1
|
Ghosh S, Joshi C, Baskaran A, Hagan MF. Spatiotemporal control of structure and dynamics in a polar active fluid. SOFT MATTER 2024; 20:7059-7071. [PMID: 39188251 DOI: 10.1039/d4sm00547c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
We apply optimal control theory to a model of a polar active fluid (the Toner-Tu model), with the objective of driving the system into particular emergent dynamical behaviors or programming switching between states on demand. We use the effective self-propulsion speed as the control parameter (i.e. the means of external actuation). We identify control protocols that achieve outcomes such as relocating asters to targeted positions, forcing propagating solitary waves to reorient to a particular direction, and switching between stationary asters and propagating fronts. We analyze the solutions to identify generic principles for controlling polar active fluids. Our findings have implications for achieving spatiotemporal control of active polar systems in experiments, particularly in vitro cytoskeletal systems. Additionally, this research paves the way for leveraging optimal control methods to engineer the structure and dynamics of active fluids more broadly.
Collapse
Affiliation(s)
- Saptorshi Ghosh
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA.
| | - Chaitanya Joshi
- Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA
| | - Aparna Baskaran
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA.
| | - Michael F Hagan
- Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02453, USA.
| |
Collapse
|
2
|
Rani G, Sengupta A. Growing bacterial colonies harness emergent genealogical demixing to regulate organizational entropy. BIOPHYSICAL REPORTS 2024; 4:100175. [PMID: 39197679 PMCID: PMC11416667 DOI: 10.1016/j.bpr.2024.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
Spatiotemporal organization of individuals within growing bacterial colonies is a key determinant of intraspecific interactions and colony-scale heterogeneities. The evolving cellular distribution, in relation to the genealogical lineage, is thus central to our understanding of bacterial fate across scales. Yet, how bacteria self-organize genealogically as a colony expands has remained unknown. Here, by developing a custom-built label-free algorithm, we track and study the genesis and evolution of emergent self-similar genealogical enclaves, whose dynamics are governed by biological activity. Topological defects at enclave boundaries tune finger-like morphologies of the active interfaces. The Shannon entropy of cell arrangements reduce over time; with faster-dividing cells possessing higher spatial affinity to genealogical relatives, at the cost of a well-mixed, entropically favorable state. Our coarse-grained lattice model demonstrates that genealogical enclaves emerge due to an interplay of division-mediated dispersal, stochasticity of division events, and cell-cell interactions. The study reports so-far hidden emergent self-organizing features arising due to entropic suppression, ultimately modulating intraspecific genealogical distances within bacterial colonies.
Collapse
Affiliation(s)
- Garima Rani
- Physics of Living Matter Group, Department of Physics and Materials Science, University of Luxembourg, 162a Avenue de la Faïencerie, Luxembourg City, Grand Duchy of Luxembourg
| | - Anupam Sengupta
- Physics of Living Matter Group, Department of Physics and Materials Science, University of Luxembourg, 162a Avenue de la Faïencerie, Luxembourg City, Grand Duchy of Luxembourg; Institute for Advanced Studies, University of Luxembourg, 2 Avenue de l'Université, Esch-sur-Alzette, Grand Duchy of Luxembourg.
| |
Collapse
|
3
|
Lemma B, Lemma LM, Ems-McClung SC, Walczak CE, Dogic Z, Needleman DJ. Structure and dynamics of motor-driven microtubule bundles. SOFT MATTER 2024; 20:5715-5723. [PMID: 38872426 PMCID: PMC11268426 DOI: 10.1039/d3sm01336g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Connecting the large-scale emergent behaviors of active cytoskeletal materials to the microscopic properties of their constituents is a challenge due to a lack of data on the multiscale dynamics and structure of such systems. We approach this problem by studying the impact of depletion attraction on bundles of microtubules and kinesin-14 molecular motors. For all depletant concentrations, kinesin-14 bundles generate comparable extensile dynamics. However, this invariable mesoscopic behavior masks the transition in the microscopic motion of microtubules. Specifically, with increasing attraction, we observe a transition from bi-directional sliding with extension to pure extension with no sliding. Small-angle X-ray scattering shows that the transition in microtubule dynamics is concurrent with a structural rearrangement of microtubules from an open hexagonal to a compressed rectangular lattice. These results demonstrate that bundles of microtubules and molecular motors can display the same mesoscopic extensile behaviors despite having different internal structures and microscopic dynamics. They provide essential information for developing multiscale models of active matter.
Collapse
Affiliation(s)
- Bezia Lemma
- Physics Department, Harvard University, Cambridge, MA 02138, USA
- Physics Department, Brandeis University, Waltham, MA 02453, USA.
- Physics Department, University of California, Santa Barbara, CA 93106, USA
| | - Linnea M Lemma
- Physics Department, Brandeis University, Waltham, MA 02453, USA.
- Physics Department, University of California, Santa Barbara, CA 93106, USA
| | | | - Claire E Walczak
- Medical Sciences, Indiana University School of Medicine, Bloomington, IN 47405, USA
| | - Zvonimir Dogic
- Physics Department, Brandeis University, Waltham, MA 02453, USA.
- Physics Department, University of California, Santa Barbara, CA 93106, USA
- Biomolecular Science & Engineering Department, University of California, Santa Barbara, CA 93106, USA
| | - Daniel J Needleman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Molecular & Cellular Biology Department, Harvard University, Cambridge, MA 02138, USA
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| |
Collapse
|
4
|
Rashtchi P, Sudmalis D, van der Linden E, Abee T, Habibi M. Colonization and spreading dynamics of Lactiplantibacillus plantarum spoilage isolates on wet surfaces. Microbiol Res 2024; 283:127674. [PMID: 38461572 DOI: 10.1016/j.micres.2024.127674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/20/2024] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
The role of lactic acid bacteria, including Lactiplantibacillus plantarum, in food spoilage is well recognized, while the behavior of these non-motile bacteria on wet surfaces, such as those encountered in food processing environments has gained relatively little attention. Here, we observed a fast colony spreading of non-motile L. plantarum spoilage isolates on wet surfaces via passive sliding using solid BHI agar media as a model. We investigated the effect of physical properties of agar hydrogel substrate on the surface spreading of six L. plantarum food isolates FBR1-6 and a model strain WCFS1, using increasing concentrations of agar from 0.25 up to 1.5% (w/v). Our results revealed that L. plantarum strain FBR2 spreads significantly on low agar concentration plates compared to the other strains studied here (with a factor of 50-60 folds higher surface coverage), due to the formation of very soft biofilms with high water content that can float on the surface. The fast-spreading of FBR2 colonies is accompanied by an increased number of cells, elongated cell morphology, and a higher amount of extracellular components. Our finding highlights colonization dynamics and the spreading capacity of non-motile bacteria on surfaces that are relatively wet, thereby revealing an additional hitherto unnoticed parameter for non-motile bacteria that may contribute to contamination of foods by fast surface spreading of these bacteria in food processing environments.
Collapse
Affiliation(s)
- P Rashtchi
- Physics and Physical Chemistry of Foods, Wageningen University, Wageningen 6708WG, the Netherlands; Food Microbiology, Wageningen University, Wageningen 6708WG, the Netherlands
| | - D Sudmalis
- Environmental Technology, Wageningen University, Wageningen 6708WG, the Netherlands
| | - E van der Linden
- Physics and Physical Chemistry of Foods, Wageningen University, Wageningen 6708WG, the Netherlands
| | - T Abee
- Food Microbiology, Wageningen University, Wageningen 6708WG, the Netherlands
| | - Mehdi Habibi
- Physics and Physical Chemistry of Foods, Wageningen University, Wageningen 6708WG, the Netherlands.
| |
Collapse
|
5
|
Zhu G, Gao L, Sun Y, Wei W, Yan LT. Non-equilibrium structural and dynamic behaviors of active polymers in complex and crowded environments. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:054601. [PMID: 38608453 DOI: 10.1088/1361-6633/ad3e11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/12/2024] [Indexed: 04/14/2024]
Abstract
Active matter systems, which convert internal chemical energy or energy from the environment into directed motion, are ubiquitous in nature and exhibit a range of emerging non-equilibrium behaviors. However, most of the current works on active matter have been devoted to particles, and the study of active polymers has only recently come into the spotlight due to their prevalence within living organisms. The intricate interplay between activity and conformational degrees of freedom gives rise to novel structural and dynamical behaviors of active polymers. Research in active polymers remarkably broadens diverse concepts of polymer physics, such as molecular architecture, dynamics, scaling and so on, which is of significant importance for the development of new polymer materials with unique performance. Furthermore, active polymers are often found in strongly interacting and crowded systems and in complex environments, so that the understanding of this behavior is essential for future developments of novel polymer-based biomaterials. This review thereby focuses on the study of active polymers in complex and crowded environments, and aims to provide insights into the fundamental physics underlying the adaptive and collective behaviors far from equilibrium, as well as the open challenges that the field is currently facing.
Collapse
Affiliation(s)
- Guolong Zhu
- School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Lijuan Gao
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yihang Sun
- School of Physics and Electronics, Hunan University, Changsha 410082, People's Republic of China
| | - Wenjie Wei
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Li-Tang Yan
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
6
|
Killeen A, Bertrand T, Lee CF. Machine learning topological defects in confluent tissues. BIOPHYSICAL REPORTS 2024; 4:100142. [PMID: 38313863 PMCID: PMC10837480 DOI: 10.1016/j.bpr.2024.100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024]
Abstract
Active nematics is an emerging paradigm for characterizing biological systems. One aspect of particularly intense focus is the role active nematic defects play in these systems, as they have been found to mediate a growing number of biological processes. Accurately detecting and classifying these defects in biological systems is, therefore, of vital importance to improving our understanding of such processes. While robust methods for defect detection exist for systems of elongated constituents, other systems, such as epithelial layers, are not well suited to such methods. Here, we address this problem by developing a convolutional neural network to detect and classify nematic defects in confluent cell layers. Crucially, our method is readily implementable on experimental images of cell layers and is specifically designed to be suitable for cells that are not rod shaped, which we demonstrate by detecting defects on experimental data using the trained model. We show that our machine learning model outperforms current defect detection techniques and that this manifests itself in our method as requiring less data to accurately capture defect properties. This could drastically improve the accuracy of experimental data interpretation while also reducing costs, advancing the study of nematic defects in biological systems.
Collapse
Affiliation(s)
- Andrew Killeen
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Thibault Bertrand
- Department of Mathematics, Imperial College London, South Kensington Campus, London, United Kingdom
| | - Chiu Fan Lee
- Department of Bioengineering, Imperial College London, South Kensington Campus, London, United Kingdom
| |
Collapse
|
7
|
Partovifard A, Grawitter J, Stark H. Controlling active turbulence by activity patterns. SOFT MATTER 2024; 20:1800-1814. [PMID: 38305449 DOI: 10.1039/d3sm01050c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
By patterning activity in space, one can control active turbulence. To show this, we use Doi's hydrodynamic equations of a semidilute solution of active rods. A linear stability analysis reveals the resting isotropic fluid to be unstable above an absolute pusher activity. The emergent activity-induced paranematic state displays active turbulence, which we characterize by different quantities including the energy spectrum, which shows the typical power-law decay with exponent -4. Then, we control the active turbulence by a square lattice of circular spots where activity is switched off. In the parameter space lattice constant versus surface-to-surface distance of the spots, we identify different flow states. Most interestingly, for lattice constants below the vorticity correlation length and for spot distances smaller than the nematic coherence length, we observe a multi-lane flow state, where flow lanes with alternating flow directions are separated by a street of vortices. The flow pattern displays pronounced multistability and also appears transiently at the transition to the isotropic active-turbulence state. At larger lattice constants a trapped vortex state is identified with a non-Gaussian vorticity distribution due to the low flow vorticity at the spots. It transitions to conventional active turbulence for increasing spot distance.
Collapse
Affiliation(s)
- Arghavan Partovifard
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| | - Josua Grawitter
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| | - Holger Stark
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| |
Collapse
|
8
|
张 德, 张 豪, 李 博. [The Dynamic Model of the Active-Inactive Cell Interface]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:39-46. [PMID: 38322532 PMCID: PMC10839493 DOI: 10.12182/20240160508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Indexed: 02/08/2024]
Abstract
Objective To explore the morphodynamics of the active-inactive cell monolayer interfaces by using the active liquid crystal model. Methods A continuum mechanical model was established based on the active liquid crystal theory and the active-inactive cell monolayer interfaces were established by setting the activity difference of cell monolayers. The theoretical equations were solved numerically by the finite difference and the lattice Boltzmann method. Results The active-inactive cell interfaces displayed three typical morphologies, namely, flat interface, wavy interface, and finger-like interface. On the flat interfaces, the cells were oriented perpendicular to the interface, the -1/2 topological defects were clustered in the interfaces, and the interfaces were negatively charged. On the wavy interfaces, cells showed no obvious preference for orientation at the interfaces and the interfaces were neutrally charged. On the finger-like interfaces, cells were tangentially oriented at the interfaces, the +1/2 topological defects were collected at the interfaces, driving the growth of the finger-like structures, and the interfaces were positively charged. Conclusion The orientation of the cell alignment at the interface can significantly affect the morphologies of the active-inactive cell monolayer interfaces, which is closely associated with the dynamics of topological defects at the interfaces.
Collapse
Affiliation(s)
- 德清 张
- 清华大学工程力学系 生物力学与医学工程研究所 (北京 100084)Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - 豪舜 张
- 清华大学工程力学系 生物力学与医学工程研究所 (北京 100084)Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - 博 李
- 清华大学工程力学系 生物力学与医学工程研究所 (北京 100084)Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Nijjer J, Li C, Kothari M, Henzel T, Zhang Q, Tai JSB, Zhou S, Cohen T, Zhang S, Yan J. Biofilms as self-shaping growing nematics. NATURE PHYSICS 2023; 19:1936-1944. [PMID: 39055904 PMCID: PMC11271743 DOI: 10.1038/s41567-023-02221-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 08/23/2023] [Indexed: 07/28/2024]
Abstract
Active nematics are the nonequilibrium analogue of passive liquid crystals. They consist of anisotropic units that consume free energy to drive emergent behaviour. Like liquid crystal molecules in displays, ordering and dynamics in active nematics are sensitive to boundary conditions. However, unlike passive liquid crystals, active nematics have the potential to regulate their boundaries through self-generated stresses. Here, we show how a three-dimensional, living nematic can actively shape itself and its boundary to regulate its internal architecture through growth-induced stresses, using bacterial biofilms confined by a hydrogel as a model system. We show that biofilms exhibit a sharp transition in shape from domes to lenses upon changing environmental stiffness or cell-substrate friction, which is explained by a theoretical model that considers the competition between confinement and interfacial forces. The growth mode defines the progression of the boundary, which in turn determines the trajectories and spatial distribution of cell lineages. We further demonstrate that the evolving boundary and corresponding stress anisotropy define the orientational ordering of cells and the emergence of topological defects in the biofilm interior. Our findings may provide strategies for the development of programmed microbial consortia with emergent material properties.
Collapse
Affiliation(s)
- Japinder Nijjer
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Changhao Li
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA
| | - Mrityunjay Kothari
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, University of New Hampshire, Durham, NH, USA
| | - Thomas Henzel
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Qiuting Zhang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Jung-Shen B Tai
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Shuang Zhou
- Department of Physics, University of Massachusetts Amherst, Amherst, MA, USA
| | - Tal Cohen
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sulin Zhang
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
| | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
| |
Collapse
|
10
|
Maleki F, Najafi A. Instabilities in a growing system of active particles: scalar and vectorial systems. SOFT MATTER 2023; 19:8157-8163. [PMID: 37850327 DOI: 10.1039/d3sm00880k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
The physics of micron-scale biological colonies usually benefits from different out-of-equilibrium sources. In bacterial colonies and cellular tissues, the growth process is among the important active sources that determine the dynamics. In this article, we study the generic dynamical instabilities associated with the growth phenomena that may arise in both scalar and vectorial systems. In vectorial systems, where the rotational degrees of particles play a role, a phenomenological growth-mediated torque can affect the rotational dynamics of individual particles. We show that such a growth-mediated torque can result in active traveling waves in the bulk of a growing system. In addition to the bulk properties, we analyze the instabilities in the shape of growing interfaces in both scalar and vectorial systems.
Collapse
Affiliation(s)
- Forouh Maleki
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Ali Najafi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
- Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences, Zanjan, Iran.
| |
Collapse
|
11
|
Hadjifrangiskou I, Ruske LJ, Yeomans JM. Active nematics with deformable particles. SOFT MATTER 2023; 19:6664-6670. [PMID: 37609906 DOI: 10.1039/d3sm00627a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The hydrodynamic theory of active nematics has been often used to describe the spatio-temporal dynamics of cell flows and motile topological defects within soft confluent tissues. Those theories, however, often rely on the assumption that tissues consist of cells with a fixed, anisotropic shape and do not resolve dynamical cell shape changes due to flow gradients. In this paper we extend the continuum theory of active nematics to include cell shape deformability. We find that circular cells in tissues must generate sufficient active stress to overcome an elastic barrier to deforming their shape in order to drive tissue-scale flows. Above this threshold the systems enter a dynamical steady-state with regions of elongated cells and strong flows coexisting with quiescent regions of isotropic cells.
Collapse
Affiliation(s)
- Ioannis Hadjifrangiskou
- The Rudolf Peierls Centre for Theoretical Physics, Beecroft Building, Parks Road, Oxford, OX1 3PU, UK.
| | - Liam J Ruske
- The Rudolf Peierls Centre for Theoretical Physics, Beecroft Building, Parks Road, Oxford, OX1 3PU, UK.
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, Beecroft Building, Parks Road, Oxford, OX1 3PU, UK.
| |
Collapse
|
12
|
Xu H, Nejad MR, Yeomans JM, Wu Y. Geometrical control of interface patterning underlies active matter invasion. Proc Natl Acad Sci U S A 2023; 120:e2219708120. [PMID: 37459530 PMCID: PMC10372614 DOI: 10.1073/pnas.2219708120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
Interaction between active materials and the boundaries of geometrical confinement is key to many emergent phenomena in active systems. For living active matter consisting of animal cells or motile bacteria, the confinement boundary is often a deformable interface, and it has been unclear how activity-induced interface dynamics might lead to morphogenesis and pattern formation. Here, we studied the evolution of bacterial active matter confined by a deformable boundary. We found that an ordered morphological pattern emerged at the interface characterized by periodically spaced interfacial protrusions; behind the interfacial protrusions, bacterial swimmers self-organized into multicellular clusters displaying +1/2 nematic defects. Subsequently, a hierarchical sequence of transitions from interfacial protrusions to creeping branches allowed the bacterial active drop to rapidly invade surrounding space with a striking self-similar branch pattern. We found that this interface patterning is geometrically controlled by the local curvature of the interface, a phenomenon we denote as collective curvature sensing. Using a continuum active model, we revealed that the collective curvature sensing arises from enhanced active stresses near high-curvature regions, with the active length scale setting the characteristic distance between the interfacial protrusions. Our findings reveal a protrusion-to-branch transition as a unique mode of active matter invasion and suggest a strategy to engineer pattern formation of active materials.
Collapse
Affiliation(s)
- Haoran Xu
- Department of Physics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, People’s Republic of China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, People’s Republic of China
| | - Mehrana R. Nejad
- Department of Physics, The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, OxfordOX1 3PU, United Kingdom
| | - Julia M. Yeomans
- Department of Physics, The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, OxfordOX1 3PU, United Kingdom
| | - Yilin Wu
- Department of Physics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, People’s Republic of China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, People’s Republic of China
| |
Collapse
|
13
|
Schimming CD, Reichhardt CJO, Reichhardt C. Friction-mediated phase transition in confined active nematics. Phys Rev E 2023; 108:L012602. [PMID: 37583137 DOI: 10.1103/physreve.108.l012602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/28/2023] [Indexed: 08/17/2023]
Abstract
Using a minimal continuum model, we investigate the interplay between circular confinement and substrate friction in active nematics. Upon increasing the friction from low to high, we observe a dynamical phase transition from a circulating flow phase to an anisotropic flow phase in which the flow tends to align perpendicular to the nematic director at the boundary. We demonstrate that both the flow structure and dynamic correlations in the latter phase differ from those of an unconfined, active turbulent system and may be controlled by the prescribed nematic boundary conditions. Our results show that substrate friction and geometric confinement act as valuable control parameters in active nematics.
Collapse
Affiliation(s)
- Cody D Schimming
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C J O Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - C Reichhardt
- Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
14
|
Monfared S, Ravichandran G, Andrade J, Doostmohammadi A. Mechanical basis and topological routes to cell elimination. eLife 2023; 12:82435. [PMID: 37070647 PMCID: PMC10112887 DOI: 10.7554/elife.82435] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/22/2023] [Indexed: 04/19/2023] Open
Abstract
Cell layers eliminate unwanted cells through the extrusion process, which underlines healthy versus flawed tissue behaviors. Although several biochemical pathways have been identified, the underlying mechanical basis including the forces involved in cellular extrusion remains largely unexplored. Utilizing a phase-field model of a three-dimensional cell layer, we study the interplay of cell extrusion with cell-cell and cell-substrate interactions in a flat monolayer. Independent tuning of cell-cell versus cell-substrate adhesion forces reveals that extrusion events can be distinctly linked to defects in nematic and hexatic orders associated with cellular arrangements. Specifically, we show that by increasing relative cell-cell adhesion forces the cell monolayer can switch between the collective tendency towards fivefold, hexatic, disclinations relative to half-integer, nematic, defects for extruding a cell. We unify our findings by accessing three-dimensional mechanical stress fields to show that an extrusion event acts as a mechanism to relieve localized stress concentration.
Collapse
Affiliation(s)
- Siavash Monfared
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, United States
| | - Guruswami Ravichandran
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, United States
| | - José Andrade
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, United States
| | | |
Collapse
|
15
|
Ascione F, Caserta S, Esposito S, Villella VR, Maiuri L, Nejad MR, Doostmohammadi A, Yeomans JM, Guido S. Collective rotational motion of freely expanding T84 epithelial cell colonies. J R Soc Interface 2023; 20:20220719. [PMID: 36872917 PMCID: PMC9943890 DOI: 10.1098/rsif.2022.0719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/23/2023] [Indexed: 02/25/2023] Open
Abstract
Coordinated rotational motion is an intriguing, yet still elusive mode of collective cell migration, which is relevant in pathological and morphogenetic processes. Most of the studies on this topic have been carried out on epithelial cells plated on micropatterned substrates, where cell motion is confined in regions of well-defined shapes coated with extracellular matrix adhesive proteins. The driver of collective rotation in such conditions has not been clearly elucidated, although it has been speculated that spatial confinement can play an essential role in triggering cell rotation. Here, we study the growth of epithelial cell colonies freely expanding (i.e. with no physical constraints) on the surface of cell culture plates and focus on collective cell rotation in such conditions, a case which has received scarce attention in the literature. One of the main findings of our work is that coordinated cell rotation spontaneously occurs in cell clusters in the free growth regime, thus implying that cell confinement is not necessary to elicit collective rotation as previously suggested. The extent of collective rotation was size and shape dependent: a highly coordinated disc-like rotation was found in small cell clusters with a round shape, while collective rotation was suppressed in large irregular cell clusters generated by merging of different clusters in the course of their growth. The angular motion was persistent in the same direction, although clockwise and anticlockwise rotations were equally likely to occur among different cell clusters. Radial cell velocity was quite low as compared to the angular velocity, in agreement with the free expansion regime where cluster growth is essentially governed by cell proliferation. A clear difference in morphology was observed between cells at the periphery and the ones in the core of the clusters, the former being more elongated and spread out as compared to the latter. Overall, our results, to our knowledge, provide the first quantitative and systematic evidence that coordinated cell rotation does not require a spatial confinement and occurs spontaneously in freely expanding epithelial cell colonies, possibly as a mechanism for the system.
Collapse
Affiliation(s)
- Flora Ascione
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMAPI), Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
| | - Sergio Caserta
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMAPI), Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Speranza Esposito
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMAPI), Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Rachela Villella
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMAPI), Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Maiuri
- European Institute for Research in Cystic Fibrosis, San Raffaele Scientific Institute, Milan, Italy
| | - Mehrana R. Nejad
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | | | - Julia M. Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Stefano Guido
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale (DICMAPI), Università di Napoli Federico II, P.le Tecchio 80, 80125 Napoli, Italy
- CEINGE Biotecnologie Avanzate, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
16
|
Shimaya T, Takeuchi KA. Tilt-induced polar order and topological defects in growing bacterial populations. PNAS NEXUS 2022; 1:pgac269. [PMID: 36712383 PMCID: PMC9802490 DOI: 10.1093/pnasnexus/pgac269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
Rod-shaped bacteria, such as Escherichia coli, commonly live forming mounded colonies. They initially grow two-dimensionally on a surface and finally achieve three-dimensional growth. While it was recently reported that three-dimensional growth is promoted by topological defects of winding number +1/2 in populations of motile bacteria, how cellular alignment plays a role in nonmotile cases is largely unknown. Here, we investigate the relevance of topological defects in colony formation processes of nonmotile E. coli populations, and found that both ±1/2 topological defects contribute to the three-dimensional growth. Analyzing the cell flow in the bottom layer of the colony, we observe that +1/2 defects attract cells and -1/2 defects repel cells, in agreement with previous studies on motile cells, in the initial stage of the colony growth. However, later, cells gradually flow toward -1/2 defects as well, exhibiting a sharp contrast to the existing knowledge. By investigating three-dimensional cell orientations by confocal microscopy, we find that vertical tilting of cells is promoted near the defects. Crucially, this leads to the emergence of a polar order in the otherwise nematic two-dimensional cell orientation. We extend the theory of active nematics by incorporating this polar order and the vertical tilting, which successfully explains the influx toward -1/2 defects in terms of a polarity-induced force. Our work reveals that three-dimensional cell orientations may result in qualitative changes in properties of active nematics, especially those of topological defects, which may be generically relevant in active matter systems driven by cellular growth instead of self-propulsion.
Collapse
Affiliation(s)
- Takuro Shimaya
- Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | | |
Collapse
|
17
|
Pokawanvit S, Chen Z, You Z, Angheluta L, Marchetti MC, Bowick MJ. Active nematic defects in compressible and incompressible flows. Phys Rev E 2022; 106:054610. [PMID: 36559507 DOI: 10.1103/physreve.106.054610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/25/2022] [Indexed: 06/17/2023]
Abstract
We study the dynamics of active nematic films on a substrate driven by active flows with or without the incompressible constraint. Through simulations and theoretical analysis, we show that arch patterns are stable in the compressible case, while they become unstable under the incompressibility constraint. For compressible flows at high enough activity, stable arches organize themselves into a smecticlike pattern, which induce an associated global polar ordering of +1/2 nematic defects. By contrast, divergence-free flows give rise to a local nematic order of the +1/2 defects, consisting of antialigned pairs of neighboring defects, as established in previous studies.
Collapse
Affiliation(s)
- Supavit Pokawanvit
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| | - Zhitao Chen
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Zhihong You
- Fujian Provincial Key Laboratory for Soft Functional Materials Research, Research Institute for Biomimetics and Soft Matter, Department of Physics, Xiamen University, Xiamen, Fujian 361005, China
| | - Luiza Angheluta
- Department of Physics, University of Oslo, P.O. Box 1048, 0316 Oslo, Norway
| | - M Cristina Marchetti
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Mark J Bowick
- Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
18
|
Isensee J, Hupe L, Golestanian R, Bittihn P. Stress anisotropy in confined populations of growing rods. J R Soc Interface 2022; 19:20220512. [PMID: 36349447 PMCID: PMC9653230 DOI: 10.1098/rsif.2022.0512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/18/2022] [Indexed: 11/10/2022] Open
Abstract
A central feature of living matter is its ability to grow and multiply. The mechanical activity associated with growth produces both macroscopic flows shaped by confinement, and striking self-organization phenomena, such as orientational order and alignment, which are particularly prominent in populations of rod-shaped bacteria due to their nematic properties. However, how active stresses, passive mechanical interactions and flow-induced effects interact to give rise to the observed global alignment patterns remains elusive. Here, we study in silico colonies of growing rod-shaped particles of different aspect ratios confined in channel-like geometries. A spatially resolved analysis of the stress tensor reveals a strong relationship between near-perfect alignment and an inversion of stress anisotropy for particles with large length-to-width ratios. We show that, in quantitative agreement with an asymptotic theory, strong alignment can lead to a decoupling of active and passive stresses parallel and perpendicular to the direction of growth, respectively. We demonstrate the robustness of these effects in a geometry that provides less restrictive confinement and introduces natural perturbations in alignment. Our results illustrate the complexity arising from the inherent coupling between nematic order and active stresses in growing active matter, which is modulated by geometric and configurational constraints due to confinement.
Collapse
Affiliation(s)
- Jonas Isensee
- Max Planck Institute for Dynamics and Self-Organization, Göttingen 37077, Germany
- Institute for the Dynamics of Complex Systems, Göttingen University, Göttingen 37077, Germany
| | - Lukas Hupe
- Max Planck Institute for Dynamics and Self-Organization, Göttingen 37077, Germany
- Institute for the Dynamics of Complex Systems, Göttingen University, Göttingen 37077, Germany
| | - Ramin Golestanian
- Max Planck Institute for Dynamics and Self-Organization, Göttingen 37077, Germany
- Institute for the Dynamics of Complex Systems, Göttingen University, Göttingen 37077, Germany
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Philip Bittihn
- Max Planck Institute for Dynamics and Self-Organization, Göttingen 37077, Germany
- Institute for the Dynamics of Complex Systems, Göttingen University, Göttingen 37077, Germany
| |
Collapse
|
19
|
Kumar S, Mishra S. Active nematic gel with quenched disorder. Phys Rev E 2022; 106:044603. [PMID: 36397569 DOI: 10.1103/physreve.106.044603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
With quenched disorder, we introduce two-dimensional active nematics suspended in an incompressible fluid. We write the coarse-grained hydrodynamic equations of motion for slow variables, viz. density, orientation, and flow fields. The quenched disorder is introduced such that it interacts with the local orientation at every point with some strength. Disorder strength is tuned from zero to large values. We numerically study the defect dynamics and system kinetics and find that the finite disorder slows the ordering. The presence of fluid induces large fluctuation in the orientation field, further disturbing the ordering. The large fluctuation in the orientation field due to the fluid is so dominant that it reduces the effect of the quenched disorder. We have also found that the disorder effect is almost the same for both the contractile and extensile nature of active stresses in the system. This study can help to understand the impact of quenched disorder on the ordering kinetics of active gels with nematic interaction among the constituent objects.
Collapse
Affiliation(s)
- Sameer Kumar
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Shradha Mishra
- Department of Physics, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
20
|
Ruske LJ, Yeomans JM. Activity gradients in two- and three-dimensional active nematics. SOFT MATTER 2022; 18:5654-5661. [PMID: 35861255 DOI: 10.1039/d2sm00228k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We numerically investigate how spatial variations of extensile or contractile active stress affect bulk active nematic systems in two and three dimensions. In the absence of defects, activity gradients drive flows which re-orient the nematic director field and thus act as an effective anchoring force. At high activity, defects are created and the system transitions into active turbulence, a chaotic flow state characterized by strong vorticity. We find that in two-dimensional (2D) systems active torques robustly align +1/2 defects parallel to activity gradients, with defect heads pointing towards contractile regions. In three-dimensional (3D) active nematics disclination lines preferentially lie in the plane perpendicular to activity gradients due to active torques acting on line segments. The average orientation of the defect structures in the plane perpendicular to the line tangent depends on the defect type, where wedge-like +1/2 defects align parallel to activity gradients, while twist defects are aligned anti-parallel. Understanding the response of active nematic fluids to activity gradients is an important step towards applying physical theories to biology, where spatial variations of active stress impact morphogenetic processes in developing embryos and affect flows and deformations in growing cell aggregates, such as tumours.
Collapse
Affiliation(s)
- Liam J Ruske
- Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK.
| | - Julia M Yeomans
- Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK.
| |
Collapse
|
21
|
Vafa F, Zhang GH, Nelson DR. Defect absorption and emission for p-atic liquid crystals on cones. Phys Rev E 2022; 106:024704. [PMID: 36109947 DOI: 10.1103/physreve.106.024704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
We investigate the ground-state configurations of two-dimensional liquid crystals with p-fold rotational symmetry (p-atics) on fixed curved surfaces. We focus on the intrinsic geometry and show that isothermal coordinates are particularly convenient as they explicitly encode a geometric contribution to the elastic potential. In the special case of a cone with half-angle β, the apex develops an effective topological charge of -χ, where 2πχ=2π(1-sinβ) is the deficit angle of the cone, and a topological defect of charge σ behaves as if it had an effective topological charge Q_{eff}=(σ-σ^{2}/2) when interacting with the apex. The effective charge of the apex leads to defect absorption and emission at the cone apex as the deficit angle of the cone is varied. For total topological defect charge 1, e.g., imposed by tangential boundary conditions at the edge, we find that for a disk the ground-state configuration consists of p defects each of charge +1/p lying equally spaced on a concentric ring of radius d=(p-1/3p-1)^{1/2p}R, where R is the radius of the disk. In the case of a cone with tangential boundary conditions at the base, we find three types of ground-state configurations as a function of cone angle: (i) for sharp cones, all of the +1/p defects are absorbed by the apex; (ii) at intermediate cone angles, some of the +1/p defects are absorbed by the apex and the rest lie equally spaced along a concentric ring on the flank; and (iii) for nearly flat cones, all of the +1/p defects lie equally spaced along a concentric ring on the flank. Here the defect positions and the absorption transitions depend intricately on p and the deficit angle, which we analytically compute. We check these results with numerical simulations for a set of commensurate cone angles and find excellent agreement.
Collapse
Affiliation(s)
- Farzan Vafa
- Center of Mathematical Sciences and Applications, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Grace H Zhang
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - David R Nelson
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
22
|
Repula A, Abraham E, Cherpak V, Smalyukh II. Biotropic liquid crystal phase transformations in cellulose-producing bacterial communities. Proc Natl Acad Sci U S A 2022; 119:e2200930119. [PMID: 35671425 PMCID: PMC9214502 DOI: 10.1073/pnas.2200930119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022] Open
Abstract
Biological functionality is often enabled by a fascinating variety of physical phenomena that emerge from orientational order of building blocks, a defining property of nematic liquid crystals that is also pervasive in nature. Out-of-equilibrium, "living" analogs of these technological materials are found in biological embodiments ranging from myelin sheath of neurons to extracellular matrices of bacterial biofilms and cuticles of beetles. However, physical underpinnings behind manifestations of orientational order in biological systems often remain unexplored. For example, while nematiclike birefringent domains of biofilms are found in many bacterial systems, the physics behind their formation is rarely known. Here, using cellulose-synthesizing Acetobacter xylinum bacteria, we reveal how biological activity leads to orientational ordering in fluid and gel analogs of these soft matter systems, both in water and on solid agar, with a topological defect found between the domains. Furthermore, the nutrient feeding direction plays a role like that of rubbing of confining surfaces in conventional liquid crystals, turning polydomain organization within the biofilms into a birefringent monocrystal-like order of both the extracellular matrix and the rod-like bacteria within it. We probe evolution of scalar orientational order parameters of cellulose nanofibers and bacteria associated with fluid-gel and isotropic-nematic transformations, showing how highly ordered active nematic fluids and gels evolve with time during biological-activity-driven, disorder-order transformation. With fluid and soft-gel nematics observed in a certain range of biological activity, this mesophase-exhibiting system is dubbed "biotropic," analogously to thermotropic nematics that exhibit solely orientational order within a temperature range, promising technological and fundamental-science applications.
Collapse
Affiliation(s)
- Andrii Repula
- Department of Physics and Chemical Physics Program, University of Colorado, Boulder, CO 80309
| | - Eldho Abraham
- Department of Physics and Chemical Physics Program, University of Colorado, Boulder, CO 80309
| | - Vladyslav Cherpak
- Department of Physics and Chemical Physics Program, University of Colorado, Boulder, CO 80309
| | - Ivan I. Smalyukh
- Department of Physics and Chemical Physics Program, University of Colorado, Boulder, CO 80309
- Chirality Research Center, Hiroshima University, Higashi Hiroshima, Hiroshima 739-8526, Japan
- Renewable and Sustainable Energy Institute, National Renewable Energy Laboratory and University of Colorado, Boulder, CO 80309
| |
Collapse
|
23
|
Zhang DQ, Li ZY, Li B. Self-rotation regulates interface evolution in biphasic active matter through taming defect dynamics. Phys Rev E 2022; 105:064607. [PMID: 35854599 DOI: 10.1103/physreve.105.064607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
Chirality can endow nonequilibrium active matter with unique features and functions. Here, we explore the chiral dynamics in biphasic active nematics composed of self-rotating units that continuously inject energy and angular momentum at the microscale. We show that the self-rotation of units can regularize the boundaries between two phases, rendering sinusoidal-like interfaces, which allow lateral wave propagation and are characterized by chains of ordered antiferromagnetic cross-interface flow vortices. Through the spontaneous coordination of counter-rotating units across the interfaces, topological defects excited by activity are sorted spatiotemporally, where positive defects are locally trapped at the interfaces but, unexpectedly, are transported laterally in a unidirectional rather than wavy mode, whereas inertial negative defects remain spinning in the bulks. Our findings reveal that individual chirality could be harnessed to modulate interfacial morphodynamics in active systems and suggest a potential approach toward controlling topological defects for programmable microfluidics and logic operations.
Collapse
Affiliation(s)
- De-Qing Zhang
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Zhong-Yi Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
Asp ME, Ho Thanh MT, Germann DA, Carroll RJ, Franceski A, Welch RD, Gopinath A, Patteson AE. Spreading rates of bacterial colonies depend on substrate stiffness and permeability. PNAS NEXUS 2022; 1:pgac025. [PMID: 36712798 PMCID: PMC9802340 DOI: 10.1093/pnasnexus/pgac025] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/25/2022] [Accepted: 03/09/2022] [Indexed: 02/01/2023]
Abstract
The ability of bacteria to colonize and grow on different surfaces is an essential process for biofilm development. Here, we report the use of synthetic hydrogels with tunable stiffness and porosity to assess physical effects of the substrate on biofilm development. Using time-lapse microscopy to track the growth of expanding Serratia marcescens colonies, we find that biofilm colony growth can increase with increasing substrate stiffness, unlike what is found on traditional agar substrates. Using traction force microscopy-based techniques, we find that biofilms exert transient stresses correlated over length scales much larger than a single bacterium, and that the magnitude of these forces also increases with increasing substrate stiffness. Our results are consistent with a model of biofilm development in which the interplay between osmotic pressure arising from the biofilm and the poroelastic response of the underlying substrate controls biofilm growth and morphology.
Collapse
Affiliation(s)
- Merrill E Asp
- Physics Department, Syracuse University, Syracuse, NY 13244, USA,BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Minh-Tri Ho Thanh
- Physics Department, Syracuse University, Syracuse, NY 13244, USA,BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Danielle A Germann
- Physics Department, Syracuse University, Syracuse, NY 13244, USA,BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Robert J Carroll
- Physics Department, Syracuse University, Syracuse, NY 13244, USA,BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA
| | - Alana Franceski
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA,Biology Department, Syracuse University, Syracuse, NY 13244, USA
| | - Roy D Welch
- BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA,Biology Department, Syracuse University, Syracuse, NY 13244, USA
| | - Arvind Gopinath
- Department of Bioengineering, University of California, Merced, Merced, CA 95343, USA,Health Sciences Research Institute, University of California, Merced, Merced, CA 95343, USA
| | | |
Collapse
|
25
|
Alert R, Martínez-Calvo A, Datta SS. Cellular Sensing Governs the Stability of Chemotactic Fronts. PHYSICAL REVIEW LETTERS 2022; 128:148101. [PMID: 35476484 DOI: 10.1103/physrevlett.128.148101] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
In contexts ranging from embryonic development to bacterial ecology, cell populations migrate chemotactically along self-generated chemical gradients, often forming a propagating front. Here, we theoretically show that the stability of such chemotactic fronts to morphological perturbations is determined by limitations in the ability of individual cells to sense and thereby respond to the chemical gradient. Specifically, cells at bulging parts of a front are exposed to a smaller gradient, which slows them down and promotes stability, but they also respond more strongly to the gradient, which speeds them up and promotes instability. We predict that this competition leads to chemotactic fingering when sensing is limited at too low chemical concentrations. Guided by this finding and by experimental data on E. coli chemotaxis, we suggest that the cells' sensory machinery might have evolved to avoid these limitations and ensure stable front propagation. Finally, as sensing of any stimuli is necessarily limited in living and active matter in general, the principle of sensing-induced stability may operate in other types of directed migration such as durotaxis, electrotaxis, and phototaxis.
Collapse
Affiliation(s)
- Ricard Alert
- Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzerstraße 38, 01187 Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Alejandro Martínez-Calvo
- Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Sujit S Datta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
26
|
Gsell S, Merkel M. Phase separation dynamics in deformable droplets. SOFT MATTER 2022; 18:2672-2683. [PMID: 35311835 DOI: 10.1039/d1sm01647d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phase separation can drive spatial organization of multicomponent mixtures. For instance in developing animal embryos, effective phase separation descriptions have been used to account for the spatial organization of different tissue types. Similarly, separation of different tissue types is also observed in stem cell aggregates, where the emergence of a polar organization can mimic early embryonic axis formation. Here, we describe such aggregates as deformable two-phase fluid droplets, which are suspended in a fluid environment (third phase). Using hybrid finite-volume Lattice-Boltzmann simulations, we numerically explore the out-of-equilibrium routes that can lead to the polar equilibrium state of such a droplet. We focus on the interplay between spinodal decomposition and advection with hydrodynamic flows driven by interface tensions, which we characterize by a Peclet number Pe. Consistent with previous work, for large Pe the coarsening process is generally accelerated. However, for intermediate Pe we observe long-lived, strongly elongated droplets, where both phases form an alternating stripe pattern. We show that these "croissant" states are close to mechanical equilibrium and coarsen only slowly through diffusive fluxes in an Ostwald-ripening-like process. Finally, we show that a surface tension asymmetry between both droplet phases leads to transient, rotationally symmetric states whose resolution leads to flows reminiscent of Marangoni flows. Our work highlights the importance of advection for the phase separation process in finite, deformable systems.
Collapse
Affiliation(s)
- Simon Gsell
- Aix Marseille Univ, Université de Toulon, CNRS, CPT (UMR 7332), Turing Centre for Living Systems, Marseille, France.
- Aix Marseille Univ, CNRS, IBDM (UMR 7288), Turing Centre for Living Systems, Marseille, France
| | - Matthias Merkel
- Aix Marseille Univ, Université de Toulon, CNRS, CPT (UMR 7332), Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
27
|
Bhattacharjee T, Amchin DB, Alert R, Ott JA, Datta SS. Chemotactic smoothing of collective migration. eLife 2022; 11:e71226. [PMID: 35257660 PMCID: PMC8903832 DOI: 10.7554/elife.71226] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
Collective migration-the directed, coordinated motion of many self-propelled agents-is a fascinating emergent behavior exhibited by active matter with functional implications for biological systems. However, how migration can persist when a population is confronted with perturbations is poorly understood. Here, we address this gap in knowledge through studies of bacteria that migrate via directed motion, or chemotaxis, in response to a self-generated nutrient gradient. We find that bacterial populations autonomously smooth out large-scale perturbations in their overall morphology, enabling the cells to continue to migrate together. This smoothing process arises from spatial variations in the ability of cells to sense and respond to the local nutrient gradient-revealing a population-scale consequence of the manner in which individual cells transduce external signals. Altogether, our work provides insights to predict, and potentially control, the collective migration and morphology of cellular populations and diverse other forms of active matter.
Collapse
Affiliation(s)
- Tapomoy Bhattacharjee
- The Andlinger Center for Energy and the Environment, Princeton UniversityPrincetonUnited States
| | - Daniel B Amchin
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| | - Ricard Alert
- Lewis-Sigler Institute for Integrative Genomics, Princeton UniversityPrincetonUnited States
- Princeton Center for Theoretical Science, Princeton UniversityPrincetonUnited States
| | - Jenna Anne Ott
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| | - Sujit Sankar Datta
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| |
Collapse
|
28
|
Basaran M, Yaman YI, Yüce TC, Vetter R, Kocabas A. Large-scale orientational order in bacterial colonies during inward growth. eLife 2022; 11:72187. [PMID: 35254257 PMCID: PMC8963879 DOI: 10.7554/elife.72187] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/24/2022] [Indexed: 11/30/2022] Open
Abstract
During colony growth, complex interactions regulate the bacterial orientation, leading to the formation of large-scale ordered structures, including topological defects, microdomains, and branches. These structures may benefit bacterial strains, providing invasive advantages during colonization. Active matter dynamics of growing colonies drives the emergence of these ordered structures. However, additional biomechanical factors also play a significant role during this process. Here, we show that the velocity profile of growing colonies creates strong radial orientation during inward growth when crowded populations invade a closed area. During this process, growth geometry sets virtual confinement and dictates the velocity profile. Herein, flow-induced alignment and torque balance on the rod-shaped bacteria result in a new stable orientational equilibrium in the radial direction. Our analysis revealed that the dynamics of these radially oriented structures, also known as aster defects, depend on bacterial length and can promote the survival of the longest bacteria around localized nutritional hotspots. The present results indicate a new mechanism underlying structural order and provide mechanistic insights into the dynamics of bacterial growth on complex surfaces.
Collapse
Affiliation(s)
| | - Y Ilker Yaman
- Department of Physics, Koç University, Istanbul, Turkey
| | | | - Roman Vetter
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Askin Kocabas
- Department of Physics, Koç University, Istanbul, Turkey
| |
Collapse
|
29
|
Killeen A, Bertrand T, Lee CF. Polar Fluctuations Lead to Extensile Nematic Behavior in Confluent Tissues. PHYSICAL REVIEW LETTERS 2022; 128:078001. [PMID: 35244433 DOI: 10.1103/physrevlett.128.078001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/10/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
How can a collection of motile cells, each generating contractile nematic stresses in isolation, become an extensile nematic at the tissue level? Understanding this seemingly contradictory experimental observation, which occurs irrespective of whether the tissue is in the liquid or solid states, is not only crucial to our understanding of diverse biological processes, but is also of fundamental interest to soft matter and many-body physics. Here, we resolve this cellular to tissue level disconnect in the small fluctuation regime by using analytical theories based on hydrodynamic descriptions of confluent tissues, in both liquid and solid states. Specifically, we show that a collection of microscopic constituents with no inherently nematic extensile forces can exhibit active extensile nematic behavior when subject to polar fluctuating forces. We further support our findings by performing cell level simulations of minimal models of confluent tissues.
Collapse
Affiliation(s)
- Andrew Killeen
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Thibault Bertrand
- Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Chiu Fan Lee
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
30
|
Nejad MR, Yeomans JM. Active Extensile Stress Promotes 3D Director Orientations and Flows. PHYSICAL REVIEW LETTERS 2022; 128:048001. [PMID: 35148135 DOI: 10.1103/physrevlett.128.048001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/21/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
We use numerical simulations and linear stability analysis to study an active nematic layer where the director is allowed to point out of the plane. Our results highlight the difference between extensile and contractile systems. Contractile stress suppresses the flows perpendicular to the layer and favors in-plane orientations of the director. By contrast extensile stress promotes instabilities that can turn the director out of the plane, leaving behind a population of distinct, in-plane regions that continually elongate and divide. This supports extensile forces as a mechanism for the initial stages of layer formation in living systems, and we show that a planar drop with extensile (contractile) activity grows into three dimensions (remains in two dimensions). The results also explain the propensity of disclination lines in three dimensional active nematics to be of twist type in extensile or wedge type in contractile materials.
Collapse
Affiliation(s)
- Mehrana R Nejad
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
31
|
Romeo N, Hastewell A, Mietke A, Dunkel J. Learning developmental mode dynamics from single-cell trajectories. eLife 2021; 10:e68679. [PMID: 34964437 PMCID: PMC8871385 DOI: 10.7554/elife.68679] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 12/24/2021] [Indexed: 11/22/2022] Open
Abstract
Embryogenesis is a multiscale process during which developmental symmetry breaking transitions give rise to complex multicellular organisms. Recent advances in high-resolution live-cell microscopy provide unprecedented insights into the collective cell dynamics at various stages of embryonic development. This rapid experimental progress poses the theoretical challenge of translating high-dimensional imaging data into predictive low-dimensional models that capture the essential ordering principles governing developmental cell migration in complex geometries. Here, we combine mode decomposition ideas that have proved successful in condensed matter physics and turbulence theory with recent advances in sparse dynamical systems inference to realize a computational framework for learning quantitative continuum models from single-cell imaging data. Considering pan-embryo cell migration during early gastrulation in zebrafish as a widely studied example, we show how cell trajectory data on a curved surface can be coarse-grained and compressed with suitable harmonic basis functions. The resulting low-dimensional representation of the collective cell dynamics enables a compact characterization of developmental symmetry breaking and the direct inference of an interpretable hydrodynamic model, which reveals similarities between pan-embryo cell migration and active Brownian particle dynamics on curved surfaces. Due to its generic conceptual foundation, we expect that mode-based model learning can help advance the quantitative biophysical understanding of a wide range of developmental structure formation processes.
Collapse
Affiliation(s)
- Nicolas Romeo
- Department of Mathematics, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Physics, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Alasdair Hastewell
- Department of Mathematics, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Alexander Mietke
- Department of Mathematics, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of TechnologyCambridgeUnited States
| |
Collapse
|
32
|
Nijjer J, Li C, Zhang Q, Lu H, Zhang S, Yan J. Mechanical forces drive a reorientation cascade leading to biofilm self-patterning. Nat Commun 2021; 12:6632. [PMID: 34789754 PMCID: PMC8599862 DOI: 10.1038/s41467-021-26869-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/26/2021] [Indexed: 01/12/2023] Open
Abstract
In growing active matter systems, a large collection of engineered or living autonomous units metabolize free energy and create order at different length scales as they proliferate and migrate collectively. One such example is bacterial biofilms, surface-attached aggregates of bacterial cells embedded in an extracellular matrix that can exhibit community-scale orientational order. However, how bacterial growth coordinates with cell-surface interactions to create distinctive, long-range order during biofilm development remains elusive. Here we report a collective cell reorientation cascade in growing Vibrio cholerae biofilms that leads to a differentially ordered, spatiotemporally coupled core-rim structure reminiscent of a blooming aster. Cell verticalization in the core leads to a pattern of differential growth that drives radial alignment of the cells in the rim, while the growing rim generates compressive stresses that expand the verticalized core. Such self-patterning disappears in nonadherent mutants but can be restored through opto-manipulation of growth. Agent-based simulations and two-phase active nematic modeling jointly reveal the strong interdependence of the driving forces underlying the differential ordering. Our findings offer insight into the developmental processes that shape bacterial communities and provide ways to engineer phenotypes and functions in living active matter.
Collapse
Affiliation(s)
- Japinder Nijjer
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Changhao Li
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA
| | - Qiuting Zhang
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Haoran Lu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA
| | - Sulin Zhang
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, USA.
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA.
| | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, USA.
- Quantitative Biology Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
33
|
Physics of liquid crystals in cell biology. Trends Cell Biol 2021; 32:140-150. [PMID: 34756501 DOI: 10.1016/j.tcb.2021.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/21/2022]
Abstract
The past decade has witnessed a rapid growth in understanding of the pivotal roles of mechanical stresses and physical forces in cell biology. As a result, an integrated view of cell biology is evolving, where genetic and molecular features are scrutinised hand in hand with physical and mechanical characteristics of cells. Physics of liquid crystals has emerged as a burgeoning new frontier in cell biology over the past few years, fuelled by an increasing identification of orientational order and topological defects in cell biology, spanning scales from subcellular filaments to individual cells and multicellular tissues. Here, we provide an account of the most recent findings and developments, together with future promises and challenges in this rapidly evolving interdisciplinary research direction.
Collapse
|
34
|
Liu J, Totz JF, Miller PW, Hastewell AD, Chao YC, Dunkel J, Fakhri N. Topological braiding and virtual particles on the cell membrane. Proc Natl Acad Sci U S A 2021; 118:e2104191118. [PMID: 34417290 PMCID: PMC8403925 DOI: 10.1073/pnas.2104191118] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Braiding of topological structures in complex matter fields provides a robust framework for encoding and processing information, and it has been extensively studied in the context of topological quantum computation. In living systems, topological defects are crucial for the localization and organization of biochemical signaling waves, but their braiding dynamics remain unexplored. Here, we show that the spiral wave cores, which organize the Rho-GTP protein signaling dynamics and force generation on the membrane of starfish egg cells, undergo spontaneous braiding dynamics. Experimentally measured world line braiding exponents and topological entropy correlate with cellular activity and agree with predictions from a generic field theory. Our analysis further reveals the creation and annihilation of virtual quasi-particle excitations during defect scattering events, suggesting phenomenological parallels between quantum and living matter.
Collapse
Affiliation(s)
- Jinghui Liu
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jan F Totz
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Pearson W Miller
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010
| | - Alasdair D Hastewell
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Yu-Chen Chao
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139;
| | - Nikta Fakhri
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139;
| |
Collapse
|
35
|
Zhang J, Yang N, Kreeger PK, Notbohm J. Topological defects in the mesothelium suppress ovarian cancer cell clearance. APL Bioeng 2021; 5:036103. [PMID: 34396026 PMCID: PMC8337086 DOI: 10.1063/5.0047523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023] Open
Abstract
We investigated an in vitro model for mesothelial clearance, wherein ovarian cancer cells invade into a layer of mesothelial cells, resulting in mesothelial retraction combined with cancer cell disaggregation and spreading. Prior to the addition of tumor cells, the mesothelial cells had an elongated morphology, causing them to align with their neighbors into well-ordered domains. Flaws in this alignment, which occur at topological defects, have been associated with altered cell density, motion, and forces. Here, we identified topological defects in the mesothelial layer and showed how they affected local cell density by producing a net flow of cells inward or outward, depending on the defect type. At locations of net inward flow, mesothelial clearance was impeded. Hence, the collective behavior of the mesothelial cells, as governed by the topological defects, affected tumor cell clearance and spreading. Importantly, our findings were consistent across multiple ovarian cancer cell types, suggesting a new physical mechanism that could impact ovarian cancer metastasis.
Collapse
Affiliation(s)
| | - Ning Yang
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
36
|
Abstract
Biofilms are aggregates of bacterial cells surrounded by an extracellular matrix. Much progress has been made in studying biofilm growth on solid substrates; however, little is known about the biophysical mechanisms underlying biofilm development in three-dimensional confined environments in which the biofilm-dwelling cells must push against and even damage the surrounding environment to proliferate. Here, combining single-cell imaging, mutagenesis, and rheological measurement, we reveal the key morphogenesis steps of Vibrio cholerae biofilms embedded in hydrogels as they grow by four orders of magnitude from their initial size. We show that the morphodynamics and cell ordering in embedded biofilms are fundamentally different from those of biofilms on flat surfaces. Treating embedded biofilms as inclusions growing in an elastic medium, we quantitatively show that the stiffness contrast between the biofilm and its environment determines biofilm morphology and internal architecture, selecting between spherical biofilms with no cell ordering and oblate ellipsoidal biofilms with high cell ordering. When embedded in stiff gels, cells self-organize into a bipolar structure that resembles the molecular ordering in nematic liquid crystal droplets. In vitro biomechanical analysis shows that cell ordering arises from stress transmission across the biofilm-environment interface, mediated by specific matrix components. Our imaging technique and theoretical approach are generalizable to other biofilm-forming species and potentially to biofilms embedded in mucus or host tissues as during infection. Our results open an avenue to understand how confined cell communities grow by means of a compromise between their inherent developmental program and the mechanical constraints imposed by the environment.
Collapse
|
37
|
Hayes IM, Wei DS, Metz T, Zhang J, Eo YS, Ran S, Saha SR, Collini J, Butch NP, Agterberg DF, Kapitulnik A, Paglione J. Multicomponent superconducting order parameter in UTe 2. Science 2021; 373:797-801. [PMID: 34385397 DOI: 10.1126/science.abb0272] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/30/2020] [Accepted: 06/30/2021] [Indexed: 11/02/2022]
Abstract
An unconventional superconducting state was recently discovered in uranium ditelluride (UTe2), in which spin-triplet superconductivity emerges from the paramagnetic normal state of a heavy-fermion material. The coexistence of magnetic fluctuations and superconductivity, together with the crystal structure of this material, suggests that a distinctive set of symmetries, magnetic properties, and topology underlie the superconducting state. Here, we report observations of a nonzero polar Kerr effect and of two transitions in the specific heat upon entering the superconducting state, which together suggest that the superconductivity in UTe2 is characterized by a two-component order parameter that breaks time-reversal symmetry. These data place constraints on the symmetries of the order parameter and inform the discussion on the presence of topological superconductivity in UTe2.
Collapse
Affiliation(s)
- I M Hayes
- Department of Physics, Quantum Materials Center, University of Maryland, College Park, MD 20742, USA
| | - D S Wei
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.,Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305, USA.,Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - T Metz
- State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, China.,Department of Physics, Quantum Materials Center, University of Maryland, College Park, MD 20742, USA
| | - J Zhang
- Department of Physics, Quantum Materials Center, University of Maryland, College Park, MD 20742, USA.,State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, China
| | - Y S Eo
- Department of Physics, Quantum Materials Center, University of Maryland, College Park, MD 20742, USA
| | - S Ran
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.,Department of Physics, Quantum Materials Center, University of Maryland, College Park, MD 20742, USA.,NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - S R Saha
- Department of Physics, Quantum Materials Center, University of Maryland, College Park, MD 20742, USA.,NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - J Collini
- Department of Physics, Quantum Materials Center, University of Maryland, College Park, MD 20742, USA
| | - N P Butch
- State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, China.,Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA.,Department of Physics, Quantum Materials Center, University of Maryland, College Park, MD 20742, USA.,NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - D F Agterberg
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305, USA.,Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
| | - A Kapitulnik
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305, USA. .,Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.,Department of Physics, Stanford University, Stanford, CA 94305, USA.,Stanford Institute for Materials and Energy Sciences (SIMES), SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA
| | - J Paglione
- State Key Laboratory of Surface Physics, Department of Physics, Fudan University, Shanghai 200433, China. .,Department of Physics, Quantum Materials Center, University of Maryland, College Park, MD 20742, USA.,NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.,The Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| |
Collapse
|
38
|
Al-Izzi SC, Morris RG. Active flows and deformable surfaces in development. Semin Cell Dev Biol 2021; 120:44-52. [PMID: 34266757 DOI: 10.1016/j.semcdb.2021.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/30/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022]
Abstract
We review progress in active hydrodynamic descriptions of flowing media on curved and deformable manifolds: the state-of-the-art in continuum descriptions of single-layers of epithelial and/or other tissues during development. First, after a brief overview of activity, flows and hydrodynamic descriptions, we highlight the generic challenge of identifying the dependence on dynamical variables of so-called active kinetic coefficients- active counterparts to dissipative Onsager coefficients. We go on to describe some of the subtleties concerning how curvature and active flows interact, and the issues that arise when surfaces are deformable. We finish with a broad discussion around the utility of such theories in developmental biology. This includes limitations to analytical techniques, challenges associated with numerical integration, fitting-to-data and inference, and potential tools for the future, such as discrete differential geometry.
Collapse
Affiliation(s)
- Sami C Al-Izzi
- School of Physics and EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales - Sydney, 2052, Australia
| | - Richard G Morris
- School of Physics and EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales - Sydney, 2052, Australia.
| |
Collapse
|
39
|
Endresen KD, Kim M, Pittman M, Chen Y, Serra F. Topological defects of integer charge in cell monolayers. SOFT MATTER 2021; 17:5878-5887. [PMID: 33710239 PMCID: PMC8220479 DOI: 10.1039/d1sm00100k] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Many cell types spontaneously order like nematic liquid crystals, and, as such, they form topological defects, which influence the cell organization. While defects with topological charge ±1/2 are common in cell monolayers, defects with charge ±1, which are thought to be relevant in the formation of protrusions in living systems, are more elusive. We use topographical patterns to impose topological charge of ±1 in controlled locations in cell monolayers. We study two types of cells, 3T6 fibroblasts and EpH-4 epithelial cells, and we compare their behavior on such patterns, characterizing the degree of alignment, the cell density near the defects, and their behavior at the defect core. We observe density variation in the 3T6 monolayers near both types of defects over the same length-scale. By choosing appropriate geometrical parameters of our topographical features, we identify a new behavior of 3T6 cells near the defects with topological charge +1, leading to a change in the cells' preferred shape. Our strategy allows a fine control of cell alignment near defects as a platform to study liquid crystalline properties of cells.
Collapse
Affiliation(s)
| | - MinSu Kim
- Johns Hopkins University, Dept. Physics and Astronomy, Baltimore, USA.
| | - Matthew Pittman
- Johns Hopkins University, Dept. Mechanical Engineering, Baltimore, USA
| | - Yun Chen
- Johns Hopkins University, Dept. Mechanical Engineering, Baltimore, USA
| | - Francesca Serra
- Johns Hopkins University, Dept. Physics and Astronomy, Baltimore, USA.
| |
Collapse
|
40
|
Mozaffari A, Zhang R, Atzin N, de Pablo JJ. Defect Spirograph: Dynamical Behavior of Defects in Spatially Patterned Active Nematics. PHYSICAL REVIEW LETTERS 2021; 126:227801. [PMID: 34152186 DOI: 10.1103/physrevlett.126.227801] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 01/06/2021] [Accepted: 05/03/2021] [Indexed: 06/13/2023]
Abstract
Topological defects in active liquid crystals can be confined by introducing gradients of activity. Here, we examine the dynamical behavior of two defects confined by a sharp gradient of activity that separates an active circular region and a surrounding passive nematic material. Continuum simulations are used to explain how the interplay among energy injection into the system, hydrodynamic interactions, and frictional forces governs the dynamics of topologically required self-propelling +1/2 defects. Our findings are rationalized in terms of a phase diagram for the dynamical response of defects in terms of activity and frictional damping strength. Different regions of the underlying phase diagram correspond to distinct dynamical modes, namely immobile defects, steady rotation of defects, bouncing defects, bouncing-cruising defects, dancing defects, and multiple defects with irregular dynamics. These dynamic states raise the prospect of generating synchronized defect arrays for microfluidic applications.
Collapse
Affiliation(s)
- Ali Mozaffari
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| | - Rui Zhang
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | - Noe Atzin
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| | - Juan J de Pablo
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, USA
| |
Collapse
|
41
|
Plan ELCVM, Yeomans JM, Doostmohammadi A. Activity pulses induce spontaneous flow reversals in viscoelastic environments. J R Soc Interface 2021; 18:20210100. [PMID: 33849330 PMCID: PMC8086915 DOI: 10.1098/rsif.2021.0100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Complex interactions between cellular systems and their surrounding extracellular matrices are emerging as important mechanical regulators of cell functions, such as proliferation, motility and cell death, and such cellular systems are often characterized by pulsating actomyosin activities. Here, using an active gel model, we numerically explore spontaneous flow generation by activity pulses in the presence of a viscoelastic medium. The results show that cross-talk between the activity-induced deformations of the viscoelastic surroundings and the time-dependent response of the active medium to these deformations can lead to the reversal of spontaneously generated active flows. We explain the mechanism behind this phenomenon based on the interaction between the active flow and the viscoelastic medium. We show the importance of relaxation time scales of both the polymers and the active particles and provide a phase space over which such spontaneous flow reversals can be observed. Our results suggest new experiments investigating the role of controlled pulses of activity in living systems ensnared in complex mircoenvironments.
Collapse
Affiliation(s)
- Emmanuel L C Vi M Plan
- Institute of Theoretical and Applied Research, Duy Tan University, Ha Noi 100 000, Viet Nam.,Faculty of Natural Science, Duy Tan University, Da Nang 550 000, Viet Nam
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Clarendon Laboratory, Oxford OX1 3PU, UK
| | - Amin Doostmohammadi
- The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| |
Collapse
|
42
|
Vafa F, Bowick MJ, Shraiman BI, Marchetti MC. Fluctuations can induce local nematic order and extensile stress in monolayers of motile cells. SOFT MATTER 2021; 17:3068-3073. [PMID: 33596291 DOI: 10.1039/d0sm02027c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Recent experiments in various cell types have shown that two-dimensional tissues often display local nematic order, with evidence of extensile stresses manifest in the dynamics of topological defects. Using a mesoscopic model where tissue flow is generated by fluctuating traction forces coupled to the nematic order parameter, we show that the resulting tissue dynamics can spontaneously produce local nematic order and an extensile internal stress. A key element of the model is the assumption that in the presence of local nematic alignment, cells preferentially crawl along the nematic axis, resulting in anisotropy of fluctuations. Our work shows that activity can drive either extensile or contractile stresses in tissue, depending on the relative strength of the contractility of the cortical cytoskeleton and tractions by cells on the extracellular matrix.
Collapse
Affiliation(s)
- Farzan Vafa
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106, USA.
| | | | | | | |
Collapse
|
43
|
Abstract
Biofilms are structured communities formed by a single or multiple microbial species. Within biofilms, bacteria are embedded into extracellular matrix, allowing them to build macroscopic objects. Biofilm structure can respond to environmental changes such as the presence of antibiotics or predators. By adjusting expression levels of surface and extracellular matrix components, bacteria tune cell-to-cell interactions. One major challenge in the field is the fact that these components are very diverse among different species. Deciphering how physical interactions within biofilms are affected by changes in gene expression is a promising approach to obtaining a more unified picture of how bacteria modulate biofilms. This review focuses on recent advances in characterizing attractive and repulsive forces between bacteria in correlation with biofilm structure, dynamics, and spreading. How bacteria control physical interactions to maximize their fitness is an emerging theme.
Collapse
Affiliation(s)
- Berenike Maier
- Institute for Biological Physics and Center for Molecular Medicine Cologne, University of Cologne, 50674 Cologne, Germany;
| |
Collapse
|
44
|
Hoffmann KB, Sbalzarini IF. Robustness of topological defects in discrete domains. Phys Rev E 2021; 103:012602. [PMID: 33601629 DOI: 10.1103/physreve.103.012602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/02/2020] [Indexed: 11/07/2022]
Abstract
Topological defects are singular points in vector fields, important in applications ranging from fingerprint detection to liquid crystals to biomedical imaging. In discretized vector fields, topological defects and their topological charge are identified by finite differences or finite-step paths around the tentative defect. As the topological charge is (half) integer, it cannot depend continuously on each input vector in a discrete domain. Instead, it switches discontinuously when vectors change beyond a certain amount, making the analysis of topological defects error prone in noisy data. We improve existing methods for the identification of topological defects by proposing a robustness measure for (i) the location of a defect, (ii) the existence of topological defects and the total topological charge within a given area, (iii) the annihilation of a defect pair, and (iv) the formation of a defect pair. Based on the proposed robustness measure, we show that topological defects in discrete domains can be identified with optimal trade-off between localization precision and robustness. The proposed robustness measure enables uncertainty quantification for topological defects in noisy discretized nematic fields (orientation fields) and polar fields (vector fields).
Collapse
Affiliation(s)
- Karl B Hoffmann
- Technische Universität Dresden, Faculty of Computer Science, Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany; and Cluster of Excellence Physics of Life, TU Dresden, Germany
| | - Ivo F Sbalzarini
- Technische Universität Dresden, Faculty of Computer Science, Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany; and Cluster of Excellence Physics of Life, TU Dresden, Germany
| |
Collapse
|
45
|
Comelles J, SS S, Lu L, Le Maout E, Anvitha S, Salbreux G, Jülicher F, Inamdar MM, Riveline D. Epithelial colonies in vitro elongate through collective effects. eLife 2021; 10:e57730. [PMID: 33393459 PMCID: PMC7850623 DOI: 10.7554/elife.57730] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
Epithelial tissues of the developing embryos elongate by different mechanisms, such as neighbor exchange, cell elongation, and oriented cell division. Since autonomous tissue self-organization is influenced by external cues such as morphogen gradients or neighboring tissues, it is difficult to distinguish intrinsic from directed tissue behavior. The mesoscopic processes leading to the different mechanisms remain elusive. Here, we study the spontaneous elongation behavior of spreading circular epithelial colonies in vitro. By quantifying deformation kinematics at multiple scales, we report that global elongation happens primarily due to cell elongations, and its direction correlates with the anisotropy of the average cell elongation. By imposing an external time-periodic stretch, the axis of this global symmetry breaking can be modified and elongation occurs primarily due to orientated neighbor exchange. These different behaviors are confirmed using a vertex model for collective cell behavior, providing a framework for understanding autonomous tissue elongation and its origins.
Collapse
Affiliation(s)
- Jordi Comelles
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and Université de StrasbourgStrasbourgFrance
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche Scientifique, UMR7104IllkirchFrance
- Institut National de la Santé et de la Recherche Médicale, U964IllkirchFrance
| | - Soumya SS
- Department of Civil Engineering, Indian Institute of Technology Bombay, PowaiMumbaiIndia
| | - Linjie Lu
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and Université de StrasbourgStrasbourgFrance
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche Scientifique, UMR7104IllkirchFrance
- Institut National de la Santé et de la Recherche Médicale, U964IllkirchFrance
| | - Emilie Le Maout
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and Université de StrasbourgStrasbourgFrance
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche Scientifique, UMR7104IllkirchFrance
- Institut National de la Santé et de la Recherche Médicale, U964IllkirchFrance
| | - S Anvitha
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, PowaiMumbaiIndia
| | | | - Frank Jülicher
- Max Planck Institute for the Physics of Complex SystemsDresdenGermany
- Cluster of Excellence Physics of LifeDresdenGermany
| | - Mandar M Inamdar
- Department of Civil Engineering, Indian Institute of Technology Bombay, PowaiMumbaiIndia
| | - Daniel Riveline
- Laboratory of Cell Physics ISIS/IGBMC, CNRS and Université de StrasbourgStrasbourgFrance
- Institut de Génétique et de Biologie Moléculaire et CellulaireIllkirchFrance
- Centre National de la Recherche Scientifique, UMR7104IllkirchFrance
- Institut National de la Santé et de la Recherche Médicale, U964IllkirchFrance
| |
Collapse
|
46
|
Kumar S, Mishra S. Active nematics with quenched disorder. Phys Rev E 2020; 102:052609. [PMID: 33327090 DOI: 10.1103/physreve.102.052609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 11/02/2020] [Indexed: 11/07/2022]
Abstract
We introduce a two-dimensional active nematic with quenched disorder. We write the coarse-grained hydrodynamic equations of motion for slow variables, viz. density and orientation. Disorder strength is tuned from zero to large values. Results from the numerical solution of equations of motion as well as the calculation of two-point orientation correlation function using linear approximation shows that the ordered steady state follows a disorder dependent crossover from quasi-long-range order to short-range order. Such crossover is due to the pinning of ±1/2 topological defects in the presence of finite disorder, which breaks the system in uncorrelated domains. Finite disorder slows the dynamics of +1/2 defect, and it leads to slower growth dynamics. The two-point correlation functions for the density and orientation fields show good dynamic scaling but no static scaling for the different disorder strengths. Our findings can motivate experimentalists to verify the results and find applications in living and artificial apolar systems in the presence of a quenched disorder.
Collapse
Affiliation(s)
- Sameer Kumar
- Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| | - Shradha Mishra
- Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
47
|
Thijssen K, Nejad MR, Yeomans JM. Role of Friction in Multidefect Ordering. PHYSICAL REVIEW LETTERS 2020; 125:218004. [PMID: 33275020 DOI: 10.1103/physrevlett.125.218004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/30/2020] [Accepted: 10/22/2020] [Indexed: 06/12/2023]
Abstract
We use continuum simulations to study the impact of friction on the ordering of defects in an active nematic. Even in a frictionless system, +1/2 defects tend to align side by side and orient antiparallel reflecting their propensity to form, and circulate with, flow vortices. Increasing friction enhances the effectiveness of the defect-defect interactions, and defects form dynamically evolving, large-scale, positionally, and orientationally ordered structures, which can be explained as a competition between hexagonal packing, preferred by the -1/2 defects, and rectangular packing, preferred by the +1/2 defects.
Collapse
Affiliation(s)
- Kristian Thijssen
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Mehrana R Nejad
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
48
|
Norton MM, Grover P, Hagan MF, Fraden S. Optimal Control of Active Nematics. PHYSICAL REVIEW LETTERS 2020; 125:178005. [PMID: 33156653 DOI: 10.1103/physrevlett.125.178005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
In this work we present the first systematic framework to sculpt active nematic systems, using optimal control theory and a hydrodynamic model of active nematics. We demonstrate the use of two different control fields, (i) applied vorticity and (ii) activity strength, to shape the dynamics of an extensile active nematic that is confined to a disk. In the absence of control inputs, the system exhibits two attractors, clockwise and counterclockwise circulating states characterized by two co-rotating topological +1/2 defects. We specifically seek spatiotemporal inputs that switch the system from one attractor to the other; we also examine phase-shifting perturbations. We identify control inputs by optimizing a penalty functional with three contributions: total control effort, spatial gradients in the control, and deviations from the desired trajectory. This work demonstrates that optimal control theory can be used to calculate nontrivial inputs capable of restructuring active nematics in a manner that is economical, smooth, and rapid, and therefore will serve as a guide to experimental efforts to control active matter.
Collapse
Affiliation(s)
- Michael M Norton
- Center for Neural Engineering, Department of Engineering Science and Materials, Pennsylvania State University, University Park, Pennsylvania 16801, USA and Physics Department, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Piyush Grover
- Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | - Michael F Hagan
- Physics Department, Brandeis University, Waltham, Massachusetts 02453, USA
| | - Seth Fraden
- Physics Department, Brandeis University, Waltham, Massachusetts 02453, USA
| |
Collapse
|
49
|
Chen L, Lee CF, Toner J. Universality class for a nonequilibrium state of matter: A d=4-ε expansion study of Malthusian flocks. Phys Rev E 2020; 102:022610. [PMID: 32942483 DOI: 10.1103/physreve.102.022610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/17/2020] [Indexed: 02/02/2023]
Abstract
We show that "Malthusian flocks"-i.e., coherently moving collections of self-propelled entities (such as living creatures) which are being "born" and "dying" during their motion-belong to a new universality class in spatial dimensions d>2. We calculate the universal exponents and scaling laws of this new universality class to O(ε) in a d=4-ε expansion and find these are different from the "canonical" exponents previously conjectured to hold for "immortal" flocks (i.e., those without birth and death) and shown to hold for incompressible flocks with spatial dimensions in the range of 2<d≤4. We also obtain a universal amplitude ratio relating the damping of transverse and longitudinal velocity and density fluctuations in these systems. Furthermore, we find a universal separatrix in real space (r) between two regions in which the equal-time density correlation 〈δρ(r,t)δρ(0,t)〉 has opposite signs. Our expansion should be quite accurate in d=3, allowing precise quantitative comparisons between our theory, simulations, and experiments.
Collapse
Affiliation(s)
- Leiming Chen
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou Jiangsu 221116, People's Republic of China
| | - Chiu Fan Lee
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - John Toner
- Department of Physics and Institute for Fundamental Science, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
50
|
Chen L, Lee CF, Toner J. Moving, Reproducing, and Dying Beyond Flatland: Malthusian Flocks in Dimensions d>2. PHYSICAL REVIEW LETTERS 2020; 125:098003. [PMID: 32915622 DOI: 10.1103/physrevlett.125.098003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
We show that "Malthusian flocks"-i.e., coherently moving collections of self-propelled entities (such as living creatures) which are being "born" and "dying" during their motion-belong to a new universality class in spatial dimensions d>2. We calculate the universal exponents and scaling laws of this new universality class to O(ε) in an ε=4-d expansion, and find these are different from the "canonical" exponents previously conjectured to hold for "immortal" flocks (i.e., those without birth and death) and shown to hold for incompressible flocks in d>2. Our expansion should be quite accurate in d=3, allowing precise quantitative comparisons between our theory, simulations, and experiments.
Collapse
Affiliation(s)
- Leiming Chen
- School of Materials Science and Physics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, People's Republic of China
| | - Chiu Fan Lee
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - John Toner
- Department of Physics and Institute for Fundamental Science, University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|