1
|
Hauer L, Naga A, Badr RGM, Pham JT, Wong WSY, Vollmer D. Wetting on silicone surfaces. SOFT MATTER 2024; 20:5273-5295. [PMID: 38952198 DOI: 10.1039/d4sm00346b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Silicone is frequently used as a model system to investigate and tune wetting on soft materials. Silicone is biocompatible and shows excellent thermal, chemical, and UV stability. Moreover, the mechanical properties of the surface can be easily varied by several orders of magnitude in a controlled manner. Polydimethylsiloxane (PDMS) is a popular choice for coating applications such as lubrication, self-cleaning, and drag reduction, facilitated by low surface energy. Aiming to understand the underlying interactions and forces, motivated numerous and detailed investigations of the static and dynamic wetting behavior of drops on PDMS-based surfaces. Here, we recognize the three most prevalent PDMS surface variants, namely liquid-infused (SLIPS/LIS), elastomeric, and liquid-like (SOCAL) surfaces. To understand, optimize, and tune the wetting properties of these PDMS surfaces, we review and compare their similarities and differences by discussing (i) the chemical and molecular structure, and (ii) the static and dynamic wetting behavior. We also provide (iii) an overview of methods and techniques to characterize PDMS-based surfaces and their wetting behavior. The static and dynamic wetting ridge is given particular attention, as it dominates energy dissipation, adhesion, and friction of sliding drops and influences the durability of the surfaces. We also discuss special features such as cloaking and wetting-induced phase separation. Key challenges and opportunities of these three surface variants are outlined.
Collapse
Affiliation(s)
- Lukas Hauer
- Institute for Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Physics at Interfaces, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Abhinav Naga
- Department of Physics, Durham University, DH1 3LE, UK
- Institute for Multiscale Thermofluids, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FD, UK
| | - Rodrique G M Badr
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55099 Mainz, Germany
| | - Jonathan T Pham
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, 45221 OH, USA
| | - William S Y Wong
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
| | - Doris Vollmer
- Physics at Interfaces, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
2
|
Top-down Approach for Fabrication of Polymer Microspheres by Interfacial Engineering. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2453-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
3
|
Ramírez-Soto O, Sanjay V, Lohse D, Pham JT, Vollmer D. Lifting a sessile oil drop from a superamphiphobic surface with an impacting one. SCIENCE ADVANCES 2020; 6:eaba4330. [PMID: 32875104 PMCID: PMC7438093 DOI: 10.1126/sciadv.aba4330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 07/09/2020] [Indexed: 05/25/2023]
Abstract
Colliding drops are encountered in everyday technologies and natural processes, from combustion engines and commodity sprays to raindrops and cloud formation. The outcome of a collision depends on many factors, including the impact velocity and the degree of alignment, and intrinsic properties like surface tension. Yet, little is known on binary impact dynamics of low-surface-tension drops on a low-wetting surface. We investigate the dynamics of an oil drop impacting an identical sessile drop sitting on a superamphiphobic surface. We observe five rebound scenarios, four of which do not involve coalescence. We describe two previously unexplored cases for sessile drop liftoff, resulting from drop-on-drop impact. Numerical simulations quantitatively reproduce the rebound scenarios and enable quantification of velocity profiles, energy transfer, and viscous dissipation. Our results illustrate how varying the offset from head-on alignment and the impact velocity results in controllable rebound dynamics for oil drop collisions on superamphiphobic surfaces.
Collapse
Affiliation(s)
- Olinka Ramírez-Soto
- Max Planck Institute for Polymer Research, Mainz, Germany
- Physics of Fluids Group, Max Planck Center for Complex Fluid Dynamics, Mesa+ Institute, and J.M. Burgers Center for Fluid Dynamics, University of Twente, Enschede, Netherlands
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - Vatsal Sanjay
- Physics of Fluids Group, Max Planck Center for Complex Fluid Dynamics, Mesa+ Institute, and J.M. Burgers Center for Fluid Dynamics, University of Twente, Enschede, Netherlands
| | - Detlef Lohse
- Physics of Fluids Group, Max Planck Center for Complex Fluid Dynamics, Mesa+ Institute, and J.M. Burgers Center for Fluid Dynamics, University of Twente, Enschede, Netherlands
- Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - Jonathan T. Pham
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Doris Vollmer
- Max Planck Institute for Polymer Research, Mainz, Germany
| |
Collapse
|
4
|
Wong WSY, Corrales TP, Naga A, Baumli P, Kaltbeitzel A, Kappl M, Papadopoulos P, Vollmer D, Butt HJ. Microdroplet Contaminants: When and Why Superamphiphobic Surfaces Are Not Self-Cleaning. ACS NANO 2020; 14:3836-3846. [PMID: 32096971 PMCID: PMC7307963 DOI: 10.1021/acsnano.9b08211] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/25/2020] [Indexed: 05/19/2023]
Abstract
Superamphiphobic surfaces are commonly associated with superior anticontamination and antifouling properties. Visually, this is justified by their ability to easily shed off drops and contaminants. However, on micropillar arrays, tiny droplets are known to remain on pillars' top faces while the drop advances. This raises the question of whether remnants remain even on nanostructured superamphiphobic surfaces. Are superamphiphobic surfaces really self-cleaning? Here we investigate the presence of microdroplet contaminants on three nanostructured superamphiphobic surfaces. After brief contact with liquids having different volatilities and surface tension (water, ethylene glycol, hexadecane, and an ionic liquid), confocal microscopy reveals a "blanket-like" layer of microdroplets remaining on the surface. It appears that the phenomenon is universal. Notably, when placing subsequent drops onto the contaminated surface, they are still able to roll off. However, adhesion forces can gradually increase by up to 3 times after repeated liquid drop contact. Therefore, we conclude that superamphiphobic surfaces do not warrant self-cleaning and anticontamination capabilities at sub-micrometric length scales.
Collapse
Affiliation(s)
- William S. Y. Wong
- Max
Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
| | - Tomas P. Corrales
- Max
Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
- Department
of Physics, Federico Santa María
Technical University, Avenida España 1680, Casilla 110-V, Valparaíso, Chile
| | - Abhinav Naga
- Max
Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
| | - Philipp Baumli
- Max
Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
| | - Anke Kaltbeitzel
- Max
Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
| | - Michael Kappl
- Max
Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
| | - Periklis Papadopoulos
- Max
Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
- Department
of Physics, University of Ioannina, GR-45110 Ioannina, Greece
| | - Doris Vollmer
- Max
Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
| | - Hans-Jürgen Butt
- Max
Planck Institute for Polymer Research, Ackermannweg 10, D-55128, Mainz, Germany
| |
Collapse
|
5
|
Teisala H, Butt HJ. Hierarchical Structures for Superhydrophobic and Superoleophobic Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10689-10703. [PMID: 30463408 DOI: 10.1021/acs.langmuir.8b03088] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Many surfaces possessing robust super liquid repellency are hierarchically structured on the nano- and micrometer scales. Several examples are found in nature, such as the self-cleaning leaves of lotus plants and anisotropic, water-guiding rice leaves. Each surface design has unique properties optimized for specific wetting conditions. In this invited feature article, we review both natural and artificial hierarchical surface structures and their function in repelling liquids. We discuss different types of structures needed in various wetting situations and draw some general conclusions as a guideline for designing robust superhydrophobic and superoleophobic surfaces.
Collapse
Affiliation(s)
- Hannu Teisala
- Department of Physics at Interfaces , Max Planck Institute for Polymer Research , Ackermannweg 10 , D-55128 Mainz , Germany
| | - Hans-Jürgen Butt
- Department of Physics at Interfaces , Max Planck Institute for Polymer Research , Ackermannweg 10 , D-55128 Mainz , Germany
| |
Collapse
|
6
|
Panter JR, Gizaw Y, Kusumaatmaja H. Multifaceted design optimization for superomniphobic surfaces. SCIENCE ADVANCES 2019; 5:eaav7328. [PMID: 31501770 PMCID: PMC6719413 DOI: 10.1126/sciadv.aav7328] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 05/14/2019] [Indexed: 05/31/2023]
Abstract
Superomniphobic textures are at the frontier of surface design for vast arrays of applications. Despite recent substantial advances in fabrication methods for reentrant and doubly reentrant microstructures, design optimization remains a major challenge. We overcome this in two stages. First, we develop readily generalizable computational methods to systematically survey three key wetting properties: contact angle hysteresis, critical pressure, and minimum energy wetting barrier. For each, we uncover multiple competing mechanisms, leading to the development of quantitative models and correction of inaccurate assumptions in prevailing models. Second, we combine these analyses simultaneously, demonstrating the power of this strategy by optimizing structures that are designed to overcome challenges in two emerging applications: membrane distillation and digital microfluidics. As the wetting properties are antagonistically coupled, this multifaceted approach is essential for optimal design. When large surveys are impractical, we show that genetic algorithms enable efficient optimization, offering speedups of up to 10,000 times.
Collapse
Affiliation(s)
- J R Panter
- Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
| | - Y Gizaw
- Procter and Gamble Co., Winton Hill Business Center, 6210 Center Hill Avenue, Cincinnati, OH, USA
| | - H Kusumaatmaja
- Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
| |
Collapse
|
7
|
Li H, Aili A, Alhosani MH, Ge Q, Zhang T. Directional Passive Transport of Microdroplets in Oil-Infused Diverging Channels for Effective Condensate Removal. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20910-20919. [PMID: 29792417 DOI: 10.1021/acsami.8b00922] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Condensation widely exists in nature and industry, and its performance heavily relies on the efficiency of condensate removal. Recent advances in micro-/nanoscale surface engineering enable condensing droplet removal from solid surfaces without extra energy cost, but it is still challenging to achieve passive transport of microdroplets over long distances along horizontal surfaces. The mobility of these condensate droplets can be enhanced by lubricant oil infusion on flat surfaces and frequent coalescence, which lead to fast growth but random motion of droplets. In this work, we propose a novel design of diverging microchannels with oil-infused surfaces to achieve controllable, long-distance, and directional transport of condensing droplets on horizontal surfaces. This idea is experimentally demonstrated with diverging copper and silicon microchannels with nanoengineered surfaces. Along these hierarchical surface structures, microdroplets condense on the top channel wall and submerge into microchannels owing to the capillary pressure gradient in infusing oil. Confined by the microchannel walls, the submerged droplets deform and maintain the back-front curvature difference, which enables the motion of droplets along the channel diverging direction. Subsequent droplet coalescences inside the channel further enhance this directional transport. Moreover, fast-moving deformed droplets transfer their momentum to downstream spherical droplets through the infusing oil. As a result, simultaneous passive transport of multiple droplets (20-400 μm) is achieved over long distances (beyond 7 mm). On these oil-infused surfaces, satellite microdroplets can further nucleate and grow on an oil-cloaked droplet, demonstrating an enlarged surface area for condensation. Our findings on passive condensate removal offer great opportunities in condensation enhancement, self-cleaning, and other applications requiring directional droplet transport along horizontal surfaces.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Mechanical and Materials Engineering , Masdar Institute, Khalifa University of Science and Technology , P.O. Box 54224, Abu Dhabi , UAE
| | - Ablimit Aili
- Department of Mechanical and Materials Engineering , Masdar Institute, Khalifa University of Science and Technology , P.O. Box 54224, Abu Dhabi , UAE
| | - Mohamed H Alhosani
- Department of Mechanical and Materials Engineering , Masdar Institute, Khalifa University of Science and Technology , P.O. Box 54224, Abu Dhabi , UAE
| | - Qiaoyu Ge
- Department of Mechanical and Materials Engineering , Masdar Institute, Khalifa University of Science and Technology , P.O. Box 54224, Abu Dhabi , UAE
| | - TieJun Zhang
- Department of Mechanical and Materials Engineering , Masdar Institute, Khalifa University of Science and Technology , P.O. Box 54224, Abu Dhabi , UAE
| |
Collapse
|
8
|
Tian N, Zhang P, Zhang J. Mechanically Robust and Thermally Stable Colorful Superamphiphobic Coatings. Front Chem 2018; 6:144. [PMID: 29761099 PMCID: PMC5936788 DOI: 10.3389/fchem.2018.00144] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 04/12/2018] [Indexed: 11/13/2022] Open
Abstract
Colorful super anti-wetting coatings are receiving growing attention, but are challenging to invent. Here, we report a general method for preparing mechanically robust and thermally stable colorful superamphiphobic coatings. A composite of palygorskite (PAL) nanorods and iron oxide red (IOR) was prepared by solid-state grinding or hydrothermal reaction, which was then modified by hydrolytic condensation of silanes to form a suspension. Superamphiphobic coatings were prepared by spray-coating the suspension onto substrates. The superamphiphobicity depends upon the surface microstructure and chemical composition, which are controllable by the PAL/IOR concentration and the solid-state grinding time. The colorful coatings show excellent superamphiphobicity with high contact angles and low sliding angles for water and various organic liquids of low surface tension, e.g., toluene and n-decane. The coatings also feature high mechanical, chemical and thermal stability, which is superior to all the reported colorful super anti-wetting coatings. Moreover, superamphiphobic coatings of different colors can be prepared via the same procedure using the other metal oxides instead of IOR. We believe the colorful superamphiphobic coatings may find applications in many fields like anti-climbing of oils and restoration of cultural relics, as the coatings are applicable onto various substrates.
Collapse
Affiliation(s)
- Ning Tian
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
- College of Material Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Penglin Zhang
- College of Material Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Junping Zhang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
9
|
Zhai N, Fan L, Li L, Zhang J. Durable superamphiphobic coatings repelling both cool and hot liquids based on carbon nanotubes. J Colloid Interface Sci 2017. [DOI: 10.1016/j.jcis.2017.06.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Wang Y, Li X, Ren S, Tedros Alem H, Yang L, Lohse D. Entrapment of interfacial nanobubbles on nano-structured surfaces. SOFT MATTER 2017; 13:5381-5388. [PMID: 28744543 DOI: 10.1039/c7sm01205e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Spherical-cap-shaped interfacial nanobubbles (NBs) forming on hydrophobic surfaces in aqueous solutions have extensively been studied both from a fundamental point of view and due to their relevance for various practical applications. In this study, the nucleation mechanism of spontaneously generated NBs at solid-liquid interfaces of immersed nanostructured hydrophobic surfaces is studied. Depending on the size and density of the surface nanostructures, NBs with different size and density were reproducibly and deterministically obtained. A two-step process can explain the NB nucleation, based on the crevice model, i.e., entrapped air pockets in surface cavities which grow by diffusion. The results show direct evidence for the spontaneous formation of NBs on a surface at its immersion. Next, the influence of size and shape of the nanostructures on the nucleated NBs are revealed. In particular, on non-circular nanopits we obtain NBs with a non-circular footprint, demonstrating the strong pinning forces at the three-phase contact line.
Collapse
Affiliation(s)
- Yuliang Wang
- School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, P. R. China.
| | | | | | | | | | | |
Collapse
|
11
|
Panter JR, Kusumaatmaja H. The impact of surface geometry, cavitation, and condensation on wetting transitions: posts and reentrant structures. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:084001. [PMID: 28092626 DOI: 10.1088/1361-648x/aa5380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The fundamental impacts of surface geometry on the stability of wetting states, and the transitions between them are elucidated for square posts and reentrant structures in three dimensions. We identify three principal outcomes of particular importance for future surface design of liquid-repellent surfaces. Firstly, we demonstrate and quantify how capillary condensation and vapour cavitation affect wetting state stabilities. At high contact angles, cavitation is enhanced about wide, closely-spaced square posts, leading to the existence of suspended states without an associated collapsed state. At low contact angles, narrow reentrant pillars suppress condensation and enable the suspension of even highly wetting liquids. Secondly, two distinct collapse mechanisms are observed for 3D reentrant geometries, base contact and pillar contact, which are operative at different pillar heights. As well as morphological differences in the interface of the penetrating liquid, each mechanism is affected differently by changes in the contact angle with the solid. Finally, for highly-wetting liquids, condensates are shown to critically modify the transition pathways in both the base contact and pillar contact modes.
Collapse
Affiliation(s)
- J R Panter
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK
| | | |
Collapse
|