics, Adam Mickiewicz University 61-614 Poznań Poland
| | - Gianluca Levi
- Science Institute, University of Iceland 107 Reykjavík Iceland
| |
Collapse
|
14
|
Montoya-Castillo A, Chen MS, Raj SL, Jung KA, Kjaer KS, Morawietz T, Gaffney KJ, van Driel TB, Markland TE. Optically Induced Anisotropy in Time-Resolved Scattering: Imaging Molecular-Scale Structure and Dynamics in Disordered Media with Experiment and Theory. PHYSICAL REVIEW LETTERS 2022; 129:056001. [PMID: 35960558 DOI: 10.1103/physrevlett.129.056001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Time-resolved scattering experiments enable imaging of materials at the molecular scale with femtosecond time resolution. However, in disordered media they provide access to just one radial dimension thus limiting the study of orientational structure and dynamics. Here we introduce a rigorous and practical theoretical framework for predicting and interpreting experiments combining optically induced anisotropy and time-resolved scattering. Using impulsive nuclear Raman and ultrafast x-ray scattering experiments of chloroform and simulations, we demonstrate that this framework can accurately predict and elucidate both the spatial and temporal features of these experiments.
Collapse
Affiliation(s)
| | - Michael S Chen
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Sumana L Raj
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA
| | - Kenneth A Jung
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Kasper S Kjaer
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA
| | - Tobias Morawietz
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Kelly J Gaffney
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA
| | - Tim B van Driel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Thomas E Markland
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
15
|
Zederkof DB, Møller KB, Nielsen MM, Haldrup K, González L, Mai S. Resolving Femtosecond Solvent Reorganization Dynamics in an Iron Complex by Nonadiabatic Dynamics Simulations. J Am Chem Soc 2022; 144:12861-12873. [PMID: 35776920 PMCID: PMC9305979 DOI: 10.1021/jacs.2c04505] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
The ultrafast dynamical
response of solute–solvent interactions
plays a key role in transition metal complexes, where charge transfer
states are ubiquitous. Nonetheless, there exist very few excited-state
simulations of transition metal complexes in solution. Here, we carry
out a nonadiabatic dynamics study of the iron complex [Fe(CN)4(bpy)]2– (bpy = 2,2′-bipyridine)
in explicit aqueous solution. Implicit solvation models were found
inadequate for reproducing the strong solvatochromism in the absorption
spectra. Instead, direct solute–solvent interactions, in the
form of hydrogen bonds, are responsible for the large observed solvatochromic
shift and the general dynamical behavior of the complex in water.
The simulations reveal an overall intersystem crossing time scale
of 0.21 ± 0.01 ps and a strong reliance of this process
on nuclear motion. A charge transfer character analysis shows a branched
decay mechanism from the initially excited singlet metal-to-ligand
charge transfer (1MLCT) states to triplet states of 3MLCT and metal-centered (3MC) character. We also
find that solvent reorganization after excitation is ultrafast, on
the order of 50 fs around the cyanides and slower around the
bpy ligand. In contrast, the nuclear vibrational dynamics, in the
form of Fe–ligand bond changes, takes place on slightly longer
time scales. We demonstrate that the surprisingly fast solvent reorganizing
should be observable in time-resolved X-ray solution scattering experiments,
as simulated signals show strong contributions from the solute–solvent
scattering cross term. Altogether, the simulations paint a comprehensive
picture of the coupled and concurrent electronic, nuclear, and solvent
dynamics and interactions in the first hundreds of femtoseconds after
excitation.
Collapse
Affiliation(s)
- Diana Bregenholt Zederkof
- Department of Physics, Technical University of Denmark, Fysikvej, bygning 307, 2800 Kongens Lyngby, Denmark.,Scientific Instrument Femtosecond X-ray Experiments, European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Klaus B Møller
- Department of Chemistry, Technical University of Denmark, Kemitorvet, bygning 207, 2800 Kongens Lyngby, Denmark
| | - Martin M Nielsen
- Department of Physics, Technical University of Denmark, Fysikvej, bygning 307, 2800 Kongens Lyngby, Denmark
| | - Kristoffer Haldrup
- Department of Physics, Technical University of Denmark, Fysikvej, bygning 307, 2800 Kongens Lyngby, Denmark
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Sebastian Mai
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| |
Collapse
|
16
|
Zulfikri H, Pápai M, Dohn AO. Simulating the solvation structure of low- and high-spin [Fe(bpy) 3] 2+: long-range dispersion and many-body effects. Phys Chem Chem Phys 2022; 24:16655-16670. [PMID: 35766396 DOI: 10.1039/d2cp00892k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
When characterizing transition metal complexes and their functionalities, the importance of including the solvent as an active participant is becoming more and more apparent. Whereas many studies have evaluated long-range dispersion effects inside organic molecules and organometallics, less is known about their role in solvation. Here, we have analysed the components within solute-solvent and solvent-solvent interactions of one of the most studied iron-based photoswitch model systems, in two spin states. We find that long-range dispersion effects modulate the coordination significantly, and that this is accurately captured by density functional theory models including dispersion corrections. We furthermore correlate gas-phase relaxed complex-water clusters to thermally averaged molecular densities. This shows how the gas-phase interactions translate to solution structure, quantified through 3D molecular densities, angular distributions, and radial distribution functions. We show that finite-size simulation cells can cause the radial distribution functions to have artificially enlarged amplitudes. Finally, we quantify the effects of many-body interactions within the solvent shells, and find that almost a fifth of the total interaction energy of the solute-shell system in the high-spin state comes from many-body contributions, which cannot be captured by by pair-wise additive force field methods.
Collapse
Affiliation(s)
- Habiburrahman Zulfikri
- Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, Reykjavík 107, Iceland.
| | - Mátyás Pápai
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs. Lyngby, Denmark
| | - Asmus Ougaard Dohn
- Science Institute and Faculty of Physical Sciences, University of Iceland, VR-III, Reykjavík 107, Iceland. .,Department of Physics, Technical University of Denmark, Fysikvej 307, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
17
|
Dynamics of Spin Crossover Molecular Complexes. NANOMATERIALS 2022; 12:nano12101742. [PMID: 35630963 PMCID: PMC9144206 DOI: 10.3390/nano12101742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
We review the current understanding of the time scale and mechanisms associated with the change in spin state in transition metal-based spin crossover (SCO) molecular complexes. Most time resolved experiments, performed by optical techniques, rely on the intrinsic light-induced switching properties of this class of materials. The optically driven spin state transition can be mediated by a rich interplay of complexities including intermediate states in the spin state transition process, as well as intermolecular interactions, temperature, and strain. We emphasize here that the size reduction down to the nanoscale is essential for designing SCO systems that switch quickly as well as possibly retaining the memory of the light-driven state. We argue that SCO nano-sized systems are the key to device applications where the “write” speed is an important criterion.
Collapse
|
18
|
Yong H, Keefer D, Mukamel S. Imaging Purely Nuclear Quantum Dynamics in Molecules by Combined X-ray and Electron Diffraction. J Am Chem Soc 2022; 144:7796-7804. [DOI: 10.1021/jacs.2c01311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Haiwang Yong
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697, United States
| | - Daniel Keefer
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697, United States
| | - Shaul Mukamel
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
- Department of Physics and Astronomy, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
19
|
Jeong H, Ki H, Kim JG, Kim J, Lee Y, Ihee H. Sensitivity of
time‐resolved
diffraction data to changes in internuclear distances and atomic positions. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Haeyun Jeong
- Department of Chemistry and KI for the BioCentury Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
| | - Hosung Ki
- Department of Chemistry and KI for the BioCentury Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
- Center for Advanced Reaction Dynamics Institute for Basic Science (IBS) Daejeon Republic of Korea
| | - Jong Goo Kim
- Department of Chemistry and KI for the BioCentury Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
- Center for Advanced Reaction Dynamics Institute for Basic Science (IBS) Daejeon Republic of Korea
| | - Jungmin Kim
- Department of Chemistry and KI for the BioCentury Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
- Center for Advanced Reaction Dynamics Institute for Basic Science (IBS) Daejeon Republic of Korea
| | - Yunbeom Lee
- Department of Chemistry and KI for the BioCentury Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
- Center for Advanced Reaction Dynamics Institute for Basic Science (IBS) Daejeon Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry and KI for the BioCentury Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea
- Center for Advanced Reaction Dynamics Institute for Basic Science (IBS) Daejeon Republic of Korea
| |
Collapse
|
20
|
Choi EH, Lee Y, Heo J, Ihee H. Reaction dynamics studied via femtosecond X-ray liquidography at X-ray free-electron lasers. Chem Sci 2022; 13:8457-8490. [PMID: 35974755 PMCID: PMC9337737 DOI: 10.1039/d2sc00502f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
X-ray free-electron lasers (XFELs) provide femtosecond X-ray pulses suitable for pump–probe time-resolved studies with a femtosecond time resolution. Since the advent of the first XFEL in 2009, recent years have witnessed a great number of applications with various pump–probe techniques at XFELs. Among these, time-resolved X-ray liquidography (TRXL) is a powerful method for visualizing structural dynamics in the liquid solution phase. Here, we classify various chemical and biological molecular systems studied via femtosecond TRXL (fs-TRXL) at XFELs, depending on the focus of the studied process, into (i) bond cleavage and formation, (ii) charge distribution and electron transfer, (iii) orientational dynamics, (iv) solvation dynamics, (v) coherent nuclear wavepacket dynamics, and (vi) protein structural dynamics, and provide a brief review on each category. We also lay out a plausible roadmap for future fs-TRXL studies for areas that have not been explored yet. Femtosecond X-ray liquidography using X-ray free-electron lasers (XFELs) visualizes various aspects of reaction dynamics.![]()
Collapse
Affiliation(s)
- Eun Hyuk Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Yunbeom Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Jun Heo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Center for Advanced Reaction Dynamics, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| |
Collapse
|
21
|
Gu J, Lee S, Eom S, Ki H, Choi EH, Lee Y, Nozawa S, Adachi SI, Kim J, Ihee H. Structural Dynamics of C 2F 4I 2 in Cyclohexane Studied via Time-Resolved X-ray Liquidography. Int J Mol Sci 2021; 22:9793. [PMID: 34575954 PMCID: PMC8469616 DOI: 10.3390/ijms22189793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 11/28/2022] Open
Abstract
The halogen elimination of 1,2-diiodoethane (C2H4I2) and 1,2-diiodotetrafluoroethane (C2F4I2) serves as a model reaction for investigating the influence of fluorination on reaction dynamics and solute-solvent interactions in solution-phase reactions. While the kinetics and reaction pathways of the halogen elimination reaction of C2H4I2 were reported to vary substantially depending on the solvent, the solvent effects on the photodissociation of C2F4I2 remain to be explored, as its reaction dynamics have only been studied in methanol. Here, to investigate the solvent dependence, we conducted a time-resolved X-ray liquidography (TRXL) experiment on C2F4I2 in cyclohexane. The data revealed that (ⅰ) the solvent dependence of the photoreaction of C2F4I2 is not as strong as that observed for C2H4I2, and (ⅱ) the nongeminate recombination leading to the formation of I2 is slower in cyclohexane than in methanol. We also show that the molecular structures of the relevant species determined from the structural analysis of TRXL data provide an excellent benchmark for DFT calculations, especially for investigating the relevance of exchange-correlation functionals used for the structural optimization of haloalkanes. This study demonstrates that TRXL is a powerful technique to study solvent dependence in the solution phase.
Collapse
Affiliation(s)
- Jain Gu
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (J.G.); (S.L.); (S.E.); (H.K.); (E.H.C.); (Y.L.)
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Seonggon Lee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (J.G.); (S.L.); (S.E.); (H.K.); (E.H.C.); (Y.L.)
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Seunghwan Eom
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (J.G.); (S.L.); (S.E.); (H.K.); (E.H.C.); (Y.L.)
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Hosung Ki
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (J.G.); (S.L.); (S.E.); (H.K.); (E.H.C.); (Y.L.)
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Eun Hyuk Choi
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (J.G.); (S.L.); (S.E.); (H.K.); (E.H.C.); (Y.L.)
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Yunbeom Lee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (J.G.); (S.L.); (S.E.); (H.K.); (E.H.C.); (Y.L.)
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Ibaraki, Japan; (S.N.); (S.-i.A.)
- Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies, 1-1 Oho, Tsukuba 305-0801, Ibaraki, Japan
| | - Shin-ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba 305-0801, Ibaraki, Japan; (S.N.); (S.-i.A.)
- Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies, 1-1 Oho, Tsukuba 305-0801, Ibaraki, Japan
| | - Jeongho Kim
- Department of Chemistry, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea;
| | - Hyotcherl Ihee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (J.G.); (S.L.); (S.E.); (H.K.); (E.H.C.); (Y.L.)
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
22
|
Ki H, Choi S, Kim J, Choi EH, Lee S, Lee Y, Yoon K, Ahn CW, Ahn DS, Lee JH, Park J, Eom I, Kim M, Chun SH, Kim J, Ihee H, Kim J. Optical Kerr Effect of Liquid Acetonitrile Probed by Femtosecond Time-Resolved X-ray Liquidography. J Am Chem Soc 2021; 143:14261-14273. [PMID: 34455778 DOI: 10.1021/jacs.1c06088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Optical Kerr effect (OKE) spectroscopy is a method that measures the time-dependent change of the birefringence induced by an optical laser pulse using another optical laser pulse and has been used often to study the ultrafast dynamics of molecular liquids. Here we demonstrate an alternative method, femtosecond time-resolved X-ray liquidography (fs-TRXL), where the microscopic structural motions related to the OKE response can be monitored using a different type of probe, i.e., X-ray solution scattering. By applying fs-TRXL to acetonitrile and a dye solution in acetonitrile, we demonstrate that different types of molecular motions around photoaligned molecules can be resolved selectively, even without any theoretical modeling, based on the anisotropy of two-dimensional scattering patterns and extra structural information contained in the q-space scattering data. Specifically, the dynamics of reorientational (libration and orientational diffusion) and translational (interaction-induced motion) motions are captured separately by anisotropic and isotropic scattering signals, respectively. Furthermore, the two different types of reorientational motions are distinguished from each other by their own characteristic scattering patterns and time scales. The measured time-resolved scattering signals are in excellent agreement with the simulated scattering signals based on a molecular dynamics simulation for plausible molecular configurations, providing the detailed structural description of the OKE response in liquid acetonitrile.
Collapse
Affiliation(s)
- Hosung Ki
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Seungjoo Choi
- Department of Chemistry, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Jungmin Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Eun Hyuk Choi
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Seonggon Lee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Yunbeom Lee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Kihwan Yoon
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Chi Woo Ahn
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Doo-Sik Ahn
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Jae Hyuk Lee
- Pohang Accelerator Laboratory, Pohang 37673, Republic of Korea
| | - Jaeku Park
- Pohang Accelerator Laboratory, Pohang 37673, Republic of Korea
| | - Intae Eom
- Pohang Accelerator Laboratory, Pohang 37673, Republic of Korea
| | - Minseok Kim
- Pohang Accelerator Laboratory, Pohang 37673, Republic of Korea
| | - Sae Hwan Chun
- Pohang Accelerator Laboratory, Pohang 37673, Republic of Korea
| | - Joonghan Kim
- Department of Chemistry, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Jeongho Kim
- Department of Chemistry, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| |
Collapse
|
23
|
Lee SJ, Kim Y, Kim TW, Yang C, Thamilselvan K, Jeong H, Hyun J, Ihee H. Reversible molecular motional switch based on circular photoactive protein oligomers exhibits unexpected photo-induced contraction. CELL REPORTS. PHYSICAL SCIENCE 2021; 2:100512. [PMID: 35509376 PMCID: PMC9062587 DOI: 10.1016/j.xcrp.2021.100512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Molecular switches alterable between two stable states by environmental stimuli, such as light and temperature, offer the potential for controlling biological functions. Here, we report a circular photoswitchable protein complex made of multiple protein molecules that can rapidly and reversibly switch with significant conformational changes. The structural and photochromic properties of photoactive yellow protein (PYP) are harnessed to construct circular oligomer PYPs (coPYPs) of desired sizes. Considering the light-induced N-terminal protrusion of monomer PYP, we expected coPYPs would expand upon irradiation, but time-resolved X-ray scattering data reveal that the late intermediate has a pronounced light-induced contraction motion. This work not only provides an approach to engineering a novel protein-based molecular switch based on circular oligomers of well-known protein units but also demonstrates the importance of characterizing the structural dynamics of designed molecular switches.
Collapse
Affiliation(s)
- Sang Jin Lee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- These authors contributed equally
| | - Youngmin Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- These authors contributed equally
| | - Tae Wu Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Cheolhee Yang
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Kamatchi Thamilselvan
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Hyeongseop Jeong
- Center for Research Equipment, Korea Basic Science Institute (KBSI), Cheongju-si, Chungcheongbuk-do 28119, Republic of Korea
| | - Jaekyung Hyun
- Center for Research Equipment, Korea Basic Science Institute (KBSI), Cheongju-si, Chungcheongbuk-do 28119, Republic of Korea
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology (OIST), Okinawa 904-0495, Japan
| | - Hyotcherl Ihee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
- Lead contact
| |
Collapse
|
24
|
Filming ultrafast roaming-mediated isomerization of bismuth triiodide in solution. Nat Commun 2021; 12:4732. [PMID: 34354075 PMCID: PMC8342516 DOI: 10.1038/s41467-021-25070-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/20/2021] [Indexed: 12/19/2022] Open
Abstract
Roaming reaction, defined as a reaction yielding products via reorientational motion in the long-range region (3 - 8 Å) of the potential, is a relatively recently proposed reaction pathway and is now regarded as a universal mechanism that can explain the unimolecular dissociation and isomerization of various molecules. The structural movements of the partially dissociated fragments originating from the frustrated bond fission at the onset of roaming, however, have been explored mostly via theoretical simulations and rarely observed experimentally. Here, we report an investigation of the structural dynamics during a roaming-mediated isomerization reaction of bismuth triiodide (BiI3) in acetonitrile solution using femtosecond time-resolved x-ray liquidography. Structural analysis of the data visualizes the atomic movements during the roaming-mediated isomerization process including the opening of the Bi-Ib-Ic angle and the closing of Ia-Bi-Ib-Ic dihedral angle, each by ~40°, as well as the shortening of the Ib···Ic distance, following the frustrated bond fission.
Collapse
|
25
|
Lee Y, Kim JG, Lee SJ, Muniyappan S, Kim TW, Ki H, Kim H, Jo J, Yun SR, Lee H, Lee KW, Kim SO, Cammarata M, Ihee H. Ultrafast coherent motion and helix rearrangement of homodimeric hemoglobin visualized with femtosecond X-ray solution scattering. Nat Commun 2021; 12:3677. [PMID: 34135339 PMCID: PMC8209046 DOI: 10.1038/s41467-021-23947-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
Ultrafast motion of molecules, particularly the coherent motion, has been intensively investigated as a key factor guiding the reaction pathways. Recently, X-ray free-electron lasers (XFELs) have been utilized to elucidate the ultrafast motion of molecules. However, the studies on proteins using XFELs have been typically limited to the crystalline phase, and proteins in solution have rarely been investigated. Here we applied femtosecond time-resolved X-ray solution scattering (fs-TRXSS) and a structure refinement method to visualize the ultrafast motion of a protein. We succeeded in revealing detailed ultrafast structural changes of homodimeric hemoglobin involving the coherent motion. In addition to the motion of the protein itself, the time-dependent change of electron density of the hydration shell was tracked. Besides, the analysis on the fs-TRXSS data of myoglobin allows for observing the effect of the oligomeric state on the ultrafast coherent motion. Femtosecond time-resolved X-ray solution scattering (fs-TRXSS) measurements provide information on the structural dynamics of proteins in solution. Here, the authors present a structure refinement method for the analysis of fs-TRXSS data and use it to characterise the ultrafast structural changes of homodimeric haemoglobin.
Collapse
Affiliation(s)
- Yunbeom Lee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jong Goo Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Sang Jin Lee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Srinivasan Muniyappan
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Tae Wu Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Hosung Ki
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Hanui Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Junbeom Jo
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - So Ri Yun
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Hyosub Lee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Kyung Won Lee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Seong Ok Kim
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | | | - Hyotcherl Ihee
- Department of Chemistry and KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea. .,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, Republic of Korea.
| |
Collapse
|
26
|
Gaffney KJ. Capturing photochemical and photophysical transformations in iron complexes with ultrafast X-ray spectroscopy and scattering. Chem Sci 2021; 12:8010-8025. [PMID: 34194691 PMCID: PMC8208315 DOI: 10.1039/d1sc01864g] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/25/2021] [Indexed: 12/31/2022] Open
Abstract
Light-driven chemical transformations provide a compelling approach to understanding chemical reactivity with the potential to use this understanding to advance solar energy and catalysis applications. Capturing the non-equilibrium trajectories of electronic excited states with precision, particularly for transition metal complexes, would provide a foundation for advancing both of these objectives. Of particular importance for 3d metal compounds is characterizing the population dynamics of charge-transfer (CT) and metal-centered (MC) electronic excited states and understanding how the inner coordination sphere structural dynamics mediate the interaction between these states. Recent advances in ultrafast X-ray laser science has enabled the electronic excited state dynamics in 3d metal complexes to be followed with unprecedented detail. This review will focus on simultaneous X-ray emission spectroscopy (XES) and X-ray solution scattering (XSS) studies of iron coordination and organometallic complexes. These simultaneous XES-XSS studies have provided detailed insight into the mechanism of light-induced spin crossover in iron coordination compounds, the interaction of CT and MC excited states in iron carbene photosensitizers, and the mechanism of Fe-S bond dissociation in cytochrome c.
Collapse
Affiliation(s)
- Kelly J Gaffney
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Stanford University Menlo Park California 94025 USA
| |
Collapse
|
27
|
Natan A, Schori A, Owolabi G, Cryan JP, Glownia JM, Bucksbaum PH. Resolving multiphoton processes with high-order anisotropy ultrafast X-ray scattering. Faraday Discuss 2021; 228:123-138. [PMID: 33565543 DOI: 10.1039/d0fd00126k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the first results on experimentally measured ultrafast X-ray scattering of strongly driven molecular iodine and analysis of high-order anisotropic components of the scattering signal. We discuss the technical details of retrieving high fidelity high-order anisotropy components from the measured scattering data and outline a method to analyze such signals using Legendre decomposition. We describe how anisotropic motions can be extracted from the various Legendre orders using simulated anisotropic scattering signals and Fourier analysis. We implement the method on the measured signal and observe a multitude of dissociation and vibration motions simultaneously arising from various multiphoton transitions occurring in the sample. We use the anisotropic scattering information to disentangle the different processes and assign their dissociation velocities on the Angstrom and femtosecond scales de novo.
Collapse
Affiliation(s)
- Adi Natan
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
| | - Aviad Schori
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
| | - Grace Owolabi
- Department of Electrical Engineering and Computer Science, Howard University, Washington DC 20059, USA
| | - James P Cryan
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA. and Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - James M Glownia
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Philip H Bucksbaum
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA. and Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA
| |
Collapse
|
28
|
Kim JG, Choi EH, Lee Y, Ihee H. Femtosecond X-ray Liquidography Visualizes Wavepacket Trajectories in Multidimensional Nuclear Coordinates for a Bimolecular Reaction. Acc Chem Res 2021; 54:1685-1698. [PMID: 33733724 DOI: 10.1021/acs.accounts.0c00812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
ConspectusVibrational wavepacket motions on potential energy surfaces are one of the critical factors that determine the reaction dynamics of photoinduced reactions. The motions of vibrational wavepackets are often discussed in the interpretation of observables measured with various time-resolved vibrational or electronic spectroscopies but mostly in terms of the frequencies of wavepacket motions, which are approximated by normal modes, rather than the actual positions of the wavepacket. Although the time-dependent positions (that is, the trajectory) of wavepackets are hypothesized or drawn in imagined or calculated potential energy surfaces, it is not trivial to experimentally determine the trajectory of wavepackets, especially in multidimensional nuclear coordinates for a polyatomic molecule. Recently, we performed a femtosecond X-ray liquidography (solution scattering) experiment on a gold trimer complex (GTC), [Au(CN)2-]3, in water at X-ray free-electron lasers (XFELs) and elucidated the time-dependent positions of vibrational wavepackets from the Franck-Condon region to equilibrium structures on both excited and ground states in the course of the formation of covalent bonds between gold atoms.Bond making is an essential process in chemical reactions, but it is challenging to keep track of detailed atomic movements associated with bond making because of its bimolecular nature that requires slow diffusion of two reaction parties to meet each other. Bond formation in the solution phase has been elusive because the diffusion of the reactants limits the reaction rate of a bimolecular process, making it difficult to initiate and track the bond-making processes with an ultrafast time resolution. In principle, if the bimolecular encounter can be controlled to overcome the limitation caused by diffusion, the bond-making processes can be tracked in a time-resolved manner, providing valuable insight into the bimolecular reaction mechanism. In this regard, GTC offers a good model system for studying the dynamics of bond formation in solution. Au(I) atoms in GTC exhibit a noncovalent aurophilic interaction, making GTC an aggregate complex without any covalent bond. Upon photoexcitation of GTC, an electron is excited from an antibonding orbital to a bonding orbital, leading to the formation of covalent bonds among Au atoms. Since Au atoms in the ground state of GTC are located in close proximity within the same solvent cage, the formation of Au-Au covalent bonds occurs without its reaction rate being limited by diffusion through the solvent.Femtosecond time-resolved X-ray liquidography (fs-TRXL) data revealed that the ground state has an asymmetric bent structure. From the wavepacket trajectory determined in three-dimensional nuclear coordinates (two internuclear distances and one bond angle), we found that two covalent bonds are formed between three Au atoms of GTC asynchronously. Specifically, one covalent bond is formed first for the shorter Au-Au pair (of the asymmetric and bent ground-state structure) in 35 fs, and subsequently, the other covalent bond is formed for the longer Au-Au pair within 360 fs. The resultant trimer complex has a symmetric and linear geometry, implying the occurrence of bent-to-linear transformation concomitant with the formation of two equivalent covalent bonds, and exhibits vibrations that can be unambiguously assigned to specific normal modes based on the wavepacket trajectory, even without the vibrational frequencies provided by quantum calculation.
Collapse
Affiliation(s)
- Jong Goo Kim
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
- KI for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Eun Hyuk Choi
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
- KI for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Yunbeom Lee
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
- KI for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry, KAIST, Daejeon 34141, Republic of Korea
- KI for the BioCentury, KAIST, Daejeon 34141, Republic of Korea
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| |
Collapse
|
29
|
Biasin E, Fox ZW, Andersen A, Ledbetter K, Kjær KS, Alonso-Mori R, Carlstad JM, Chollet M, Gaynor JD, Glownia JM, Hong K, Kroll T, Lee JH, Liekhus-Schmaltz C, Reinhard M, Sokaras D, Zhang Y, Doumy G, March AM, Southworth SH, Mukamel S, Gaffney KJ, Schoenlein RW, Govind N, Cordones AA, Khalil M. Direct observation of coherent femtosecond solvent reorganization coupled to intramolecular electron transfer. Nat Chem 2021; 13:343-349. [PMID: 33589787 DOI: 10.1038/s41557-020-00629-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/14/2020] [Indexed: 01/31/2023]
Abstract
It is well known that the solvent plays a critical role in ultrafast electron-transfer reactions. However, solvent reorganization occurs on multiple length scales, and selectively measuring short-range solute-solvent interactions at the atomic level with femtosecond time resolution remains a challenge. Here we report femtosecond X-ray scattering and emission measurements following photoinduced charge-transfer excitation in a mixed-valence bimetallic (FeiiRuiii) complex in water, and their interpretation using non-equilibrium molecular dynamics simulations. Combined experimental and computational analysis reveals that the charge-transfer excited state has a lifetime of 62 fs and that coherent translational motions of the first solvation shell are coupled to the back electron transfer. Our molecular dynamics simulations identify that the observed coherent translational motions arise from hydrogen bonding changes between the solute and nearby water molecules upon photoexcitation, and have an amplitude of tenths of ångströms, 120-200 cm-1 frequency and ~100 fs relaxation time. This study provides an atomistic view of coherent solvent reorganization mediating ultrafast intramolecular electron transfer.
Collapse
Affiliation(s)
- Elisa Biasin
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| | - Zachary W Fox
- Department of Chemistry, University of Washington, Seattle, WA, USA
| | - Amity Andersen
- Environmental Molecular Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Kathryn Ledbetter
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Kasper S Kjær
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.,Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Julia M Carlstad
- Department of Chemistry, University of Washington, Seattle, WA, USA.,Department of Chemistry, University of California, Berkeley, CA, USA
| | - Matthieu Chollet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - James D Gaynor
- Department of Chemistry, University of Washington, Seattle, WA, USA.,Department of Chemistry, University of California, Berkeley, CA, USA
| | - James M Glownia
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Kiryong Hong
- Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Gas Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Thomas Kroll
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Jae Hyuk Lee
- Ultrafast X-ray Science Laboratory, Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Pohang Accelerator Laboratory, Pohang, Republic of Korea
| | | | - Marco Reinhard
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Dimosthenis Sokaras
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Yu Zhang
- Department of Chemistry, Physics, and Astronomy, University of California, Irvine, CA, USA.,Q-Chem, Pleasanton, CA, USA
| | - Gilles Doumy
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - Anne Marie March
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - Stephen H Southworth
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, USA
| | - Shaul Mukamel
- Department of Chemistry, Physics, and Astronomy, University of California, Irvine, CA, USA
| | - Kelly J Gaffney
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Robert W Schoenlein
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.,Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Niranjan Govind
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Amy A Cordones
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| | - Munira Khalil
- Department of Chemistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
30
|
Kim H, Kim JG, Kim TW, Lee SJ, Nozawa S, Adachi SI, Yoon K, Kim J, Ihee H. Ultrafast structural dynamics of in-cage isomerization of diiodomethane in solution. Chem Sci 2020; 12:2114-2120. [PMID: 34163975 PMCID: PMC8179290 DOI: 10.1039/d0sc05108j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Despite extensive studies on the isomer species formed by photodissociation of haloalkanes in solution, the molecular structure of the precursor of the isomer, which is often assumed to be a vibrationally hot isomer formed from the radical pair, and its in-cage isomerization mechanism remain elusive. Here, the structural dynamics of CH2I2 upon 267 nm photoexcitation in methanol were probed with femtosecond X-ray solution scattering at an X-ray free-electron laser. The determined molecular structure of the transiently formed species that converts to the CH2I–I isomer has the I–I distance of 4.17 Å, which is longer than that of the isomer (3.15 Å) by more than 1.0 Å and the mean-squared displacement of 0.45 Å2, which is about 100 times larger than those of typical regular chemical bonds. These unusual structural characteristics are consistent with either a vibrationally hot form of the CH2I–I isomer or the loosely-bound radical pair (CH2I˙⋯I˙). The structural dynamics of in-cage isomerization of CH2I2 and the unusual structure of the loosely-bound isomer precursor were unveiled with femtosecond X-ray liquidography (solution scattering).![]()
Collapse
Affiliation(s)
- Hanui Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea .,KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Jong Goo Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Tae Wu Kim
- Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sang Jin Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea .,KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Shunsuke Nozawa
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) Tsukuba Ibaraki 305-0801 Japan.,Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies Tsukuba Ibaraki 305-0801 Japan
| | - Shin-Ichi Adachi
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK) Tsukuba Ibaraki 305-0801 Japan.,Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies Tsukuba Ibaraki 305-0801 Japan
| | - Kihwan Yoon
- Department of Chemistry, The Catholic University of Korea Bucheon 14662 Republic of Korea
| | - Joonghan Kim
- Department of Chemistry, The Catholic University of Korea Bucheon 14662 Republic of Korea
| | - Hyotcherl Ihee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea .,KI for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
31
|
Panman MR, Biasin E, Berntsson O, Hermann M, Niebling S, Hughes AJ, Kübel J, Atkovska K, Gustavsson E, Nimmrich A, Dohn AO, Laursen M, Zederkof DB, Honarfar A, Tono K, Katayama T, Owada S, van Driel TB, Kjaer K, Nielsen MM, Davidsson J, Uhlig J, Haldrup K, Hub JS, Westenhoff S. Observing the Structural Evolution in the Photodissociation of Diiodomethane with Femtosecond Solution X-Ray Scattering. PHYSICAL REVIEW LETTERS 2020; 125:226001. [PMID: 33315438 DOI: 10.1103/physrevlett.125.226001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/25/2020] [Accepted: 10/19/2020] [Indexed: 06/12/2023]
Abstract
Resolving the structural dynamics of the initial steps of chemical reactions is challenging. We report the femtosecond time-resolved wide-angle x-ray scattering of the photodissociation of diiodomethane in cyclohexane. The data reveal with structural detail how the molecule dissociates into radicals, how the radicals collide with the solvent, and how they form the photoisomer. We extract how translational and rotational kinetic energy is dispersed into the solvent. We also find that 85% of the primary radical pairs are confined to their original solvent cage and discuss how this influences the downstream recombination reactions.
Collapse
Affiliation(s)
- Matthijs R Panman
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Elisa Biasin
- Centre for Molecular Movies, Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Oskar Berntsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Markus Hermann
- Georg-August-Universität Göttingen, Institute for Microbiology and Genetics, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Stephan Niebling
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Ashley J Hughes
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Joachim Kübel
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Kalina Atkovska
- Georg-August-Universität Göttingen, Institute for Microbiology and Genetics, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Emil Gustavsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Amke Nimmrich
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| | - Asmus O Dohn
- Centre for Molecular Movies, Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Mads Laursen
- Centre for Molecular Movies, Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Diana B Zederkof
- Centre for Molecular Movies, Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Alireza Honarfar
- Department of Chemical Physics, Lund University, Box 124, S-2210, Lund, Sweden
| | - Kensuke Tono
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5198, Japan
| | - Shigeki Owada
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tim B van Driel
- LCLS, SLAC National Laboratory, Menlo Park, California 94025, USA
| | - Kasper Kjaer
- LCLS, SLAC National Laboratory, Menlo Park, California 94025, USA
| | - Martin M Nielsen
- Centre for Molecular Movies, Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Jan Davidsson
- Department of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE75120 Uppsala, Sweden
| | - Jens Uhlig
- Department of Chemical Physics, Lund University, Box 124, S-2210, Lund, Sweden
| | - Kristoffer Haldrup
- Centre for Molecular Movies, Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Jochen S Hub
- Georg-August-Universität Göttingen, Institute for Microbiology and Genetics, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden
| |
Collapse
|
32
|
Ledbetter K, Biasin E, Nunes JPF, Centurion M, Gaffney KJ, Kozina M, Lin MF, Shen X, Yang J, Wang XJ, Wolf TJA, Cordones AA. Photodissociation of aqueous I 3 - observed with liquid-phase ultrafast mega-electron-volt electron diffraction. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:064901. [PMID: 33415183 PMCID: PMC7771998 DOI: 10.1063/4.0000051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/22/2020] [Indexed: 05/26/2023]
Abstract
Developing femtosecond resolution methods for directly observing structural dynamics is critical to understanding complex photochemical reaction mechanisms in solution. We have used two recent developments, ultrafast mega-electron-volt electron sources and vacuum compatible sub-micron thick liquid sheet jets, to enable liquid-phase ultrafast electron diffraction (LUED). We have demonstrated the viability of LUED by investigating the photodissociation of tri-iodide initiated with a 400 nm laser pulse. This has enabled the average speed of the bond expansion to be measured during the first 750 fs of dissociation and the geminate recombination to be directly captured on the picosecond time scale.
Collapse
Affiliation(s)
| | - E. Biasin
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - J. P. F. Nunes
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - M. Centurion
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - K. J. Gaffney
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - M. Kozina
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - M.-F. Lin
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - X. Shen
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | - X. J. Wang
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - T. J. A. Wolf
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - A. A. Cordones
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
33
|
Gold Nanoparticle Formation via X-ray Radiolysis Investigated with Time-Resolved X-ray Liquidography. Int J Mol Sci 2020; 21:ijms21197125. [PMID: 32992497 PMCID: PMC7582564 DOI: 10.3390/ijms21197125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/17/2022] Open
Abstract
We report the generation of gold nanoparticles (AuNPs) from the aqueous solution of chloro(2,2',2″-terpyridine)gold(III) ion ([Au(tpy)Cl]2+) through X-ray radiolysis and optical excitation at a synchrotron. The original purpose of the experiment was to investigate the photoinduced structural changes of [Au(tpy)Cl]2+ upon 400 nm excitation using time-resolved X-ray liquidography (TRXL). Initially, the TRXL data did not show any signal that would suggest structural changes of the solute molecule, but after an induction time, the TRXL data started to show sharp peaks and valleys. In the early phase, AuNPs with two types of morphology, dendrites, and spheres, were formed by the reducing action of hydrated electrons generated by the X-ray radiolysis of water, thereby allowing the detection of TRXL data due to the laser-induced lattice expansion and relaxation of AuNPs. Along with the lattice expansion, the dendritic and spherical AuNPs were transformed into smaller, raspberry-shaped AuNPs of a relatively uniform size via ablation by the optical femtosecond laser pulse used for the TRXL experiment. Density functional theory calculations confirm that the reduction potential of the metal complex relative to the hydration potential of X-ray-generated electrons determines the facile AuNP formation observed for [Au(tpy)Cl]2+.
Collapse
|
34
|
Kim KH, Späh A, Pathak H, Yang C, Bonetti S, Amann-Winkel K, Mariedahl D, Schlesinger D, Sellberg JA, Mendez D, van der Schot G, Hwang HY, Clark J, Shigeki O, Tadashi T, Harada Y, Ogasawara H, Katayama T, Nilsson A, Perakis F. Anisotropic X-Ray Scattering of Transiently Oriented Water. PHYSICAL REVIEW LETTERS 2020; 125:076002. [PMID: 32857536 DOI: 10.1103/physrevlett.125.076002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
We study the structural dynamics of liquid water by time-resolved anisotropic x-ray scattering under the optical Kerr effect condition. In this way, we can separate the anisotropic scattering decay of 160 fs from the delayed temperature increase of ∼0.1 K occurring at 1 ps and quantify transient changes in the O-O pair distribution function. Polarizable molecular dynamics simulations reproduce well the experiment, indicating transient alignment of molecules along the electric field, which shortens the nearest-neighbor distances. In addition, analysis of the simulated water local structure provides evidence that two hypothesized fluctuating water configurations exhibit different polarizability.
Collapse
Affiliation(s)
- Kyung Hwan Kim
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
- Department of Chemistry, POSTECH, Pohang 37673, Republic of Korea
| | - Alexander Späh
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Harshad Pathak
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Cheolhee Yang
- Department of Chemistry, POSTECH, Pohang 37673, Republic of Korea
| | - Stefano Bonetti
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172 Venice-Mestre, Italy
| | - Katrin Amann-Winkel
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Daniel Mariedahl
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Daniel Schlesinger
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
- Department of Environmental Science and Bolin Centre for Climate Research, Stockholm University, 114 18 Stockholm, Sweden
| | - Jonas A Sellberg
- Biomedical and X-Ray Physics, Department of Applied Physics, AlbaNova University Center, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Derek Mendez
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Gijs van der Schot
- Department of Cell and Molecular Biology, Laboratory of Molecular Biophysics, Uppsala University, SE-75124 Uppsala, Sweden
| | - Harold Y Hwang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jesse Clark
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | - Owada Shigeki
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo 679-5198, Japan
| | - Togashi Tadashi
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo 679-5198, Japan
| | - Yoshihisa Harada
- Institute for Solid State Physics, The University of Tokyo, Kouto 1-1-1, Sayo, Hyogo 679-5148, Japan
| | | | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo 679-5198, Japan
| | - Anders Nilsson
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| | - Fivos Perakis
- Department of Physics, AlbaNova University Center, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
35
|
Vacher M, Kunnus K, Delcey MG, Gaffney KJ, Lundberg M. Origin of core-to-core x-ray emission spectroscopy sensitivity to structural dynamics. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2020; 7:044102. [PMID: 32665965 PMCID: PMC7340509 DOI: 10.1063/4.0000022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/18/2020] [Indexed: 05/05/2023]
Abstract
Recently, coherent structural dynamics in the excited state of an iron photosensitizer was observed through oscillations in the intensity of Kα x-ray emission spectroscopy (XES). Understanding the origin of the unexpected sensitivity of core-to-core transitions to structural dynamics is important for further development of femtosecond time-resolved XES methods and, we believe, generally necessary for interpretation of XES signals from highly non-equilibrium structures that are ubiquitous in photophysics and photochemistry. Here, we use multiconfigurational wavefunction calculations combined with atomic theory to analyze the emission process in detail. The sensitivity of core-to-core transitions to structural dynamics is due to a shift of the minimum energy metal-ligand bond distance between 1s and 2p core-hole states. A key effect is the additional contraction of the non-bonding 3s and 3p orbitals in 1s core-hole states, which decreases electron-electron repulsion and increases overlap in the metal-ligand bonds. The effect is believed to be general and especially pronounced for systems with strong bonds. The important role of 3s and 3p orbitals is consistent with the analysis of radial charge and spin densities and can be connected to the negative chemical shift observed for many transition metal complexes. The XES sensitivity to structural dynamics can be optimized by tuning the emission energy spectrometer, with oscillations up to ±4% of the maximum intensity for the current system. The theoretical predictions can be used to design experiments that separate electronic and nuclear degrees of freedom in ultrafast excited state dynamics.
Collapse
Affiliation(s)
| | | | - Mickaël G. Delcey
- Department of Chemistry-Ångström Laboratory, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Kelly J. Gaffney
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, USA
| | - Marcus Lundberg
- Department of Chemistry-Ångström Laboratory, Uppsala University, SE-751 20 Uppsala, Sweden
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
36
|
Kim JG, Nozawa S, Kim H, Choi EH, Sato T, Kim TW, Kim KH, Ki H, Kim J, Choi M, Lee Y, Heo J, Oang KY, Ichiyanagi K, Fukaya R, Lee JH, Park J, Eom I, Chun SH, Kim S, Kim M, Katayama T, Togashi T, Owada S, Yabashi M, Lee SJ, Lee S, Ahn CW, Ahn DS, Moon J, Choi S, Kim J, Joo T, Kim J, Adachi SI, Ihee H. Mapping the emergence of molecular vibrations mediating bond formation. Nature 2020; 582:520-524. [PMID: 32581378 DOI: 10.1038/s41586-020-2417-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/16/2020] [Indexed: 11/09/2022]
Abstract
Fundamental studies of chemical reactions often consider the molecular dynamics along a reaction coordinate using a calculated or suggested potential energy surface1-5. But fully mapping such dynamics experimentally, by following all nuclear motions in a time-resolved manner-that is, the motions of wavepackets-is challenging and has not yet been realized even for the simple stereotypical bimolecular reaction6-8: A-B + C → A + B-C. Here we track the trajectories of these vibrational wavepackets during photoinduced bond formation of the gold trimer complex [Au(CN)2-]3 in an aqueous monomer solution, using femtosecond X-ray liquidography9-12 with X-ray free-electron lasers13,14. In the complex, which forms when three monomers A, B and C cluster together through non-covalent interactions15,16, the distance between A and B is shorter than that between B and C. Tracking the wavepacket in three-dimensional nuclear coordinates reveals that within the first 60 femtoseconds after photoexcitation, a covalent bond forms between A and B to give A-B + C. The second covalent bond, between B and C, subsequently forms within 360 femtoseconds to give a linear and covalently bonded trimer complex A-B-C. The trimer exhibits harmonic vibrations that we map and unambiguously assign to specific normal modes using only the experimental data. In principle, more intense X-rays could visualize the motion not only of highly scattering atoms such as gold but also of lighter atoms such as carbon and nitrogen, which will open the door to the direct tracking of the atomic motions involved in many chemical reactions.
Collapse
Affiliation(s)
- Jong Goo Kim
- Department of Chemistry, KAIST, Daejeon, Republic of Korea.,KI for the BioCentury, KAIST, Daejeon, Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Shunsuke Nozawa
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan.,Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies, Tsukuba, Japan
| | - Hanui Kim
- Department of Chemistry, KAIST, Daejeon, Republic of Korea.,KI for the BioCentury, KAIST, Daejeon, Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Eun Hyuk Choi
- Department of Chemistry, KAIST, Daejeon, Republic of Korea.,KI for the BioCentury, KAIST, Daejeon, Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Tokushi Sato
- Center for Free-Electron Laser Science (CFEL), Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany.,European XFEL, Schenefeld, Germany
| | - Tae Wu Kim
- Department of Chemistry, KAIST, Daejeon, Republic of Korea.,KI for the BioCentury, KAIST, Daejeon, Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Kyung Hwan Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Hosung Ki
- Department of Chemistry, KAIST, Daejeon, Republic of Korea.,KI for the BioCentury, KAIST, Daejeon, Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jungmin Kim
- Department of Chemistry, KAIST, Daejeon, Republic of Korea.,KI for the BioCentury, KAIST, Daejeon, Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Minseo Choi
- Department of Chemistry, KAIST, Daejeon, Republic of Korea.,KI for the BioCentury, KAIST, Daejeon, Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Yunbeom Lee
- Department of Chemistry, KAIST, Daejeon, Republic of Korea.,KI for the BioCentury, KAIST, Daejeon, Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jun Heo
- Department of Chemistry, KAIST, Daejeon, Republic of Korea.,KI for the BioCentury, KAIST, Daejeon, Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Key Young Oang
- Radiation Center for Ultrafast Science, Quantum Optics Division, Korea Atomic Energy Research Institute (KAERI), Daejeon, Republic of Korea
| | - Kouhei Ichiyanagi
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
| | - Ryo Fukaya
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
| | - Jae Hyuk Lee
- Pohang Accelerator Laboratory, Pohang, Republic of Korea
| | - Jaeku Park
- Pohang Accelerator Laboratory, Pohang, Republic of Korea
| | - Intae Eom
- Pohang Accelerator Laboratory, Pohang, Republic of Korea
| | - Sae Hwan Chun
- Pohang Accelerator Laboratory, Pohang, Republic of Korea
| | - Sunam Kim
- Pohang Accelerator Laboratory, Pohang, Republic of Korea
| | - Minseok Kim
- Pohang Accelerator Laboratory, Pohang, Republic of Korea
| | - Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Japan.,RIKEN SPring-8 Center, Sayo, Japan
| | - Tadashi Togashi
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Japan.,RIKEN SPring-8 Center, Sayo, Japan
| | - Sigeki Owada
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Japan.,RIKEN SPring-8 Center, Sayo, Japan
| | - Makina Yabashi
- Japan Synchrotron Radiation Research Institute (JASRI), Sayo, Japan.,RIKEN SPring-8 Center, Sayo, Japan
| | - Sang Jin Lee
- Department of Chemistry, KAIST, Daejeon, Republic of Korea.,KI for the BioCentury, KAIST, Daejeon, Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Seonggon Lee
- Department of Chemistry, KAIST, Daejeon, Republic of Korea.,KI for the BioCentury, KAIST, Daejeon, Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Chi Woo Ahn
- Department of Chemistry, KAIST, Daejeon, Republic of Korea.,KI for the BioCentury, KAIST, Daejeon, Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Doo-Sik Ahn
- Department of Chemistry, KAIST, Daejeon, Republic of Korea.,KI for the BioCentury, KAIST, Daejeon, Republic of Korea.,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jiwon Moon
- Department of Chemistry, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Seungjoo Choi
- Department of Chemistry, Inha University, Incheon, Republic of Korea
| | - Joonghan Kim
- Department of Chemistry, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Taiha Joo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jeongho Kim
- Department of Chemistry, Inha University, Incheon, Republic of Korea
| | - Shin-Ichi Adachi
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan.,Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies, Tsukuba, Japan
| | - Hyotcherl Ihee
- Department of Chemistry, KAIST, Daejeon, Republic of Korea. .,KI for the BioCentury, KAIST, Daejeon, Republic of Korea. .,Center for Nanomaterials and Chemical Reactions, Institute for Basic Science (IBS), Daejeon, Republic of Korea.
| |
Collapse
|
37
|
Observation of the molecular response to light upon photoexcitation. Nat Commun 2020; 11:2157. [PMID: 32358535 PMCID: PMC7195484 DOI: 10.1038/s41467-020-15680-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/23/2020] [Indexed: 12/02/2022] Open
Abstract
When a molecule interacts with light, its electrons can absorb energy from the electromagnetic field by rapidly rearranging their positions. This constitutes the first step of photochemical and photophysical processes that include primary events in human vision and photosynthesis. Here, we report the direct measurement of the initial redistribution of electron density when the molecule 1,3-cyclohexadiene (CHD) is optically excited. Our experiments exploit the intense, ultrashort hard x-ray pulses of the Linac Coherent Light Source (LCLS) to map the change in electron density using ultrafast x-ray scattering. The nature of the excited electronic state is identified with excellent spatial resolution and in good agreement with theoretical predictions. The excited state electron density distributions are thus amenable to direct experimental observation. Photoabsorption is a fundamental process that leads to changes in the electron density in matter. Here, the authors show a direct measurement of the distribution of electron density when a cyclohexadine molecule is excited by pulsed UV radiation and probed by a time delayed X-ray pulse generated at LCLS.
Collapse
|
38
|
van Driel TB, Nelson S, Armenta R, Blaj G, Boo S, Boutet S, Doering D, Dragone A, Hart P, Haller G, Kenney C, Kwaitowski M, Manger L, McKelvey M, Nakahara K, Oriunno M, Sato T, Weaver M. The ePix10k 2-megapixel hard X-ray detector at LCLS. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:608-615. [PMID: 32381760 PMCID: PMC7206547 DOI: 10.1107/s1600577520004257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 03/27/2020] [Indexed: 05/25/2023]
Abstract
The ePix10ka2M (ePix10k) is a new large area detector specifically developed for X-ray free-electron laser (XFEL) applications. The hybrid pixel detector was developed at SLAC to provide a hard X-ray area detector with a high dynamic range, running at the 120 Hz repetition rate of the Linac Coherent Light Source (LCLS). The ePix10k consists of 16 modules, each with 352 × 384 pixels of 100 µm × 100 µm distributed on four ASICs, resulting in a 2.16 megapixel detector, with a 16.5 cm × 16.5 cm active area and ∼80% coverage. The high dynamic range is achieved with three distinct gain settings (low, medium, high) as well as two auto-ranging modes (high-to-low and medium-to-low). Here the three fixed gain modes are evaluated. The resulting dynamic range (from single photon counting to 10000 photons pixel-1 pulse-1 at 8 keV) makes it suitable for a large number of different XFEL experiments. The ePix10k replaces the large CSPAD in operation since 2011. The dimensions of the two detectors are similar, making the upgrade from CSPAD to ePix10k straightforward for most setups, with the ePix10k improving on experimental performance. The SLAC-developed ePix cameras all utilize a similar platform, are tailored to target different experimental conditions and are designed to provide an upgrade path for future high-repetition-rate XFELs. Here the first measurements on this new ePix10k detector are presented and the performance under typical XFEL conditions evaluated during an LCLS X-ray diffuse scattering experiment measuring the 9.5 keV X-ray photons scattered from a thin liquid jet.
Collapse
Affiliation(s)
- Tim Brandt van Driel
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Silke Nelson
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Rebecca Armenta
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Gabriel Blaj
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Stephen Boo
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Sébastien Boutet
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Dionisio Doering
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Angelo Dragone
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Philip Hart
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Gunther Haller
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Christopher Kenney
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Maciej Kwaitowski
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Leo Manger
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Mark McKelvey
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Kaz Nakahara
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Marco Oriunno
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Takahiro Sato
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - Matt Weaver
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| |
Collapse
|
39
|
Ultrafast X-ray Photochemistry at European XFEL: Capabilities of the Femtosecond X-ray Experiments (FXE) Instrument. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030995] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Time-resolved X-ray methods are widely used for monitoring transient intermediates over the course of photochemical reactions. Ultrafast X-ray absorption and emission spectroscopies as well as elastic X-ray scattering deliver detailed electronic and structural information on chemical dynamics in the solution phase. In this work, we describe the opportunities at the Femtosecond X-ray Experiments (FXE) instrument of European XFEL. Guided by the idea of combining spectroscopic and scattering techniques in one experiment, the FXE instrument has completed the initial commissioning phase for most of its components and performed first successful experiments within the baseline capabilities. This is demonstrated by its currently 115 fs (FWHM) temporal resolution to acquire ultrafast X-ray emission spectra by simultaneously recording iron Kα and Kβ lines, next to wide angle X-ray scattering patterns on a photoexcited aqueous solution of [Fe(bpy)3]2+, a transition metal model compound.
Collapse
|
40
|
Kunnus K, Vacher M, Harlang TCB, Kjær KS, Haldrup K, Biasin E, van Driel TB, Pápai M, Chabera P, Liu Y, Tatsuno H, Timm C, Källman E, Delcey M, Hartsock RW, Reinhard ME, Koroidov S, Laursen MG, Hansen FB, Vester P, Christensen M, Sandberg L, Németh Z, Szemes DS, Bajnóczi É, Alonso-Mori R, Glownia JM, Nelson S, Sikorski M, Sokaras D, Lemke HT, Canton SE, Møller KB, Nielsen MM, Vankó G, Wärnmark K, Sundström V, Persson P, Lundberg M, Uhlig J, Gaffney KJ. Vibrational wavepacket dynamics in Fe carbene photosensitizer determined with femtosecond X-ray emission and scattering. Nat Commun 2020; 11:634. [PMID: 32005815 PMCID: PMC6994595 DOI: 10.1038/s41467-020-14468-w] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 12/30/2019] [Indexed: 12/31/2022] Open
Abstract
The non-equilibrium dynamics of electrons and nuclei govern the function of photoactive materials. Disentangling these dynamics remains a critical goal for understanding photoactive materials. Here we investigate the photoinduced dynamics of the [Fe(bmip)2]2+ photosensitizer, where bmip = 2,6-bis(3-methyl-imidazole-1-ylidine)-pyridine, with simultaneous femtosecond-resolution Fe Kα and Kβ X-ray emission spectroscopy (XES) and X-ray solution scattering (XSS). This measurement shows temporal oscillations in the XES and XSS difference signals with the same 278 fs period oscillation. These oscillations originate from an Fe-ligand stretching vibrational wavepacket on a triplet metal-centered (3MC) excited state surface. This 3MC state is populated with a 110 fs time constant by 40% of the excited molecules while the rest relax to a 3MLCT excited state. The sensitivity of the Kα XES to molecular structure results from a 0.7% average Fe-ligand bond length shift between the 1 s and 2p core-ionized states surfaces.
Collapse
Affiliation(s)
- Kristjan Kunnus
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA.
| | - Morgane Vacher
- Department of Chemistry - Ångström laboratory, Uppsala University, Box 538, 75121, Uppsala, Sweden
| | - Tobias C B Harlang
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Kasper S Kjær
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Kristoffer Haldrup
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Elisa Biasin
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Tim B van Driel
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Mátyás Pápai
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800, Kongens Lyngby, Denmark
| | - Pavel Chabera
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
| | - Yizhu Liu
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, 22100, Lund, Sweden
| | - Hideyuki Tatsuno
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
| | - Cornelia Timm
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
| | - Erik Källman
- Department of Chemistry - Ångström laboratory, Uppsala University, Box 538, 75121, Uppsala, Sweden
| | - Mickaël Delcey
- Department of Chemistry - Ångström laboratory, Uppsala University, Box 538, 75121, Uppsala, Sweden
| | - Robert W Hartsock
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Marco E Reinhard
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Sergey Koroidov
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Mads G Laursen
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Frederik B Hansen
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Peter Vester
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Morten Christensen
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Lise Sandberg
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
- University of Copenhagen, Niels Bohr Institute, Blegdamsvej 17, 2100, Copenhagen, Denmark
| | - Zoltán Németh
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525, Budapest, Hungary
| | - Dorottya Sárosiné Szemes
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525, Budapest, Hungary
| | - Éva Bajnóczi
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525, Budapest, Hungary
| | | | - James M Glownia
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Silke Nelson
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Marcin Sikorski
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | | | - Henrik T Lemke
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Sophie E Canton
- ELI-ALPS, ELI-HU Non-Profit Ltd., Dugonics ter 13, Szeged, 6720, Hungary
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22607, Hamburg, Germany
| | - Klaus B Møller
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800, Kongens Lyngby, Denmark
| | - Martin M Nielsen
- Department of Physics, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - György Vankó
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525, Budapest, Hungary
| | - Kenneth Wärnmark
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, 22100, Lund, Sweden
| | - Villy Sundström
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
| | - Petter Persson
- Theoretical Chemistry Division, Lund University, P.O. Box 124, 22100, Lund, Sweden
| | - Marcus Lundberg
- Department of Chemistry - Ångström laboratory, Uppsala University, Box 538, 75121, Uppsala, Sweden
| | - Jens Uhlig
- Department of Chemical Physics, Lund University, P.O. Box 12 4, 22100, Lund, Sweden
| | - Kelly J Gaffney
- PULSE Institute, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA.
| |
Collapse
|
41
|
Simmermacher M, Moreno Carrascosa A, E. Henriksen N, B. Møller K, Kirrander A. Theory of ultrafast x-ray scattering by molecules in the gas phase. J Chem Phys 2019; 151:174302. [DOI: 10.1063/1.5110040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mats Simmermacher
- EaStCHEM, School of Chemistry, University of Edinburgh, EH9 3FJ Edinburgh, United Kingdom
| | | | - Niels E. Henriksen
- Department of Chemistry, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Klaus B. Møller
- Department of Chemistry, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Adam Kirrander
- EaStCHEM, School of Chemistry, University of Edinburgh, EH9 3FJ Edinburgh, United Kingdom
| |
Collapse
|
42
|
Kong Q, Khakhulin D, Shkrob IA, Lee JH, Zhang X, Kim J, Kim KH, Jo J, Kim J, Kang J, Pham VT, Jennings G, Kurtz C, Spence R, Chen LX, Wulff M, Ihee H. Solvent-dependent complex reaction pathways of bromoform revealed by time-resolved X-ray solution scattering and X-ray transient absorption spectroscopy. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:064902. [PMID: 31893214 PMCID: PMC6930140 DOI: 10.1063/1.5132968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
The photochemical reaction pathways of CHBr3 in solution were unveiled using two complementary X-ray techniques, time-resolved X-ray solution scattering (TRXSS) and X-ray transient absorption spectroscopy, in a wide temporal range from 100 ps to tens of microseconds. By performing comparative measurements in protic (methanol) and aprotic (methylcyclohexane) solvents, we found that the reaction pathways depend significantly on the solvent properties. In methanol, the major photoproducts are CH3OCHBr2 and HBr generated by rapid solvolysis of iso-CHBr2-Br, an isomer of CHBr3. In contrast, in methylcyclohexane, iso-CHBr2-Br returns to CHBr3 without solvolysis. In both solvents, the formation of CHBr2 and Br is a competing reaction channel. From the structural analysis of TRXSS data, we determined the structures of key intermediate species, CH3OCHBr2 and iso-CHBr2-Br in methanol and methylcyclohexane, respectively, which are consistent with the structures from density functional theory calculations.
Collapse
Affiliation(s)
- Qingyu Kong
- Authors to whom correspondence should be addressed: and
| | | | - Ilya A. Shkrob
- Chemical Sciences and Engineering Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60349, USA
| | - Jae Hyuk Lee
- Pohang Accelerator Laboratory, Pohang 37673, South Korea
| | - Xiaoyi Zhang
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60349, USA
| | - Jeongho Kim
- Department of Chemistry, Inha University, Incheon 22212, South Korea
| | - Kyung Hwan Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | | | | | | | - Van-Thai Pham
- Synchrotron Soleil, L'Orme des Merisiers, St. Aubin, 91192 Gif-sur-Yvette, France
| | - Guy Jennings
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60349, USA
| | - Charles Kurtz
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60349, USA
| | - Rick Spence
- X-ray Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60349, USA
| | | | - Michael Wulff
- European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble Cedex, France
| | | |
Collapse
|
43
|
Pápai M, Rozgonyi T, Penfold TJ, Nielsen MM, Møller KB. Simulation of ultrafast excited-state dynamics and elastic x-ray scattering by quantum wavepacket dynamics. J Chem Phys 2019; 151:104307. [DOI: 10.1063/1.5115204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Mátyás Pápai
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark
| | - Tamás Rozgonyi
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest, Hungary
- Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, P.O. Box 286, H-1519 Budapest, Hungary
| | - Thomas J. Penfold
- Chemistry - School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Martin M. Nielsen
- Department of Physics, Technical University of Denmark, Fysikvej 307, DK-2800 Kongens Lyngby, Denmark
| | - Klaus B. Møller
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
44
|
Katayama T, Nozawa S, Umena Y, Lee S, Togashi T, Owada S, Yabashi M. A versatile experimental system for tracking ultrafast chemical reactions with X-ray free-electron lasers. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:054302. [PMID: 31531388 PMCID: PMC6742500 DOI: 10.1063/1.5111795] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/23/2019] [Indexed: 05/17/2023]
Abstract
An experimental system, SPINETT (SACLA Pump-probe INstrumEnt for Tracking Transient dynamics), dedicated for ultrafast pump-probe experiments using X-ray free-electron lasers has been developed. SPINETT consists of a chamber operated under 1 atm helium pressure, two Von Hamos spectrometers, and a large two-dimensional detector having a short work distance. This platform covers complementary X-ray techniques; one can perform time-resolved X-ray absorption spectroscopy, time-resolved X-ray emission spectroscopy, and time-resolved X-ray diffuse scattering. Two types of liquid injectors have been prepared for low-viscosity chemical solutions and for protein microcrystals embedded in a matrix. We performed a test experiment at SPring-8 Angstrom Compact free-electron LAser and demonstrated the capability of SPINETT to obtain the local electronic structure and geometrical information simultaneously.
Collapse
Affiliation(s)
| | | | - Yasufumi Umena
- Research Institute for Interdisciplinary Science and Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tshushima Naka, Okayama 700-8530, Japan
| | - SungHee Lee
- Department of Chemistry and Chemical Institute for Functional Materials, Pusan National University, Busan 609-735, South Korea
| | | | | | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| |
Collapse
|
45
|
Galler A, Gawelda W, Biednov M, Bomer C, Britz A, Brockhauser S, Choi TK, Diez M, Frankenberger P, French M, Görries D, Hart M, Hauf S, Khakhulin D, Knoll M, Korsch T, Kubicek K, Kuster M, Lang P, Alves Lima F, Otte F, Schulz S, Zalden P, Bressler C. Scientific instrument Femtosecond X-ray Experiments (FXE): instrumentation and baseline experimental capabilities. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1432-1447. [PMID: 31490131 PMCID: PMC6730617 DOI: 10.1107/s1600577519006647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 05/08/2019] [Indexed: 05/15/2023]
Abstract
The European X-ray Free-Electron Laser (EuXFEL) delivers extremely intense (>1012 photons pulse-1 and up to 27000 pulses s-1), ultrashort (<100 fs) and transversely coherent X-ray radiation, at a repetition rate of up to 4.5 MHz. Its unique X-ray beam parameters enable novel and groundbreaking experiments in ultrafast photochemistry and material sciences at the Femtosecond X-ray Experiments (FXE) scientific instrument. This paper provides an overview of the currently implemented experimental baseline instrumentation and its performance during the commissioning phase, and a preview of planned improvements. FXE's versatile instrumentation combines the simultaneous application of forward X-ray scattering and X-ray spectroscopy techniques with femtosecond time resolution. These methods will eventually permit exploitation of wide-angle X-ray scattering studies and X-ray emission spectroscopy, along with X-ray absorption spectroscopy, including resonant inelastic X-ray scattering and X-ray Raman scattering. A suite of ultrafast optical lasers throughout the UV-visible and near-IR ranges (extending up to mid-IR in the near future) with pulse length down to 15 fs, synchronized to the X-ray source, serve to initiate dynamic changes in the sample. Time-delayed hard X-ray pulses in the 5-20 keV range are used to probe the ensuing dynamic processes using the suite of X-ray probe tools. FXE is equipped with a primary monochromator, a primary and secondary single-shot spectrometer, and a timing tool to correct the residual timing jitter between laser and X-ray pulses.
Collapse
Affiliation(s)
- Andreas Galler
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Wojciech Gawelda
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
| | - Mykola Biednov
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Christina Bomer
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, 22607 Hamburg, Germany
| | - Alexander Britz
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Sandor Brockhauser
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Biological Research Centre (BRC), Hungarian Academy of Sciences, Temesvári krt 62, H-6726 Szeged, Hungary
| | - Tae-Kyu Choi
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Michael Diez
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, 22607 Hamburg, Germany
| | - Paul Frankenberger
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Marcus French
- STFC Technology, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, UK
| | - Dennis Görries
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Matthiew Hart
- STFC Technology, Rutherford Appleton Laboratory, Didcot, Oxfordshire OX11 0QX, UK
| | - Steffen Hauf
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Dmitry Khakhulin
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Martin Knoll
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Timo Korsch
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Katharina Kubicek
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Markus Kuster
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Philipp Lang
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Frederico Alves Lima
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Florian Otte
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, 22607 Hamburg, Germany
- Fakultät Physik, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Sebastian Schulz
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Peter Zalden
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Christian Bressler
- Femtosecond X-ray Experiments Group, European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, 22607 Hamburg, Germany
| |
Collapse
|
46
|
Britz A, Abraham B, Biasin E, van Driel TB, Gallo A, Garcia-Esparza AT, Glownia J, Loukianov A, Nelson S, Reinhard M, Sokaras D, Alonso-Mori R. Resolving structures of transition metal complex reaction intermediates with femtosecond EXAFS. Phys Chem Chem Phys 2019; 22:2660-2666. [PMID: 31441480 DOI: 10.1039/c9cp03483h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Femtosecond-resolved Extended X-ray Absorption Fine Structure (EXAFS) measurements of solvated transition metal complexes are successfully implemented at the X-ray Free Electron Laser LCLS. Benchmark experiments on [Fe(terpy)2]2+ in solution show a signal-to-noise ratio on the order of 500, comparable to typical 100 ps-resolution synchrotron measurements. In the few femtoseconds after photoexcitation, we observe the EXAFS fingerprints of a short-lived (∼100 fs) intermediate as well as those of a vibrationally hot long-lived (∼ns) excited state.
Collapse
Affiliation(s)
- Alexander Britz
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA. and Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
| | - Baxter Abraham
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA. and Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
| | - Elisa Biasin
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
| | - Tim Brandt van Driel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
| | - Alessandro Gallo
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA and SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Angel T Garcia-Esparza
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
| | - James Glownia
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
| | - Anton Loukianov
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
| | - Silke Nelson
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
| | - Marco Reinhard
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
| | - Roberto Alonso-Mori
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
| |
Collapse
|
47
|
Katayama T, Northey T, Gawelda W, Milne CJ, Vankó G, Lima FA, Bohinc R, Németh Z, Nozawa S, Sato T, Khakhulin D, Szlachetko J, Togashi T, Owada S, Adachi SI, Bressler C, Yabashi M, Penfold TJ. Tracking multiple components of a nuclear wavepacket in photoexcited Cu(I)-phenanthroline complex using ultrafast X-ray spectroscopy. Nat Commun 2019; 10:3606. [PMID: 31399565 PMCID: PMC6689108 DOI: 10.1038/s41467-019-11499-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 07/18/2019] [Indexed: 11/09/2022] Open
Abstract
Disentangling the strong interplay between electronic and nuclear degrees of freedom is essential to achieve a full understanding of excited state processes during ultrafast nonadiabatic chemical reactions. However, the complexity of multi-dimensional potential energy surfaces means that this remains challenging. The energy flow during vibrational and electronic relaxation processes can be explored with structural sensitivity by probing a nuclear wavepacket using femtosecond time-resolved X-ray Absorption Near Edge Structure (TR-XANES). However, it remains unknown to what level of detail vibrational motions are observable in this X-ray technique. Herein we track the wavepacket dynamics of a prototypical [Cu(2,9-dimethyl-1,10-phenanthroline)2]+ complex using TR-XANES. We demonstrate that sensitivity to individual wavepacket components can be modulated by the probe energy and that the bond length change associated with molecular breathing mode can be tracked with a sub-Angstrom resolution beyond optical-domain observables. Importantly, our results reveal how state-of-the-art TR-XANES provides deeper insights of ultrafast nonadiabatic chemical reactions.
Collapse
Affiliation(s)
- Tetsuo Katayama
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo, 679-5198, Japan. .,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan.
| | - Thomas Northey
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon-Tyne, NE1 7RU, UK
| | - Wojciech Gawelda
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.,Faculty of Physics, Adam Mickiewicz University, 61-614, Poznań, Poland
| | | | - György Vankó
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, 1525, Budapest, Hungary
| | | | - Rok Bohinc
- SwissFEL, Paul Scherrer Institut, 5232, Villigen-PSI, Switzerland
| | - Zoltán Németh
- Wigner Research Centre for Physics, Hungarian Academy of Sciences, 1525, Budapest, Hungary
| | - Shunsuke Nozawa
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan.,Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Tokushi Sato
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.,Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | | | - Jakub Szlachetko
- Institute of Nuclear Physics, Polish Academy of Sciences, 31-342, Kraków, Poland
| | - Tadashi Togashi
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo, 679-5198, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Shigeki Owada
- Japan Synchrotron Radiation Research Institute, Kouto 1-1-1, Sayo, Hyogo, 679-5198, Japan.,RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Shin-Ichi Adachi
- Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan.,Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University for Advanced Studies, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Christian Bressler
- European XFEL, Holzkoppel 4, 22869, Schenefeld, Germany.,Centre for Ultrafast Imaging CUI, University of Hamburg, 22761, Hamburg, Germany
| | - Makina Yabashi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan
| | - Thomas J Penfold
- Chemistry-School of Natural and Environmental Sciences, Newcastle University, Newcastle Upon-Tyne, NE1 7RU, UK.
| |
Collapse
|
48
|
Britz A, Gawelda W, Assefa TA, Jamula LL, Yarranton JT, Galler A, Khakhulin D, Diez M, Harder M, Doumy G, March AM, Bajnóczi É, Németh Z, Pápai M, Rozsályi E, Sárosiné Szemes D, Cho H, Mukherjee S, Liu C, Kim TK, Schoenlein RW, Southworth SH, Young L, Jakubikova E, Huse N, Vankó G, Bressler C, McCusker JK. Using Ultrafast X-ray Spectroscopy To Address Questions in Ligand-Field Theory: The Excited State Spin and Structure of [Fe(dcpp)2]2+. Inorg Chem 2019; 58:9341-9350. [DOI: 10.1021/acs.inorgchem.9b01063] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Alexander Britz
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Wojciech Gawelda
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
| | - Tadesse A. Assefa
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- Institute of Laser Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Lindsey L. Jamula
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jonathan T. Yarranton
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | | | - Dmitry Khakhulin
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Michael Diez
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Manuel Harder
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Gilles Doumy
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Anne Marie March
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Éva Bajnóczi
- Wigner Research Centre for Physics, Hungarian Academy Sciences, H-1525 Budapest, Hungary
| | - Zoltán Németh
- Wigner Research Centre for Physics, Hungarian Academy Sciences, H-1525 Budapest, Hungary
| | - Mátyás Pápai
- Wigner Research Centre for Physics, Hungarian Academy Sciences, H-1525 Budapest, Hungary
- Department of Chemistry, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Emese Rozsályi
- Wigner Research Centre for Physics, Hungarian Academy Sciences, H-1525 Budapest, Hungary
| | | | - Hana Cho
- Center for Analytical Chemistry, Division of Chemical and Medical Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Sriparna Mukherjee
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Chang Liu
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Tae Kyu Kim
- Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Robert W. Schoenlein
- Ultrafast X-ray Science Laboratory, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Stephen H. Southworth
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Linda Young
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Physics and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
| | - Elena Jakubikova
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Nils Huse
- Center for Free-Electron Laser Science, University of Hamburg, 22607 Hamburg, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, 22761 Hamburg, Germany
| | - György Vankó
- Wigner Research Centre for Physics, Hungarian Academy Sciences, H-1525 Budapest, Hungary
| | - Christian Bressler
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - James K. McCusker
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
49
|
Ryland ES, Zhang K, Vura-Weis J. Sub-100 fs Intersystem Crossing to a Metal-Centered Triplet in Ni(II)OEP Observed with M-Edge XANES. J Phys Chem A 2019; 123:5214-5222. [DOI: 10.1021/acs.jpca.9b03376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Elizabeth S. Ryland
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kaili Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Josh Vura-Weis
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
50
|
Ware MR, Glownia JM, Natan A, Cryan JP, Bucksbaum PH. On the limits of observing motion in time-resolved X-ray scattering. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20170477. [PMID: 30929636 PMCID: PMC6452050 DOI: 10.1098/rsta.2017.0477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Limits on the ability of time-resolved X-ray scattering (TRXS) to observe harmonic motion of amplitude, A and frequency, ω0, about an equilibrium position, R0, are considered. Experimental results from a TRXS experiment at the LINAC Coherent Light Source are compared to classical and quantum theories that demonstrate a fundamental limitation on the ability to observe the amplitude of motion. These comparisons demonstrate dual limits on the spatial resolution through Qmax and the temporal resolution through ωmax for observing the amplitude of motion. In the limit where ωmax ≈ ω0, the smallest observable amplitude of motion is A = 2 π/ Qmax. In the limit where ωmax≥2 ω0, A≤2 π/ Qmax is observable provided there are sufficient statistics. This article is part of the theme issue 'Measurement of ultrafast electronic and structural dynamics with X-rays'.
Collapse
Affiliation(s)
- Matthew R. Ware
- National Accelerator Laboratory, Stanford PULSE Institute, Menlo Park, CA 94025, USA
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| | - James M. Glownia
- National Accelerator Laboratory, LCLS, SLAC, Menlo Park, CA 94025, USA
| | - Adi Natan
- National Accelerator Laboratory, Stanford PULSE Institute, Menlo Park, CA 94025, USA
| | - James P. Cryan
- National Accelerator Laboratory, Stanford PULSE Institute, Menlo Park, CA 94025, USA
- National Accelerator Laboratory, LCLS, SLAC, Menlo Park, CA 94025, USA
| | - Philip H. Bucksbaum
- National Accelerator Laboratory, Stanford PULSE Institute, Menlo Park, CA 94025, USA
- Department of Physics, Stanford University, Stanford, CA 94305, USA
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|