1
|
Bin Q, Jing H, Wu Y, Nori F, Lü XY. Nonreciprocal Bundle Emissions of Quantum Entangled Pairs. PHYSICAL REVIEW LETTERS 2024; 133:043601. [PMID: 39121413 DOI: 10.1103/physrevlett.133.043601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/17/2024] [Indexed: 08/11/2024]
Abstract
Realizing precise control over multiquanta emission is crucial for quantum information processing, especially when integrated with advanced techniques of manipulating quantum states. Here, by spinning the resonator to induce the Sagnac effect, we can obtain nonreciprocal photon-phonon and photon-magnon super-Rabi oscillations under conditions of optically driving resonance transitions. Opening dissipative channels for such super-Rabi oscillations enables the realization of directional bundle emissions of entangled photon-phonon pairs and photon-magnon pairs by transferring the pure multiquanta state to a bundled multiquanta outside of the system. This nonreciprocal emission is a flexible switch that can be controlled with precision, and simultaneous emissions of different entangled pairs (such as photon-phonon or photon-magnon pairs) can even emerge but in opposite directions by driving the resonator from different directions. This ability to flexibly manipulate the system allows us to achieve directional entangled multiquanta emitters, and has also potential applications for building hybrid quantum networks and on-chip quantum communications.
Collapse
Affiliation(s)
| | - Hui Jing
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
| | | | - Franco Nori
- Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wakoshi, Saitama 351-0198, Japan
- Center for Quantum Computing, RIKEN, Wakoshi, Saitama 351-0198, Japan
- Physics Department, The University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| | | |
Collapse
|
2
|
Drori L, Das BC, Zohar TD, Winer G, Poem E, Poddubny A, Firstenberg O. Quantum vortices of strongly interacting photons. Science 2023; 381:193-198. [PMID: 37440622 DOI: 10.1126/science.adh5315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/07/2023] [Indexed: 07/15/2023]
Abstract
Vortices are topologically nontrivial defects that generally originate from nonlinear field dynamics. All-optical generation of photonic vortices-phase singularities of the electromagnetic field-requires sufficiently strong nonlinearity that is typically achieved in the classical optics regime. We report on the realization of quantum vortices of photons that result from a strong photon-photon interaction in a quantum nonlinear optical medium. The interaction causes faster phase accumulation for copropagating photons, producing a quantum vortex-antivortex pair within the two-photon wave function. For three photons, the formation of vortex lines and a central vortex ring confirms the existence of a genuine three-photon interaction. The wave function topology, governed by two- and three-photon bound states, imposes a conditional phase shift of π per photon, a potential resource for deterministic quantum logic operations.
Collapse
Affiliation(s)
- Lee Drori
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Bankim Chandra Das
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tomer Danino Zohar
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Gal Winer
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eilon Poem
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alexander Poddubny
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ofer Firstenberg
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
3
|
Bin Q, Wu Y, Lü XY. Parity-Symmetry-Protected Multiphoton Bundle Emission. PHYSICAL REVIEW LETTERS 2021; 127:073602. [PMID: 34459658 DOI: 10.1103/physrevlett.127.073602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
We demonstrate symmetry protected multiphoton bundle emission in the cavity QED system under the ultrastrong coupling regime. Our proposal only enables the super-Rabi oscillations with periodic generation of even correlated photons in the cavity, which is realized by combining the laser driven flip of qubit and the symmetry conserved transitions induced by Rabi interaction with parity symmetry. Combined with dissipation, only 2n-photon bundle emissions are allowed, due to the almost perfect suppression of bundle emissions with odd correlated photons. Meanwhile, the corresponding purities are significantly enhanced by the parity symmetry. This work extends multiphoton bundle emission to the ultrastrong coupling regime, and offers the prospect of exploring symmetry-protected multiphoton physics.
Collapse
Affiliation(s)
- Qian Bin
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Ying Wu
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Xin-You Lü
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| |
Collapse
|
4
|
Ornelas-Huerta DP, Bienias P, Craddock AN, Gullans MJ, Hachtel AJ, Kalinowski M, Lyon ME, Gorshkov AV, Rolston SL, Porto JV. Tunable Three-Body Loss in a Nonlinear Rydberg Medium. PHYSICAL REVIEW LETTERS 2021; 126:173401. [PMID: 33988429 DOI: 10.1103/physrevlett.126.173401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Long-range Rydberg interactions, in combination with electromagnetically induced transparency (EIT), give rise to strongly interacting photons where the strength, sign, and form of the interactions are widely tunable and controllable. Such control can be applied to both coherent and dissipative interactions, which provides the potential for generating novel few-photon states. Recently it has been shown that Rydberg-EIT is a rare system in which three-body interactions can be as strong or stronger than two-body interactions. In this work, we study three-body scattering loss for Rydberg-EIT in a wide regime of single and two-photon detunings. Our numerical simulations of the full three-body wave function and analytical estimates based on Fermi's golden rule strongly suggest that the observed features in the outgoing photonic correlations are caused by the resonant enhancement of the three-body losses.
Collapse
Affiliation(s)
- D P Ornelas-Huerta
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Przemyslaw Bienias
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Alexander N Craddock
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Michael J Gullans
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Andrew J Hachtel
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Marcin Kalinowski
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Mary E Lyon
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Alexey V Gorshkov
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - S L Rolston
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - J V Porto
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
5
|
Bienias P, Gullans MJ, Kalinowski M, Craddock AN, Ornelas-Huerta DP, Rolston SL, Porto JV, Gorshkov AV. Exotic Photonic Molecules via Lennard-Jones-like Potentials. PHYSICAL REVIEW LETTERS 2020; 125:093601. [PMID: 32915601 DOI: 10.1103/physrevlett.125.093601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
Ultracold systems offer an unprecedented level of control of interactions between atoms. An important challenge is to achieve a similar level of control of the interactions between photons. Towards this goal, we propose a realization of a novel Lennard-Jones-like potential between photons coupled to the Rydberg states via electromagnetically induced transparency (EIT). This potential is achieved by tuning Rydberg states to a Förster resonance with other Rydberg states. We consider few-body problems in 1D and 2D geometries and show the existence of self-bound clusters ("molecules") of photons. We demonstrate that for a few-body problem, the multibody interactions have a significant impact on the geometry of the molecular ground state. This leads to phenomena without counterparts in conventional systems: For example, three photons in two dimensions preferentially arrange themselves in a line configuration rather than in an equilateral-triangle configuration. Our result opens a new avenue for studies of many-body phenomena with strongly interacting photons.
Collapse
Affiliation(s)
- Przemyslaw Bienias
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Michael J Gullans
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Marcin Kalinowski
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Alexander N Craddock
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
| | | | - S L Rolston
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - J V Porto
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
| | - Alexey V Gorshkov
- Joint Quantum Institute, NIST/University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
6
|
Bienias P, Douglas J, Paris-Mandoki A, Titum P, Mirgorodskiy I, Tresp C, Zeuthen E, Gullans MJ, Manzoni M, Hofferberth S, Chang D, Gorshkov AV. Photon propagation through dissipative Rydberg media at large input rates. PHYSICAL REVIEW RESEARCH 2020; 2:10.1103/physrevresearch.2.033049. [PMID: 33367285 PMCID: PMC7754712 DOI: 10.1103/physrevresearch.2.033049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We study the dissipative propagation of quantized light in interacting Rydberg media under the conditions of electromagnetically induced transparency. Rydberg blockade physics in optically dense atomic media leads to strong dissipative interactions between single photons. The regime of high incoming photon flux constitutes a challenging many-body dissipative problem. We experimentally study in detail the pulse shapes and the second-order correlation function of the outgoing field and compare our data with simulations based on two novel theoretical approaches well-suited to treat this many-photon limit. At low incoming flux, we report good agreement between both theories and the experiment. For higher input flux, the intensity of the outgoing light is lower than that obtained from theoretical predictions. We explain this discrepancy using a simple phenomenological model taking into account pollutants, which are nearly stationary Rydberg excitations coming from the reabsorption of scattered probe photons. At high incoming photon rates, the blockade physics results in unconventional shapes of measured correlation functions.
Collapse
Affiliation(s)
- Przemyslaw Bienias
- Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, National Institute of Standards and Technology and the University of Maryland, College Park, Maryland 20742, USA
| | - James Douglas
- ICFO-Institut de Ciencies Fotoniques, Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Asaf Paris-Mandoki
- Department of Physics, Chemistry, and Pharmacy, Physics@SDU, University of Southern Denmark, 5320 Odense, Denmark
- Instituto de Física, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Paraj Titum
- Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, National Institute of Standards and Technology and the University of Maryland, College Park, Maryland 20742, USA
| | - Ivan Mirgorodskiy
- Department of Physics, Chemistry, and Pharmacy, Physics@SDU, University of Southern Denmark, 5320 Odense, Denmark
| | - Christoph Tresp
- Department of Physics, Chemistry, and Pharmacy, Physics@SDU, University of Southern Denmark, 5320 Odense, Denmark
| | - Emil Zeuthen
- Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Michael J Gullans
- Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, National Institute of Standards and Technology and the University of Maryland, College Park, Maryland 20742, USA
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Marco Manzoni
- ICFO-Institut de Ciencies Fotoniques, Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Sebastian Hofferberth
- Department of Physics, Chemistry, and Pharmacy, Physics@SDU, University of Southern Denmark, 5320 Odense, Denmark
| | - Darrick Chang
- ICFO-Institut de Ciencies Fotoniques, Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
- ICREA-Institució Catalana de Recerca i Estudis Avançats, 08015 Barcelona, Spain
| | - Alexey V Gorshkov
- Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, National Institute of Standards and Technology and the University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
7
|
Parniak M, Mazelanik M, Leszczyński A, Lipka M, Dąbrowski M, Wasilewski W. Quantum Optics of Spin Waves through ac Stark Modulation. PHYSICAL REVIEW LETTERS 2019; 122:063604. [PMID: 30822088 DOI: 10.1103/physrevlett.122.063604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Indexed: 06/09/2023]
Abstract
We bring the set of linear quantum operations, important for many fundamental studies in photonic systems, to the material domain of collective excitations known as spin waves. Using the ac Stark effect we realize quantum operations on single excitations and demonstrate a spin-wave analog of the Hong-Ou-Mandel effect, realized via a beam splitter implemented in the spin-wave domain. Our scheme equips atomic-ensemble-based quantum repeaters with quantum information processing capability and can be readily brought to other physical systems, such as doped crystals or room-temperature atomic ensembles.
Collapse
Affiliation(s)
- Michał Parniak
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
- Centre for Quantum Optical Technologies, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Mateusz Mazelanik
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
- Centre for Quantum Optical Technologies, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Adam Leszczyński
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
- Centre for Quantum Optical Technologies, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Michał Lipka
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
- Centre for Quantum Optical Technologies, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Michał Dąbrowski
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
- Centre for Quantum Optical Technologies, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Wojciech Wasilewski
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
- Centre for Quantum Optical Technologies, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| |
Collapse
|
8
|
Mahmoodian S, Čepulkovskis M, Das S, Lodahl P, Hammerer K, Sørensen AS. Strongly Correlated Photon Transport in Waveguide Quantum Electrodynamics with Weakly Coupled Emitters. PHYSICAL REVIEW LETTERS 2018; 121:143601. [PMID: 30339447 DOI: 10.1103/physrevlett.121.143601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Indexed: 06/08/2023]
Abstract
We show that strongly correlated photon transport can be observed in waveguides containing optically dense ensembles of emitters. Remarkably, this occurs even for weak coupling efficiencies. Specifically, we compute the photon transport properties through a chirally coupled system of N two-level systems driven by a weak coherent field, where each emitter can also scatter photons out of the waveguide. The photon correlations arise due to an interplay of nonlinearity and coupling to a loss reservoir, which creates a strong effective interaction between transmitted photons. The highly correlated photon states are less susceptible to losses than uncorrelated photons and have a power-law decay with N. This is described using a simple universal asymptotic solution governed by a single scaling parameter which describes photon bunching and power transmission. We show numerically that, for randomly placed emitters, these results hold even in systems without chirality. The effect can be observed in existing tapered fiber setups with trapped atoms.
Collapse
Affiliation(s)
- Sahand Mahmoodian
- Institute for Theoretical Physics, Institute for Gravitational Physics (Albert Einstein Institute), Leibniz University Hannover, Appelstraße 2, 30167 Hannover, Germany
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
| | - Mantas Čepulkovskis
- Center for Hybrid Quantum Networks (Hy-Q), Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
| | - Sumanta Das
- Center for Hybrid Quantum Networks (Hy-Q), Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
| | - Peter Lodahl
- Center for Hybrid Quantum Networks (Hy-Q), Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
| | - Klemens Hammerer
- Institute for Theoretical Physics, Institute for Gravitational Physics (Albert Einstein Institute), Leibniz University Hannover, Appelstraße 2, 30167 Hannover, Germany
| | - Anders S Sørensen
- Center for Hybrid Quantum Networks (Hy-Q), Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
| |
Collapse
|
9
|
Liang QY, Venkatramani AV, Cantu SH, Nicholson TL, Gullans MJ, Gorshkov AV, Thompson JD, Chin C, Lukin MD, Vuletić V. Observation of three-photon bound states in a quantum nonlinear medium. Science 2018; 359:783-786. [PMID: 29449489 DOI: 10.1126/science.aao7293] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 01/04/2018] [Indexed: 11/02/2022]
Abstract
Bound states of massive particles, such as nuclei, atoms, or molecules, constitute the bulk of the visible world around us. By contrast, photons typically only interact weakly. We report the observation of traveling three-photon bound states in a quantum nonlinear medium where the interactions between photons are mediated by atomic Rydberg states. Photon correlation and conditional phase measurements reveal the distinct bunching and phase features associated with three-photon and two-photon bound states. Such photonic trimers and dimers possess shape-preserving wave functions that depend on the constituent photon number. The observed bunching and strongly nonlinear optical phase are described by an effective field theory of Rydberg-induced photon-photon interactions. These observations demonstrate the ability to realize and control strongly interacting quantum many-body states of light.
Collapse
Affiliation(s)
- Qi-Yu Liang
- Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Sergio H Cantu
- Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Travis L Nicholson
- Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael J Gullans
- Department of Physics, Princeton University, Princeton, NJ 08544, USA.,Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, National Institute of Standards and Technology and University of Maryland, College Park, MD 20742, USA
| | - Alexey V Gorshkov
- Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, National Institute of Standards and Technology and University of Maryland, College Park, MD 20742, USA
| | - Jeff D Thompson
- Department of Electrical Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Cheng Chin
- James Franck Institute, Enrico Fermi Institute, and Department of Physics, University of Chicago, Chicago, IL 60637, USA
| | - Mikhail D Lukin
- Department of Physics, Harvard University, Cambridge, MA 02138, USA.
| | - Vladan Vuletić
- Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
10
|
Gullans MJ, Diehl S, Rittenhouse ST, Ruzic BP, D'Incao JP, Julienne P, Gorshkov AV, Taylor JM. Efimov States of Strongly Interacting Photons. PHYSICAL REVIEW LETTERS 2017; 119:233601. [PMID: 29286689 DOI: 10.1103/physrevlett.119.233601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Indexed: 06/07/2023]
Abstract
We demonstrate the emergence of universal Efimov physics for interacting photons in cold gases of Rydberg atoms. We consider the behavior of three photons injected into the gas in their propagating frame, where a paraxial approximation allows us to consider them as massive particles. In contrast to atoms and nuclei, the photons have a large anisotropy between their longitudinal mass, arising from dispersion, and their transverse mass, arising from diffraction. Nevertheless, we show that, in suitably rescaled coordinates, the effective interactions become dominated by s-wave scattering near threshold and, as a result, give rise to an Efimov effect near unitarity. We show that the three-body loss of these Efimov trimers can be strongly suppressed and determine conditions under which these states are observable in current experiments. These effects can be naturally extended to probe few-body universality beyond three bodies, as well as the role of Efimov physics in the nonequilibrium, many-body regime.
Collapse
Affiliation(s)
- M J Gullans
- Joint Quantum Institute, NIST and University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST and University of Maryland, College Park, Maryland 20742, USA
| | - S Diehl
- Institut für Theoretische Physik, Universität zu Köln, D-50937 Cologne, Germany
| | - S T Rittenhouse
- Department of Physics, The United States Naval Academy, Annapolis, Maryland 21402, USA
| | - B P Ruzic
- Joint Quantum Institute, NIST and University of Maryland, College Park, Maryland 20742, USA
| | - J P D'Incao
- JILA, University of Colorado and NIST, Boulder, Colorado 80309, USA
- Department of Physics, University of Colorado, Boulder, Colorado 80309, USA
| | - P Julienne
- Joint Quantum Institute, NIST and University of Maryland, College Park, Maryland 20742, USA
| | - A V Gorshkov
- Joint Quantum Institute, NIST and University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST and University of Maryland, College Park, Maryland 20742, USA
| | - J M Taylor
- Joint Quantum Institute, NIST and University of Maryland, College Park, Maryland 20742, USA
- Joint Center for Quantum Information and Computer Science, NIST and University of Maryland, College Park, Maryland 20742, USA
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo, 153-8904, Japan
| |
Collapse
|
11
|
Tretyakov DB, Beterov II, Yakshina EA, Entin VM, Ryabtsev II, Cheinet P, Pillet P. Observation of the Borromean Three-Body Förster Resonances for Three Interacting Rb Rydberg Atoms. PHYSICAL REVIEW LETTERS 2017; 119:173402. [PMID: 29219438 DOI: 10.1103/physrevlett.119.173402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Indexed: 06/07/2023]
Abstract
Three-body Förster resonances at long-range interactions of Rydberg atoms were first predicted and observed in Cs Rydberg atoms by Faoro et al. [Nat. Commun. 6, 8173 (2015)NCAOBW2041-172310.1038/ncomms9173]. In these resonances, one of the atoms carries away an energy excess preventing the two-body resonance, leading thus to a Borromean type of Förster energy transfer. But they were in fact observed as the average signal for the large number of atoms N≫1. In this Letter, we report on the first experimental observation of the three-body Förster resonances 3×nP_{3/2}(|M|)→nS_{1/2}+(n+1)S_{1/2}+nP_{3/2}(|M^{*}|) in a few Rb Rydberg atoms with n=36, 37. We have found here clear evidence that there is no signature of the three-body Förster resonance for exactly two interacting Rydberg atoms, while it is present for N=3-5 atoms. This demonstrates the assumption that three-body resonances can generalize to any Rydberg atom. As such resonance represents an effective three-body operator, it can be used to directly control the three-body interactions in quantum simulations and quantum information processing with Rydberg atoms.
Collapse
Affiliation(s)
- D B Tretyakov
- Rzhanov Institute of Semiconductor Physics SB RAS, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - I I Beterov
- Rzhanov Institute of Semiconductor Physics SB RAS, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
- Novosibirsk State Technical University, 630073 Novosibirsk, Russia
| | - E A Yakshina
- Rzhanov Institute of Semiconductor Physics SB RAS, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - V M Entin
- Rzhanov Institute of Semiconductor Physics SB RAS, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - I I Ryabtsev
- Rzhanov Institute of Semiconductor Physics SB RAS, 630090 Novosibirsk, Russia
- Novosibirsk State University, 630090 Novosibirsk, Russia
| | - P Cheinet
- Laboratoire Aime Cotton, CNRS, Université Paris-Sud, ENS Paris-Saclay, 91405 Orsay, France
| | - P Pillet
- Laboratoire Aime Cotton, CNRS, Université Paris-Sud, ENS Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
12
|
Gullans MJ, Thompson JD, Wang Y, Liang QY, Vuletić V, Lukin MD, Gorshkov AV. Effective Field Theory for Rydberg Polaritons. PHYSICAL REVIEW LETTERS 2016; 117:113601. [PMID: 27661685 PMCID: PMC5245814 DOI: 10.1103/physrevlett.117.113601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Indexed: 06/01/2023]
Abstract
We develop an effective field theory (EFT) to describe the few- and many-body propagation of one-dimensional Rydberg polaritons. We show that the photonic transmission through the Rydberg medium can be found by mapping the propagation problem to a nonequilibrium quench, where the role of time and space are reversed. We include effective range corrections in the EFT and show that they dominate the dynamics near scattering resonances in the presence of deep bound states. Finally, we show how the long-range nature of the Rydberg-Rydberg interactions induces strong effective N-body interactions between Rydberg polaritons. These results pave the way towards studying nonperturbative effects in quantum field theories using Rydberg polaritons.
Collapse
Affiliation(s)
- M J Gullans
- Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, National Institute of Standards and Technology and University of Maryland, College Park, Maryland 20742, USA
| | - J D Thompson
- Physics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02138, USA
| | - Y Wang
- Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, National Institute of Standards and Technology and University of Maryland, College Park, Maryland 20742, USA
| | - Q-Y Liang
- Physics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02138, USA
| | - V Vuletić
- Physics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02138, USA
| | - M D Lukin
- Physics Department, Harvard University, Cambridge, Massachusetts 02138, USA
| | - A V Gorshkov
- Joint Quantum Institute and Joint Center for Quantum Information and Computer Science, National Institute of Standards and Technology and University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|