1
|
Jiang W, Roantree L, Han L, Ji J, Xu Y, Zuo Z, Wörner HJ, Ueda K, Brown AC, van der Hart HW, Gong X, Wu J. Heterodyne analysis of high-order partial waves in attosecond photoionization of helium. Nat Commun 2025; 16:381. [PMID: 39753550 PMCID: PMC11698836 DOI: 10.1038/s41467-024-55247-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 12/03/2024] [Indexed: 01/06/2025] Open
Abstract
Partial wave analysis is key to interpretation of the photoionization of atoms and molecules on the attosecond timescale. Here we propose a heterodyne analysis approach, based on the delay-resolved anisotropy parameters to reveal the role played by high-order partial waves during photoionization. This extends the Reconstruction of Attosecond Beating By Interference of Two-photon Transitions technique into the few-photon regime. We demonstrate that even for moderate ( ~ 1TW/cm2) intensities, near-infrared-assisted photoionization of helium through Rydberg states results in a tiny contribution from the g0 wave, which has a significant impact on the photoelectron angular distributions via interference with the s- and d0-waves. This modulation also causes a substantial deviation in the angular distribution of the recovered spectral phase shift. Our analysis provides an efficient method to resolve isolated partial wave contributions beyond the perturbative regime, and paves the way towards understanding resonance-enhancement of partial waves.
Collapse
Affiliation(s)
- Wenyu Jiang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, China
| | - Luke Roantree
- Centre for Light-Matter Interaction, School of Mathematics and Physics, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Lulu Han
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Jiabao Ji
- Laboratorium für Physikalische Chemie, ETH Zürich, Zürich, Switzerland
| | - Yidan Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Zitan Zuo
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Hans Jakob Wörner
- Laboratorium für Physikalische Chemie, ETH Zürich, Zürich, Switzerland
| | - Kiyoshi Ueda
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
- Department of Chemistry, Tohoku University, Sendai, Japan
- School Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Andrew C Brown
- Centre for Light-Matter Interaction, School of Mathematics and Physics, Queen's University Belfast, Northern Ireland, United Kingdom.
| | - Hugo W van der Hart
- Centre for Light-Matter Interaction, School of Mathematics and Physics, Queen's University Belfast, Northern Ireland, United Kingdom
| | - Xiaochun Gong
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| | - Jian Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, China.
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, China.
| |
Collapse
|
2
|
Taking the Convergent Close-Coupling Method beyond Helium: The Utility of the Hartree-Fock Theory. ATOMS 2022. [DOI: 10.3390/atoms10010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The convergent close-coupling (CCC) method was initially developed to describe electron scattering on atomic hydrogen and the hydrogenic ions such as He+. The latter allows implementation of double photoionization (DPI) of the helium atom. For more complex single valence-electron atomic and ionic targets, the direct and exchange interaction with the inner electron core needs to be taken into account. For this purpose, the Hartree-Fock (HF) computer codes developed in the group of Miron Amusia have been adapted. In this brief review article, we demonstrate the utility of the HF technique by examples of electron scattering on Li and the DPI of the H− and Li− ions. We also discuss that modern-day computer infrastructure allows the associated CCC code, and others, to be readily run directly via the Atomic, Molecular and Optical Science Gateway.
Collapse
|
3
|
Schmid G, Schnorr K, Augustin S, Meister S, Lindenblatt H, Trost F, Liu Y, Stojanovic N, Al-Shemmary A, Golz T, Treusch R, Gensch M, Kübel M, Foucar L, Rudenko A, Ullrich J, Schröter CD, Pfeifer T, Moshammer R. Terahertz-Field-Induced Time Shifts in Atomic Photoemission. PHYSICAL REVIEW LETTERS 2019; 122:073001. [PMID: 30848607 DOI: 10.1103/physrevlett.122.073001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Indexed: 06/09/2023]
Abstract
Time delays for atomic photoemission obtained in streaking or reconstruction of attosecond bursts by interference of two-photon transitions experiments originate from a combination of the quantum mechanical Wigner time and the Coulomb-laser coupling. While the former was investigated intensively theoretically as well as experimentally, the latter attracted less interest in experiments and has mostly been subject to calculations. Here, we present a measurement of the Coulomb-laser coupling-induced time shifts in photoionization of neon at 59.4 eV using a terahertz (THz) streaking field (λ=152 μm). Employing a reaction microscope at the THz beamline of the free-electron laser in Hamburg (FLASH), we have measured relative time shifts of up to 70 fs between the emission of 2p photoelectrons (∼38 eV) and low-energetic (<1 eV) photoelectrons. A comparison with theoretical predictions on Coulomb-laser coupling reveals reasonably good agreement.
Collapse
Affiliation(s)
- Georg Schmid
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - Kirsten Schnorr
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - Sven Augustin
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - Severin Meister
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - Hannes Lindenblatt
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - Florian Trost
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - Yifan Liu
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - Nikola Stojanovic
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, D-22607 Hamburg, Germany
| | - Alaa Al-Shemmary
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, D-22607 Hamburg, Germany
| | - Torsten Golz
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, D-22607 Hamburg, Germany
| | - Rolf Treusch
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, D-22607 Hamburg, Germany
| | - Michael Gensch
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, D-01328 Dresden, Germany
| | - Matthias Kübel
- Department of Physics, Ludwig-Maximilians-Universität München, D-85748 Garching, Germany
- Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Straße 1, D-85748 Garching, Germany
| | - Lutz Foucar
- Max-Planck-Institut für medizinsche Forschung, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - Artem Rudenko
- Kansas State University, 116 Cardwell Hall, Manhattan, Kansas 66506, USA
| | - Joachim Ullrich
- Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, D-38116 Braunschweig, Germany
| | | | - Thomas Pfeifer
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| | - Robert Moshammer
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg, Germany
| |
Collapse
|